1
|
Haddad S, Salloum E, Silan A, kalecioğlu G, Abdulnour M, Haddad S, Alasmar D, Alayash M, Ghaleb AN. Mitochondrial complex I deficiency in a 4-year-old boy due to compound heterozygous NDUFV1 mutation: a case report of a new pathogenic variant. Oxf Med Case Reports 2025; 2025:omae166. [PMID: 40207266 PMCID: PMC11979451 DOI: 10.1093/omcr/omae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/15/2024] [Indexed: 04/11/2025] Open
Abstract
Mutations in the NDUFV1 gene are associated with mitochondrial complex I deficiency and have been linked to various clinical conditions such as Leigh syndrome, severe infantile lactic acidosis, newborn cardiomyopathy, progressive leukoencephalopathy, and other encephalomyopathies. Genetic alterations revealed mitochondrial complex 1 deficiency, nuclear type 4 |AR: two compound heterozygous missense mutations in the NDUFV1 gene, c.640G < A (p.E214K) chr11:67377981 (Exon 1) and c.248C < T (p.S83L) chr11:67376115 (Exon 3) gene. Our case identifies a previously unknown pathogenic effect of the variant 'c.248C > T' in the NDUFV1 gene, observed in a 4-year-old boy with left-sided facial paralysis and balance impairment. While this discovery is significant, further exploration of NDUFV1 gene variants is essential for a comprehensive understanding and effective treatment strategies.
Collapse
Affiliation(s)
- Salim Haddad
- Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
| | - Elie Salloum
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Abdullah Silan
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
| | - Gazel kalecioğlu
- Faculty of Medicine, Aleppo University, Aleppo, Syrian Arab Republic
| | - Maria Abdulnour
- Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
| | - Sultaneh Haddad
- Children’s University Hospital, Damascus, Syrian Arab Republic
| | - Diana Alasmar
- PhD of inherited metabolic diseases at Damascus University
| | - Mahmoud Alayash
- Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
- Children’s University Hospital, Damascus, Syrian Arab Republic
| | | |
Collapse
|
2
|
Mahesan A, Choudhary PK, Kamila G, Rohil A, Meena AK, Kumar A, Jauhari P, Chakrabarty B, Gulati S. NDUFV1-Related Mitochondrial Complex-1 Disorders: A Retrospective Case Series and Literature Review. Pediatr Neurol 2024; 155:91-103. [PMID: 38626668 DOI: 10.1016/j.pediatrneurol.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Pathogenic variants in the NDUFV1 gene disrupt mitochondrial complex I, leading to neuroregression with leukoencephalopathy and basal ganglia involvement on neuroimaging. This study aims to provide a concise review on NDUFV1-related disorders while adding the largest cohort from a single center to the existing literature. METHODS We retrospectively collected genetically proven cases of NDUFV1 pathogenic variants from our center over the last decade and explored reported instances in existing literature. Magnetic resonance imaging (MRI) patterns observed in these patients were split into three types-Leigh (putamen, basal ganglia, thalamus, and brainstem involvement), mitochondrial leukodystrophy (ML) (cerebral white matter involvement with cystic cavitations), and mixed (both). RESULTS Analysis included 44 children (seven from our center and 37 from literature). The most prevalent comorbidities were hypertonia, ocular abnormalities, feeding issues, and hypotonia at onset. Children with the Leigh-type MRI pattern exhibited significantly higher rates of breathing difficulties, whereas those with a mixed phenotype had a higher prevalence of dystonia. The c.1156C>T variant in exon 8 of the NDUFV1 gene was the most common variant among individuals of Asian ethnicity and is predominantly associated with irritability and dystonia. Seizures and Leigh pattern of MRI of the brain was found to be less commonly associated with this variant. Higher rate of mortality was observed in children with Leigh-type pattern on brain MRI and those who did not receive mitochondrial cocktail. CONCLUSIONS MRI phenotyping might help predict outcome. Appropriate and timely treatment with mitochondrial cocktail may reduce the probability of death and may positively impact the long-term outcomes, regardless of the genetic variant or age of onset.
Collapse
Affiliation(s)
- Aakash Mahesan
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Puneet Kumar Choudhary
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Gautam Kamila
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Aradhana Rohil
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Kumar Meena
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Atin Kumar
- Department of Radiodiagnosis and Interventional Radiology, AIIMS, New Delhi, India
| | - Prashant Jauhari
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Biswaroop Chakrabarty
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Sheffali Gulati
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Lin X, Zhou Y, Xue L. Mitochondrial complex I subunit MT-ND1 mutations affect disease progression. Heliyon 2024; 10:e28808. [PMID: 38596130 PMCID: PMC11002282 DOI: 10.1016/j.heliyon.2024.e28808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Mitochondrial respiratory chain complex I is an important component of the oxidative respiratory chain, with the mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1) being one of the core subunits. MT-ND1 plays a role in the assembly of complex I and its enzymatic function. MT-ND1 gene mutation affects pathophysiological processes, such as interfering with the early assembly of complex I, affecting the ubiquinone binding domain and proton channel of complex I, and affecting oxidative phosphorylation, thus leading to the occurrence of diseases. The relationship between MT-ND1 gene mutation and disease has been has received increasing research attention. Therefore, this article reviews the impact of MT-ND1 mutations on disease progression, focusing on the impact of such mutations on diseases and their possible mechanisms, as well as the application of targeting MT-ND1 gene mutations in disease diagnosis and treatment. We aim to provide a new perspective leading to a more comprehensive understanding of the relationship between MT-ND1 gene mutations and diseases.
Collapse
Affiliation(s)
- Xi Lin
- Department of Pathology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Lei Xue
- Department of Pathology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| |
Collapse
|
4
|
Delivery Systems for Mitochondrial Gene Therapy: A Review. Pharmaceutics 2023; 15:pharmaceutics15020572. [PMID: 36839894 PMCID: PMC9964608 DOI: 10.3390/pharmaceutics15020572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Mitochondria are membrane-bound cellular organelles of high relevance responsible for the chemical energy production used in most of the biochemical reactions of cells. Mitochondria have their own genome, the mitochondrial DNA (mtDNA). Inherited solely from the mother, this genome is quite susceptible to mutations, mainly due to the absence of an effective repair system. Mutations in mtDNA are associated with endocrine, metabolic, neurodegenerative diseases, and even cancer. Currently, therapeutic approaches are based on the administration of a set of drugs to alleviate the symptoms of patients suffering from mitochondrial pathologies. Mitochondrial gene therapy emerges as a promising strategy as it deeply focuses on the cause of mitochondrial disorder. The development of suitable mtDNA-based delivery systems to target and transfect mammalian mitochondria represents an exciting field of research, leading to progress in the challenging task of restoring mitochondria's normal function. This review gathers relevant knowledge on the composition, targeting performance, or release profile of such nanosystems, offering researchers valuable conceptual approaches to follow in their quest for the most suitable vectors to turn mitochondrial gene therapy clinically feasible. Future studies should consider the optimization of mitochondrial genes' encapsulation, targeting ability, and transfection to mitochondria. Expectedly, this effort will bring bright results, contributing to important hallmarks in mitochondrial gene therapy.
Collapse
|
5
|
Faria R, Albuquerque T, Neves AR, Sousa Â, Costa DRB. Nanotechnology to Correct Mitochondrial Disorders in Cancer Diseases. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
6
|
Gschwind M, Garcia Segarra N, Schaller A, Bolognini R, Nuoffer JM, Hourez R, Deprez M, Lhermitte B, Maeder P, Tran C, Kuntzer T. Early-onset leukoencephalomyelopathy due to a biallelic NDUFV1 variant in a mid-forties patient. Ann Clin Transl Neurol 2022; 9:888-892. [PMID: 35482023 PMCID: PMC9186134 DOI: 10.1002/acn3.51556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/11/2022] [Accepted: 03/26/2022] [Indexed: 11/09/2022] Open
Abstract
We present a patient who developed, after an early-onset, a stable course of spastic paraplegia and ataxia for 4 decades and eventually succumbed to two episodes of postinfectious lactic acidosis. Diagnostic workup including muscle biopsy and postmortem analysis, oxymetric analysis, spectrophotometric enzyme analysis, and MitoExome sequencing revealed a necrotizing leukoencephalomyelopathy due to the so far unreported biallelic variant of the NDUFV1 gene (p.(Pro122Leu)). This case extends our understanding of NDUFV1 variants with a 14-fold longer lifetime than so far reported cases, and will foster sensitivity toward respiratory chain disease also in adult patients with sudden deteriorating neurological deficits.
Collapse
Affiliation(s)
- Markus Gschwind
- Clinic of Neurology, Kantonsspital Aarau, Aarau, Switzerland.,Department of Neurology, Geneva University Hospital and University of Geneva, Geneva, Switzerland.,Department of Neurology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Nuria Garcia Segarra
- Center for Molecular Diseases, Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, Switzerland
| | - André Schaller
- Division of Human Genetics, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Ramona Bolognini
- Division of Human Genetics, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Raphael Hourez
- Department of Neurology, Centre Hospitalier Universitaire Brugman, Brussels, Belgium
| | - Manuel Deprez
- Department of Pathology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Benoit Lhermitte
- Departement of Pathology, Hautepierre University Hospital, France
| | - Philippe Maeder
- Department of Neuroradiology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Christel Tran
- Center for Molecular Diseases, Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Thierry Kuntzer
- Department of Neurology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| |
Collapse
|
7
|
Curtabbi A, Enríquez JA. The ins and outs of the flavin mononucleotide cofactor of respiratory complex I. IUBMB Life 2022; 74:629-644. [PMID: 35166025 DOI: 10.1002/iub.2600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The flavin mononucleotide (FMN) cofactor of respiratory complex I occupies a key position in the electron transport chain. Here, the electrons coming from NADH start the sequence of oxidoreduction reactions, which drives the generation of the proton-motive force necessary for ATP synthesis. The overall architecture and the general catalytic proprieties of the FMN site are mostly well established. However, several aspects regarding the complex I flavin cofactor are still unknown. For example, the flavin binding to the N-module, the NADH-oxidizing portion of complex I, lacks a molecular description. The dissociation of FMN from the enzyme is beginning to emerge as an important regulatory mechanism of complex I activity and ROS production. Finally, how mitochondria import and metabolize FMN is still uncertain. This review summarizes the current knowledge on complex I flavin cofactor and discusses the open questions for future research.
Collapse
Affiliation(s)
- Andrea Curtabbi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Wang R, Kairen C, Li L, Zhang L, Gong H, Huang X. Overexpression of NDUFV1 alleviates renal damage by improving mitochondrial function in unilateral ureteral obstruction model mice. Cell Biol Int 2021; 46:381-390. [PMID: 34936716 DOI: 10.1002/cbin.11736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial homeostasis plays essential role for the proper functioning of the kidney. NADH-ubiquinone oxidoreductase core subunit V1 (NDUFV1) is an enzyme in the complex I of electron transport chain (ETC) in mitochondria. In the present study, we examined the effects of NDUFV1 on renal function in unilateral ureteral obstruction (UUO) model mice. Our data showed that increased expression of NDUFV1 improves kidney function as evidenced by the decreases in blood urea nitrogen and serum creatinine in UUO mice. Moreover, NDUFV1 also maintains renal structures and alleviates renal fibrosis induced by UUO surgery. Mechanistically, NDUFV1 mitigates the increased oxidative stress in the kidney in UUO model mice. Meanwhile, increased expression of NDUFV1 in the kidney improves the integrity of the complex I and potentiates the complex I activity. Overall, these results indicate that the ETC complex I plays a beneficial role against renal dysfunction induced by acute kidney injury such as UUO. Therefore, NDUFV1 might be a druggable target for developing agents for dealing with disabled mitochondria-associated renal diseases.
Collapse
Affiliation(s)
- Ruiting Wang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chen Kairen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lu Li
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lingling Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Haifeng Gong
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
9
|
Zanette V, Valle DD, Telles BA, Robinson AJ, Monteiro V, Santos MLSF, Souza RLR, Benincá C. NDUFV1 mutations in complex I deficiency: Case reports and review of symptoms. Genet Mol Biol 2021; 44:e20210149. [PMID: 34807224 PMCID: PMC8607527 DOI: 10.1590/1678-4685-gmb-2021-0149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial complex I (CI) deficiency is the most common oxidative phosphorylation disorder described. It shows a wide range of phenotypes with poor correlation within genotypes. Herein we expand the clinics and genetics of CI deficiency in the brazilian population by reporting three patients with pathogenic (c.640G>A, c.1268C>T, c.1207dupG) and likely pathogenic (c.766C>T) variants in the NDUFV1 gene. We show the mutation c.766C>T associated with a childhood onset phenotype of hypotonia, muscle weakness, psychomotor regression, lethargy, dysphagia, and strabismus. Additionally, this mutation was found to be associated with headaches and exercise intolerance in adulthood. We also review reported pathogenic variants in NDUFV1 highlighting the wide phenotypic heterogeneity in CI deficiency.
Collapse
Affiliation(s)
- Vanessa Zanette
- Universidade Federal do Paraná, Departamento de Genética, Laboratório de Polimorfismos e Ligação, Curitiba, PR, Brazil
| | - Daniel do Valle
- Hospital Pequeno Príncipe, Divisão de Neuropediatria, Curitiba, PR, Brazil
| | | | - Alan J Robinson
- University of Cambridge, Medical Research Council, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Vaneisse Monteiro
- Hospital Pequeno Príncipe, Divisão de Neuropediatria, Curitiba, PR, Brazil
| | | | - Ricardo Lehtonen R Souza
- Universidade Federal do Paraná, Departamento de Genética, Laboratório de Polimorfismos e Ligação, Curitiba, PR, Brazil
| | - Cristiane Benincá
- Universidade Federal do Paraná, Departamento de Genética, Laboratório de Polimorfismos e Ligação, Curitiba, PR, Brazil.,University of Cambridge, Medical Research Council, Mitochondrial Biology Unit, Cambridge, United Kingdom
| |
Collapse
|
10
|
张 智, 袁 慧, 张 水. [A novel frameshift NDUFV1 mutation in a child with the phenotype of optic nerve atrophy]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:789-792. [PMID: 34134969 PMCID: PMC8214960 DOI: 10.12122/j.issn.1673-4254.2021.05.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the pathogenic gene in a child with optic atrophy and analyze the influence of this gene mutation on protein structure. OBJECTIVE We collected the clinical record of the 13-year-old girl and her relatives. The child received examinations of the visual acuity, visual field, fundus, OCT, visual-evoked potential (VEP) and the nerve system, underwent brain MRI and was followed up for 1 year. Genomic DNA was extracted from the peripheral blood of the child and her parents for next-generation sequencing of the whole exon. The pathogenic gene mutation was identified and the resultant changes in the protein structure was analyzed. OBJECTIVE The patient presented with impaired vision and optic nerve atrophy in both eyes with low amplitude of VEP, but did not show dystonia or pyramidal tract symptom. Brain MRI detected no leukodystrophy. Genetic analysis suggested a heterozygous c.53_54delTG mutation in exon 1 in the NDUFV1 gene of complex I, which caused a frameshift starting with the codon valine 18, thus changing the amino acid to an Alanine residue and creating a premature stop codon at position 20 of the new reading frame (p.Val18AlafsX20). A heterozygous for c.1162+4A>C: IVS8 + 4A>C in intron 8 was also found. Protein structure analysis showed the missing of important structure of NDUFV1 subunit in complex I. OBJECTIVE We identified a novel NDUFV1 mutation in a child with optic nerve atrophy. This finding may provide further insight into the genotype-phenotype correlations for NDUFV1 gene.
Collapse
Affiliation(s)
- 智科 张
- 中日友好医院,北京 100029Department of Ophthalmology, China-Japan Friendship Hospital, Beijing 100029, China
| | - 慧君 袁
- Bascom Palmer眼科中心,美国 33136Bascom Palmer Eye Institute, USA, 33136
| | - 水馨 张
- 北京市海淀区中医医院,北京 100080Beijing Haidian District Traditional Chinese Medicine Hospital, Beijing 100080, China
| |
Collapse
|
11
|
Bornstein R, Gonzalez B, Johnson SC. Mitochondrial pathways in human health and aging. Mitochondrion 2020; 54:72-84. [PMID: 32738358 PMCID: PMC7508824 DOI: 10.1016/j.mito.2020.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022]
Abstract
Mitochondria are eukaryotic organelles known best for their roles in energy production and metabolism. While often thought of as simply the 'powerhouse of the cell,' these organelles participate in a variety of critical cellular processes including reactive oxygen species (ROS) production, regulation of programmed cell death, modulation of inter- and intracellular nutrient signaling pathways, and maintenance of cellular proteostasis. Disrupted mitochondrial function is a hallmark of eukaryotic aging, and mitochondrial dysfunction has been reported to play a role in many aging-related diseases. While mitochondria are major players in human diseases, significant questions remain regarding their precise mechanistic role. In this review, we detail mechanisms by which mitochondrial dysfunction participate in disease and aging based on findings from model organisms and human genetics studies.
Collapse
Affiliation(s)
| | - Brenda Gonzalez
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simon C Johnson
- Department of Neurology, University of Washington, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
12
|
Finsterer J, Zarrouk-Mahjoub S. Phenotype of NDUFV1-related Disease. J Pediatr Neurosci 2019; 14:175-176. [PMID: 31649783 PMCID: PMC6798285 DOI: 10.4103/jpn.jpn_124_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/12/2018] [Accepted: 08/08/2019] [Indexed: 11/04/2022] Open
Affiliation(s)
| | - Sinda Zarrouk-Mahjoub
- Pasteur Institute of Tunis, University of Tunis El Manar and Genomics Platform, Tunis, Tunisia
| |
Collapse
|
13
|
Hu T, Tian Y, Zhu J, Wang Y, Jing R, Lei J, Sun Y, Yu Y, Li J, Chen X, Zhu X, Hao Y, Liu L, Wang Y, Wan J. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. PLANT CELL REPORTS 2018; 37:1667-1679. [PMID: 30151559 DOI: 10.1007/s00299-018-2338-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/22/2018] [Indexed: 05/23/2023]
Abstract
Loss of function of a mitochondrial complex I subunit (OsNDUFA9) causes abnormal embryo development and affects starch synthesis by altering the expression of starch synthesis-related genes and proteins. Proton-pumping NADH: ubiquinone oxidoreductase (also called complex I) is thought to be the largest and most complicated enzyme of the mitochondrial respiratory chain. Mutations of complex I subunits have been revealed to link with a number of growth inhibitions in plants. However, the function of complex I subunits in rice remains unclear. Here, we isolated a rice floury endosperm mutant (named flo13) that was embryonic lethal and failed to germinate. Semi-thin sectioning analysis showed that compound starch grain development in the mutant was greatly impaired, leading to significantly compromised starch biosynthesis and decreased 1000-grain weight relative to the wild type. Map-based cloning revealed that FLO13 encodes an accessory subunit of complex I protein (designated as OsNDUFA9). A single nucleotide substitution (G18A) occurred in the first exon of OsNDUFA9, introducing a premature stop codon in the flo13 mutant gene. OsNDUFA9 was ubiquitously expressed in various tissues and the OsNDUFA9 protein was localized to the mitochondria. Quantitative RT-PCR and protein blotting indicated loss of function of OsNDUFA9 altered gene expression and protein accumulation associated with respiratory electron chain complex in the mitochondria. Moreover, transmission electron microscopic analysis showed that the mutant lacked obvious mitochondrial cristae structure in the mitochondria of endosperm cell. Our results demonstrate that the OsNDUFA9 subunit of complex I is essential for embryo development and starch synthesis in rice endosperm.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, 221131, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinglun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfang Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingfang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoli Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linglong Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|