1
|
Hayes AG, Stowasser M, Umapathysivam MM, Falhammar H, Torpy DJ. Approach to the Patient: Reninoma. J Clin Endocrinol Metab 2024; 109:e809-e816. [PMID: 37647894 PMCID: PMC10795928 DOI: 10.1210/clinem/dgad516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/02/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
A reninoma is a functional tumor of afferent arteriolar juxtaglomerular cells that secretes the enzyme renin, leading to hyperactivation of the renin-angiotensin-aldosterone system. Reninoma is a potentially curable cause of pathological secondary hyperaldosteronism that results in often severe hypertension and hypokalemia. The lack of suppression of plasma renin contrasts sharply with the much more common primary aldosteronism, but diagnosis is often prompted by screening for that condition. The major differential diagnosis of reninoma is renovascular hypertension. Fewer than 200 cases of reninoma have been described. Reninomas have been reported across a broad demographic but have a 2:1 predilection for women, often of childbearing age. Aldosterone receptor blockade, angiotensin-converting enzyme inhibitors, or angiotensin receptor blockers offer effective medical management but are contraindicated in pregnancy, so surgical curative resection is ideal. The current optimal imaging and biochemical workup of reninoma and management approach (ideally, tumor excision with subtotal renal resection) are described.
Collapse
Affiliation(s)
- Annabelle G Hayes
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
- Faculty of Medicine, University of Adelaide, Adelaide, South Autralia 5000, Australia
| | - Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Brisbane, Queensland 4102, Australia
- Endocrine Hypertension Unit, Greenslopes and Princess Alexandra Hospitals, Brisbane, Queensland 4102, Australia
| | - Mahesh M Umapathysivam
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
- Faculty of Medicine, University of Adelaide, Adelaide, South Autralia 5000, Australia
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm SE-171 76, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
- Faculty of Medicine, University of Adelaide, Adelaide, South Autralia 5000, Australia
| |
Collapse
|
2
|
Fuchs MAA, Schrankl J, Leupold C, Wagner C, Kurtz A, Broeker KAE. Intact prostaglandin signaling through EP2 and EP4 receptors in stromal progenitor cells is required for normal development of the renal cortex in mice. Am J Physiol Renal Physiol 2022; 322:F295-F307. [PMID: 35037469 DOI: 10.1152/ajprenal.00414.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 01/20/2023] Open
Abstract
Cyclooxygenase (Cox) inhibitors are known to have severe side effects during renal development. These consist of reduced renal function, underdeveloped subcapsular glomeruli, interstitial fibrosis, and thinner cortical tissue. Global genetic deletion of Cox-2 mimics the phenotype observed after application of Cox inhibitors. This study aimed to investigate which cell types express Cox-2 and prostaglandin E2 receptors and what functions are mediated through this pathway during renal development. Expression of EP2 and EP4 mRNA was detected by RNAscope mainly in descendants of FoxD1+ stromal progenitors; EP1 and EP3, on the other hand, were expressed in tubules. Cox-2 mRNA was detected in medullary interstitial cells and macula densa cells. Functional investigations were performed with a cell-specific approach to delete Cox-2, EP2, and EP4 in FoxD1+ stromal progenitor cells. Our data show that Cox-2 expression in macula densa cells is sufficient to drive renal development. Deletion of EP2 or EP4 in FoxD1+ cells had no functional effect on renal development. Codeletion of EP2 and EP4 in FoxD1+ stromal cells, however, led to severe glomerular defects and a strong decline of glomerular filtration rate (1.316 ± 69.7 µL/min/100 g body wt in controls vs. 644.1 ± 64.58 µL/min/100 g body wt in FoxD1+/Cre EP2-/- EP4ff mice), similar to global deletion of Cox-2. Furthermore, EP2/EP4-deficient mice showed a significant increase in collagen production with a strong downregulation of renal renin expression. This study shows the distinct localization of EP receptors in mice. Functionally, we could identify EP2 and EP4 receptors in stromal FoxD1+ progenitor cells as essential receptor subtypes for normal renal development.NEW & NOTEWORTHY Cyclooxygenase-2 (Cox-2) produces prostaglandins that are essential for normal renal development. It is unclear in which cells Cox-2 and the receptors for prostaglandin E2 (EP receptors) are expressed during late nephrogenesis. This study identified the expression sites for EP subtypes and Cox-2 in neonatal mouse kidneys. Furthermore, it shows that stromal progenitor cells may require intact prostaglandin E2 signaling through EP2 and EP4 receptors for normal renal development.
Collapse
MESH Headings
- Animals
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Developmental
- Kidney Cortex/cytology
- Kidney Cortex/enzymology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Organogenesis
- Prostaglandins/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Signal Transduction
- Stem Cells/metabolism
- Stromal Cells/enzymology
- Mice
Collapse
Affiliation(s)
| | - Julia Schrankl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Christina Leupold
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
3
|
Hsu CN, Tain YL. Adverse Impact of Environmental Chemicals on Developmental Origins of Kidney Disease and Hypertension. Front Endocrinol (Lausanne) 2021; 12:745716. [PMID: 34721300 PMCID: PMC8551449 DOI: 10.3389/fendo.2021.745716] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Chronic kidney disease (CKD) and hypertension are becoming a global health challenge, despite developments in pharmacotherapy. Both diseases can begin in early life by so-called "developmental origins of health and disease" (DOHaD). Environmental chemical exposure during pregnancy can affect kidney development, resulting in renal programming. Here, we focus on environmental chemicals that pregnant mothers are likely to be exposed, including dioxins, bisphenol A (BPA), phthalates, per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAH), heavy metals, and air pollution. We summarize current human evidence and animal models that supports the link between prenatal exposure to environmental chemicals and developmental origins of kidney disease and hypertension, with an emphasis on common mechanisms. These include oxidative stress, renin-angiotensin system, reduced nephron numbers, and aryl hydrocarbon receptor signaling pathway. Urgent action is required to identify toxic chemicals in the environment, avoid harmful chemicals exposure during pregnancy and lactation, and continue to discover other potentially harmful chemicals. Innovation is also needed to identify kidney disease and hypertension in the earliest stage, as well as translating effective reprogramming interventions from animal studies into clinical practice. Toward DOHaD approach, prohibiting toxic chemical exposure and better understanding of underlying mechanisms, we have the potential to reduce global burden of kidney disease and hypertension.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Animal Models for DOHaD Research: Focus on Hypertension of Developmental Origins. Biomedicines 2021; 9:biomedicines9060623. [PMID: 34072634 PMCID: PMC8227380 DOI: 10.3390/biomedicines9060623] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that fetal programming through environmental exposure during a critical window of early life leads to long-term detrimental outcomes, by so-called developmental origins of health and disease (DOHaD). Hypertension can originate in early life. Animal models are essential for providing convincing evidence of a causal relationship between diverse early-life insults and the developmental programming of hypertension in later life. These insults include nutritional imbalances, maternal illnesses, exposure to environmental chemicals, and medication use. In addition to reviewing the various insults that contribute to hypertension of developmental origins, this review focuses on the benefits of animal models in addressing the underlying mechanisms by which early-life interventions can reprogram disease processes and prevent the development of hypertension. Our understanding of hypertension of developmental origins has been enhanced by each of these animal models, narrowing the knowledge gap between animal models and future clinical translation.
Collapse
|
5
|
Role of the renin-angiotensin system in kidney development and programming of adult blood pressure. Clin Sci (Lond) 2020; 134:641-656. [PMID: 32219345 DOI: 10.1042/cs20190765] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Adverse events during fetal life such as insufficient protein intake or elevated transfer of glucocorticoid to the fetus may impact cardiovascular and metabolic health later in adult life and are associated with increased incidence of type 2 diabetes, ischemic heart disease and hypertension. Several adverse factors converge and suppress the fetal renin-angiotensin-aldosterone system (RAAS). The aim of this review is to summarize data on the significance of RAAS for kidney development and adult hypertension. Genetic inactivation of RAAS in rodents at any step from angiotensinogen to angiotensin II (ANGII) type 1 receptor (AT1) receptors or pharmacologic inhibition leads to complex developmental injury to the kidneys that has also been observed in human case reports. Deletion of the 'protective' arm of RAAS, angiotensin converting enzyme (ACE) 2 (ACE-2) and G-protein coupled receptor for Angiotensin 1-7 (Mas) receptor does not reproduce the AT1 phenotype. The changes comprise fewer glomeruli, thinner cortex, dilated tubules, thicker arterioles and arteries, lack of vascular bundles, papillary atrophy, shorter capillary length and volume in cortex and medulla. Altered activity of systemic and local regulators of fetal-perinatal RAAS such as vitamin D and cyclooxygenase (COX)/prostaglandins are associated with similar injuries. ANGII-AT1 interaction drives podocyte and epithelial cell formation of vascular growth factors, notably vascular endothelial growth factor (VEGF) and angiopoietins (Angpts), which support late stages of glomerular and cortical capillary growth and medullary vascular bundle formation and patterning. RAAS-induced injury is associated with lower glomerular filtration rate (GFR), lower renal plasma flow, kidney fibrosis, up-regulation of sodium transporters, impaired sodium excretion and salt-sensitive hypertension. The renal component and salt sensitivity of programmed hypertension may impact dietary counseling and choice of pharmacological intervention to treat hypertension.
Collapse
|
6
|
Lumbers ER, Kandasamy Y, Delforce SJ, Boyce AC, Gibson KJ, Pringle KG. Programming of Renal Development and Chronic Disease in Adult Life. Front Physiol 2020; 11:757. [PMID: 32765290 PMCID: PMC7378775 DOI: 10.3389/fphys.2020.00757] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic kidney disease (CKD) can have an insidious onset because there is a gradual decline in nephron number throughout life. There may be no overt symptoms of renal dysfunction until about two thirds or more of the nephrons have been destroyed and glomerular filtration rate (GFR) falls to below 25% of normal (often in mid-late life) (Martinez-Maldonaldo et al., 1992). Once End Stage Renal Disease (ESRD) has been reached, survival depends on renal replacement therapy (RRT). CKD causes hypertension and cardiovascular disease; and hypertension causes CKD. Albuminuria is also a risk factor for cardiovascular disease. The age of onset of CKD is partly determined during fetal life. This review describes the mechanisms underlying the development of CKD in adult life that results from abnormal renal development caused by an adverse intrauterine environment. The basis of this form of CKD is thought to be mainly due to a reduction in the number of nephrons formed in utero which impacts on the age dependent decline in glomerular function. Factors that affect the risk of reduced nephron formation during intrauterine life are discussed and include maternal nutrition (malnutrition and obesity, micronutrients), smoking and alcohol, use of drugs that block the maternal renin-angiotensin system, glucocorticoid excess and maternal renal dysfunction and prematurity. Since CKD, hypertension and cardiovascular disease add to the disease burden in the community we recommend that kidney size at birth should be recorded using ultrasound and those individuals who are born premature or who have small kidneys at this time should be monitored regularly by determining GFR and albumin:creatinine clearance ratio. Furthermore, public health measures aimed at limiting the prevalence of obesity and diabetes mellitus as well as providing advice on limiting the amount of protein ingested during a single meal, because they are all associated with increased glomerular hyperfiltration and subsequent glomerulosclerosis would be beneficial.
Collapse
Affiliation(s)
- Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Yoga Kandasamy
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Neonatology, Townsville University Hospital, Douglas, QLD, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Amanda C Boyce
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Karen J Gibson
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
7
|
Kondo S, Matsuura S, Ariunbold J, Kinoshita Y, Urushihara M, Suga K, Ozaki N, Nagai T, Fujioka K, Kagami S. Expression of NADPH oxidase and production of reactive oxygen species contribute to ureteric bud branching and nephrogenesis. THE JOURNAL OF MEDICAL INVESTIGATION 2019; 66:93-98. [PMID: 31064963 DOI: 10.2152/jmi.66.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Ureteric bud branching and nephrogenesis are performed through large-scale proliferation and apoptosis events during renal development. Reactive oxygen species (ROS), produced by NADPH oxidase, may contribute to cell behaviors, including proliferation and apoptosis. We investigated the role of NADPH oxidase expression and ROS production in developing kidneys. Immunohistochemistry revealed that NADPH oxidase componentswere expressed on epithelial cells in ureteric bud branches, as well as on immature glomerular cells and epithelial cells in nephrogenic zones. ROS production, detected by dihydroethidium assay, was strongly observed in ureteric bud branches and nephrogenic zones, corresponding with NADPH oxidase localization. Organ culture of E14 kidneys revealed that the inhibition of NADPH oxidase significantly reduced the number of ureteric bud branches and tips, consistent with reduced ROS production. This was associated with reduced expression of phosphorylated ERK1/2 and increased expression of cleaved caspase-3. Organ culture of E18 kidneys showed that the inhibition of NADPH oxidase reduced nephrogenic zone size, accompanied by reduced ROS production, fewer proliferating cell nuclear antigen-positive cells, lower p-ERK1/2 expression, and increased expression of cleaved caspase-3. These results demonstrate that ROS produced by NADPH oxidase might play an important role in ureteric bud branching and nephrogenesis by regulating proliferation and apoptosis. J.Med. Invest. 66 :93-98, February, 2019.
Collapse
Affiliation(s)
- Shuji Kondo
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Sato Matsuura
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Jamba Ariunbold
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yukiko Kinoshita
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Maki Urushihara
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenichi Suga
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Natsuko Ozaki
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takashi Nagai
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Fujioka
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shoji Kagami
- Department of Pediatrics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
8
|
Schrankl J, Neubauer B, Fuchs M, Gerl K, Wagner C, Kurtz A. Apparently normal kidney development in mice with conditional disruption of ANG II-AT 1 receptor genes in FoxD1-positive stroma cell precursors. Am J Physiol Renal Physiol 2019; 316:F1191-F1200. [PMID: 30969804 DOI: 10.1152/ajprenal.00305.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An intact renin-angiotensin system involving ANG II type 1 (AT1) receptors is crucial for normal kidney development. It is still unclear in which cell types AT1 receptor signaling is required for normal kidney development, maturation, and function. Because all kidney cells deriving from stroma progenitor cells express AT1 receptors and because stromal cells fundamentally influence nephrogenesis and tubular maturation, we investigated the relevance of AT1 receptors in stromal progenitors and their descendants for renal development and function. For this aim, we generated and analyzed mice with conditional deletion of AT1A receptor in the FoxD1 cell lineage in combination with global disruption of the AT1B receptor gene. These FoxD1-AT1ko mice developed normally. Their kidneys showed neither structural nor functional abnormalities compared with wild-type mice, whereas in isolated perfused FoxD1-AT1ko kidneys, the vasoconstrictor and renin inhibitory effects of ANG II were absent. In vivo, however, plasma renin concentration and renal renin expression were normal in FoxD1-AT1ko mice, as were blood pressure and glomerular filtration rate. These findings suggest that a strong reduction of AT1 receptors in renal stromal progenitors and their descendants does not disturb normal kidney development.
Collapse
Affiliation(s)
- Julia Schrankl
- Institute of Physiology, University of Regensburg , Regensburg , Germany
| | - Bjoern Neubauer
- Department of Medicine IV, University Medical Center Freiburg , Freiburg , Germany
| | - Michaela Fuchs
- Institute of Physiology, University of Regensburg , Regensburg , Germany
| | - Katharina Gerl
- Institute of Physiology, University of Regensburg , Regensburg , Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg , Regensburg , Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg , Regensburg , Germany
| |
Collapse
|
9
|
de Almeida LF, Coimbra TM. When Less or More Isn't Enough: Renal Maldevelopment Arising From Disequilibrium in the Renin-Angiotensin System. Front Pediatr 2019; 7:296. [PMID: 31380328 PMCID: PMC6650528 DOI: 10.3389/fped.2019.00296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Environmental and nutritional factors during fetal and neonatal life can have long-lasting effects on renal functions and physiology and susceptibility to kidney disease in adulthood. All components of the renin-angiotensin system (RAS) are highly expressed in the kidneys during the period of renal development. The RAS plays a central role in the regulation of various cellular growth factors and stimulates adhesion molecules and cellular migration. The use of antagonists of this system during fetal development represents a major risk factor for hypertension, renal vascular dysfunction, and kidney medulla atrophy in adulthood. The inappropriate activation of the RAS by vitamin D (VitD) deficiency has been studied in recent years. Clinical and experimental studies have demonstrated an inverse relationship between circulating VitD levels and blood pressure, plasma and renin activity, and an increase in angiotensin II and the receptor AT1. These data raise new questions about the importance of the integrity of the RAS during development since RAS pathway inhibitors and VitD deficiency have opposing functions. This is a literature review on the possible mechanisms by which antagonists of the RAS and VitD deficiency during fetal development provoke disturbances in kidney structure and function. Potential mechanisms are presented and discussed, and the possible pathways by which an imbalanced maternal RAS may negatively impact fetal development and have consequences in adulthood are also explored.
Collapse
Affiliation(s)
- Lucas Ferreira de Almeida
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Terezila Machado Coimbra
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
Moroney E, Posma E, Dennis A, d'Udekem Y, Cordina R, Zentner D. Pregnancy in a woman with a Fontan circulation: A review. Obstet Med 2017; 11:6-11. [PMID: 29636807 DOI: 10.1177/1753495x17737680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/23/2017] [Indexed: 11/15/2022] Open
Abstract
More women with congenital heart disease survive to childbearing ages, due to improvements in surgical practice and postoperative care. This review discusses pregnancy in women with a single ventricle, describing maternal obstetric and cardiovascular complications and the increased risks of prematurity and adverse neonatal outcomes. Recommendations are made based on current understanding, guidelines and published literature, with recognition that there is much knowledge yet to be gained.
Collapse
Affiliation(s)
- Emily Moroney
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Elske Posma
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Victoria, Australia
| | - Alicia Dennis
- Department of Anaesthesia, The Royal Women's Hospital, Victoria, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia.,Department of Pharmacology, The University of Melbourne, Melbourne, Australia
| | - Yves d'Udekem
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia.,7Department of Cardiac Surgery, Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Rachael Cordina
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, The University of Sydney, Camperdown, NSW, Australia
| | - Dominica Zentner
- Department of Cardiology, The Royal Melbourne Hospital, Victoria, Australia.,Department of Medicine Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|