1
|
Alvi SN, dgither SA, Al-Odaib A. Method Development and Clinical Utility for Simultaneous Measurement of 21-Deoxycortisol, 17-Hydroxyprogesterone, Cortisol, and Cortisone Levels in Human Plasma Using UHPLC-MS/MS. Adv Pharmacol Pharm Sci 2025; 2025:3859670. [PMID: 39866748 PMCID: PMC11759567 DOI: 10.1155/adpp/3859670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
A simple and efficient validated assay for quantifying 21-deoxycortisol (21-DOC), 17-hydroxyprogesterone (17-OHP), cortisol, and cortisone in human plasma has been developed using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Analysis of plasma samples were performed on Atlantis dC18 (3 μm) column using a mobile phase of 20.0 mM ammonium acetate and acetonitrile (50:50, v : v) that was delivered at isocratic flow rate 0.3 mL/minute. After addition of d4-cortisol as an internal standard (IS), plasma samples containing 21-DOC, 17-OHP, cortisol, and cortisone were extracted with mixture of dichloromethane and tert-butylmethyl ether 1:2 (v/v). Analytes were detected and quantified in the positive ion mode of electrospray ionization using multiple reaction monitoring transition set at mass to charge (m/z): 347.17 ⟶ 311.12, 331.17 ⟶ 96.97, 363.11 ⟶ 121.00, 361.18 ⟶ 163.11, and 367.19 ⟶ 121.24 for 21-DOC and 17-OHP, cortisol, cortisone, and cortisol-d4 (IS), respectively. The relationship between concentration and peak area response (analyte/IS) were linear over the range of 0.25-50, 0.5-100, 1-200, and 2-400 ng/mL for 21-DOC, 17-OHP, cortisone, and cortisol, respectively. The mean extraction recovery of the analytes was in the range of 83%-96%. The coefficient of variation within and between days was less than 13.6%, and the bias ranged from -9.2% to 12%. The measured level of cortisol, cortisone, and 17-OHP was in the range of 21.9-110, 4.33-12.71, and 0.37-1.4 ng/mL, respectively. Furthermore, the measured value of cortisone-cortisol ratio was in the range of 0.08-0.21.
Collapse
Affiliation(s)
- Syed N. Alvi
- Environmental Health Program, Cell Biology Department, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, MBC-03, Riyadh 11211, Saudi Arabia
| | - Saleh Al dgither
- Environmental Health Program, Cell Biology Department, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, MBC-03, Riyadh 11211, Saudi Arabia
| | - Ali Al-Odaib
- Research Administrative Operations, Research and Innovation, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, MBC-03, Riyadh 11211, Saudi Arabia
| |
Collapse
|
2
|
Fiet J, Bachelot G, Sow C, Farabos D, Helin N, Eguether T, Dufourg MN, Bellanne-Chantelot C, Ribaut B, Bachelot A, Young J, Houang M, Lamazière A. Plasma 21-deoxycortisone: a sensitive additive tool in 21-hydroxylase deficiency in newborns. Eur J Endocrinol 2024; 191:204-210. [PMID: 39137138 DOI: 10.1093/ejendo/lvae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 05/01/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE, DESIGN, AND METHODS Although 17-hydroxyprogesterone (17OHP) has historically been the steroid assayed in the diagnosis of congenital adrenal 21-hydroxylase deficiency (CAH-21D), its C11-hydroxylated metabolite, 21-deoxycortisol (21DF), which is strictly of adrenal origin, is assayed in parallel in this pathology. This steroid (21DF) is oxidized by 11beta-hydroxysteroid dehydrogenase type 2 into 21-deoxycortisone (21DE). In the context of CAH-21D confirmation testing, confounding factors (such as intensive care unit admission, stress, prematurity, early sampling, and variations of sex development) can interfere with the interpretation of the gold-standard biomarkers (17OHP and 21DF). Since its tissue concentrations are especially high in the placenta, we hypothesized that 21DE quantification in the neonatal periods could be an interesting biomarker in addition to 17OHP and 21DF. To verify this hypothesis, we developed a new mass spectrometry-based assay for 21DE in serum and applied it to newborns screened for CAH-21D. RESULTS In newborns with CAH-21D, the mean serum levels of 21DE reached 17.56 ng/mL (ranging from 8.58 ng/mL to 23.20 ng/mL), and the mean 21DE:21DF ratio was 4.99. In contrast, in newborns without CAH-21D, the 21DE serum levels were low and not statistically different from the analytical 21DE limit of quantification (0.01 ng/mL). CONCLUSION Basal serum 21DE appears to be a novel sensitive and specific biomarker of CAH-21D in newborns.
Collapse
Affiliation(s)
- Jean Fiet
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Guillaume Bachelot
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, 75012 Paris, France
- Service de Biologie de La Reproduction-CECOS, Hôpital Tenon, AP-HP.Sorbonne Université, 75020 Paris, France
| | - Coumba Sow
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Dominique Farabos
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Nicolas Helin
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Thibaut Eguether
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, 75012 Paris, France
| | - Marie-Noelle Dufourg
- Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP, 26 Av Dr Netter, Paris 75012, France
| | | | - Bettina Ribaut
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Anne Bachelot
- Sorbonne Université, Service d'endocrinologie et médecine de la reproduction, IE3M, Hôpital Pitié-Salpêtrière, AP-HP, F-75013 Paris, France
| | - Jacques Young
- University Paris-Saclay, Paris-Sud Medical School, F-91405 Orsay, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, F-94275 Le Kremlin-Bicêtre, France
- INSERM UMR-S 1185, Paris-Saclay University, Le Kremlin Bicêtre F-94276, France
| | - Muriel Houang
- Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP, 26 Av Dr Netter, Paris 75012, France
| | - Antonin Lamazière
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, 75012 Paris, France
| |
Collapse
|
3
|
Ravichandran L, Asha HS, Mathai S, Thomas N, Chapla A. Congenital Adrenal Hyperplasia - A Comprehensive Review of Genetic Studies on 21-Hydroxylase Deficiency from India. Indian J Endocrinol Metab 2024; 28:117-128. [PMID: 38911104 PMCID: PMC11189293 DOI: 10.4103/ijem.ijem_303_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 02/06/2024] [Indexed: 06/25/2024] Open
Abstract
Congenital adrenal hyperplasia (CAH) comprises a heterogeneous group of autosomal recessive disorders impairing adrenal steroidogenesis. Most cases are caused by mutations in the CYP21A2 gene resulting in 21-hydroxylase (21-OH) deficiency (21-OHD). The genetics of 21-OH CAH is complexed by a highly homologous pseudogene CYP21A1P imposing several limitations in the molecular analysis. Therefore, genetic testing is still not a part of routine CAH diagnosis and is mainly dependent on 17-hydroxy progesterone (OHP) measurements. There are very few reports of CYP21A2 gene analysis from India and there is no comprehensive review available on genetic testing and the spectrum of CYP21A2 mutations from the country. This review focuses on the molecular aspects of 21-OHD and the genetic studies on CYP21A2 gene reported from India. The results of these studies insist the compelling need for large-scale CYP21A2 genetic testing and newborn screening (NBS) in India. With a high disease prevalence and consanguinity rates, robust and cost-effective genetic testing for 21-OH CAH would enable an accurate diagnosis in routine clinical practice. Whereas establishing affordable genotyping assays even in secondary care or resource-poor settings of the country can identify 90% of the mutations that are pseudogene derived, initiatives on reference laboratories for CAH across the nation with comprehensive genetic testing facilities will be beneficial in those requiring extended analysis of CYP21A2 gene. Further to this, incorporating genetic testing in NBS and carrier screening programmes will enable early diagnosis, better risk assessment and community-based management.
Collapse
Affiliation(s)
- Lavanya Ravichandran
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, Tamil Nadu, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Hesarghatta S. Asha
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sarah Mathai
- Department of Pediatric Endocrinology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Nihal Thomas
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, Tamil Nadu, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Aaron Chapla
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, Tamil Nadu, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| |
Collapse
|
4
|
Fraga NR, Minaeian N, Kim MS. Congenital Adrenal Hyperplasia. Pediatr Rev 2024; 45:74-84. [PMID: 38296783 DOI: 10.1542/pir.2022-005617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
We describe congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, which is the most common primary adrenal insufficiency in children and adolescents. In this comprehensive review of CAH, we describe presentations at different life stages depending on disease severity. CAH is characterized by androgen excess secondary to impaired steroidogenesis in the adrenal glands. Diagnosis of CAH is most common during infancy with elevated 17-hydroxyprogesterone levels on the newborn screen in the United States. However, CAH can also present in childhood, with late-onset symptoms such as premature adrenarche, growth acceleration, hirsutism, and irregular menses. The growing child with CAH is treated with hydrocortisone for glucocorticoid replacement, along with increased stress doses for acute illness, trauma, and procedures. Mineralocorticoid and salt replacement may also be necessary. Although 21-hydroxylase deficiency is the most common type of CAH, there are other rare types, such as 11β-hydroxylase and 3β-hydroxysteroid dehydrogenase deficiency. In addition, classic CAH is associated with long-term comorbidities, including cardiometabolic risk factors, impaired cognitive function, adrenal rest tumors, and bone health effects. Overall, early identification and treatment of CAH is important for the pediatric patient.
Collapse
Affiliation(s)
- Nicole R Fraga
- Center for Endocrinology, Diabetes, and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA
| | - Nare Minaeian
- Center for Endocrinology, Diabetes, and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA
- Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Mimi S Kim
- Center for Endocrinology, Diabetes, and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA
- Keck School of Medicine of University of Southern California, Los Angeles, CA
- The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, CA
| |
Collapse
|
5
|
Greaves RF, Kumar M, Mawad N, Francescon A, Le C, O’Connell M, Chi J, Pitt J. Best Practice for Identification of Classical 21-Hydroxylase Deficiency Should Include 21 Deoxycortisol Analysis with Appropriate Isomeric Steroid Separation. Int J Neonatal Screen 2023; 9:58. [PMID: 37873849 PMCID: PMC10594498 DOI: 10.3390/ijns9040058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
There are mixed reports on the inclusion and use of 21 deoxycortisol (21DF) as the primary decision marker for classical 21-hydroxylase deficiency. We hypothesize that this may be due to insufficient recognition of the presence and chromatographic separation of isomeric steroids. The aim of this study was to determine the comparative utility of 21DF for screening and diagnosis of CAH due to classical 21-hydroxylase deficiency using a second-tier LC-MS/MS method that included the separation of isomeric steroids to 17OHP and 21DF. For each baby sample, one 3.2 mm dried blood spot was eluted in a methanolic solution containing isotopically matched internal standards. Data were interrogated by univariate and receiver operator characteristic analysis. Steroid profile results were generated for 924 non-CAH baby samples (median gestational age 37 weeks, range 22 to 43 weeks) and 17 babies with 21-hydroxylase deficiency. The ROC curves demonstrated 21DF to have the best sensitivity and specificity for the diagnosis of classical 21-hydroxylase deficiency with an AUC = 1.0. The heatmap showed the very strong correlation (r = 0.83) between 17OHP and 21DF. Our data support 21DF as a robust marker for CAH due to 21-hydroxylase deficiency. We recommend that 21DF be incorporated into routine newborn screening panels as part of the second-tier LC-MS/MS method, follow-up plasma steroid panels, and external quality assurance material.
Collapse
Affiliation(s)
- Ronda F. Greaves
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (M.K.); (N.M.); (A.F.); (C.L.); (J.C.); (J.P.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia;
| | - Monish Kumar
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (M.K.); (N.M.); (A.F.); (C.L.); (J.C.); (J.P.)
| | - Nazha Mawad
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (M.K.); (N.M.); (A.F.); (C.L.); (J.C.); (J.P.)
| | - Alberto Francescon
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (M.K.); (N.M.); (A.F.); (C.L.); (J.C.); (J.P.)
| | - Chris Le
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (M.K.); (N.M.); (A.F.); (C.L.); (J.C.); (J.P.)
| | - Michele O’Connell
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia;
- Department of Endocrinology, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - James Chi
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (M.K.); (N.M.); (A.F.); (C.L.); (J.C.); (J.P.)
| | - James Pitt
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (M.K.); (N.M.); (A.F.); (C.L.); (J.C.); (J.P.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia;
| |
Collapse
|
6
|
de Hora M, Heather N, Webster D, Albert B, Hofman P. The use of liquid chromatography-tandem mass spectrometry in newborn screening for congenital adrenal hyperplasia: improvements and future perspectives. Front Endocrinol (Lausanne) 2023; 14:1226284. [PMID: 37850096 PMCID: PMC10578435 DOI: 10.3389/fendo.2023.1226284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Newborn screening for congenital adrenal hyperplasia using 17-hydroxyprogesterone by immunoassay remains controversial despite screening been available for almost 40 years. Screening is confounded by poor immunoassay specificity, fetal adrenal physiology, stress, and illness which can result in a large number of false positive screening tests. Screening programmes apply higher screening thresholds based on co-variates such as birthweight or gestational age but the false positive rate using immunoassay remains high. Mass spectrometry was first applied to newborn screening for congenital adrenal hyperplasia over 15 years ago. Elevated 17-hydroxprogesterone by immunoassay can be retested with a specific liquid chromatography tandem mass spectrometry assay that may include additional steroid markers. Laboratories register with quality assurance programme providers to ensure accurate steroid measurements. This has led to improvements in screening but there are additional costs and added laboratory workload. The search for novel steroid markers may inform further improvements to screening. Studies have shown that 11-oxygenated androgens are elevated in untreated patients and that the adrenal steroidogenesis backdoor pathway is more active in babies with congenital adrenal hyperplasia. There is continual interest in 21-deoxycortisol, a specific marker of 21-hydroxylase deficiency. The measurement of androgenic steroids and their precursors by liquid chromatography tandem mass spectrometry in bloodspots may inform improvements for screening, diagnosis, and treatment monitoring. In this review, we describe how liquid chromatography tandem mass spectrometry has improved newborn screening for congenital adrenal hyperplasia and explore how future developments may inform further improvements to screening and diagnosis.
Collapse
Affiliation(s)
- Mark de Hora
- Newborn Screening, Specialist Chemical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Natasha Heather
- Newborn Screening, Specialist Chemical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Dianne Webster
- Newborn Screening, Specialist Chemical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Benjamin Albert
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Paul Hofman
- Clinical Research Unit, Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Conlon TA, Hawkes CP, Brady JJ, Loeber JG, Murphy N. International Newborn Screening Practices for the Early Detection of Congenital Adrenal Hyperplasia. Horm Res Paediatr 2023; 97:113-125. [PMID: 37231960 DOI: 10.1159/000530754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Newborn screening (NBS) programmes vary internationally in their approach to screening. Guidelines for congenital adrenal hyperplasia (CAH) screening recommend the use of two-tier testing and gestational age cutoffs to minimise false-positive results. The aims of this study were to describe (1) the approaches; (2) protocols used; and (3) available outcomes for CAH screening internationally. METHODS All members of the International Society for Neonatal Screening were asked to describe their CAH NBS protocols, with an emphasis on the use of second-tier testing, 17-hydroxyprogesterone (17OHP) cutoffs, and gestational age and birth weight adjustments. If available, screening outcomes were requested. RESULTS Representatives from 23 screening programmes provided data. Most (n = 14; 61%) recommend sampling at 48-72 h of life. Fourteen (61%) use single-tier testing and 9 have a two-tier testing protocol. Gestational age cutoffs are used in 10 programmes, birth weight cutoffs in 3, and a combination of both in 9. One programme does not use either method of adjusting 17OHP cutoffs. Case definition of a positive test and the response to a positive test differed between programmes. CONCLUSIONS We have demonstrated significant variation across all aspects of NBS for CAH, including timing, the use of single versus two-tier testing and cutoff interpretation. Collaboration between international screening programmes and implementation of new techniques to improve screen efficacy will facilitate ongoing expansion and quality improvement in CAH NBS.
Collapse
Affiliation(s)
- Tracey A Conlon
- Department of Paediatric Endocrinology, Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Colin P Hawkes
- INFANT Research Centre, University College Cork, Cork, Ireland
- Perelman School of Medicine, University of Pennsylvania, PA, Philadelphia, USA
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Jennifer J Brady
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Paediatric Laboratory Medicine, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - J Gerard Loeber
- Office of the International Society for Neonatal Screening, Maarssen, The Netherlands
| | - Nuala Murphy
- Department of Paediatric Endocrinology, Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Matharu PK, Held PK, Allen DB. Multiple 17-OHP Cutoff Co-Variates Fail to Improve 21-Hydroxylase Deficiency Screening Accuracy. Int J Neonatal Screen 2022; 8:ijns8040057. [PMID: 36412583 PMCID: PMC9680344 DOI: 10.3390/ijns8040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 12/14/2022] Open
Abstract
To improve the positive predictive value (PPV) of newborn screening for 21-hydroxylase deficiency (21OHD), co-variates have been used to modify 17-hydroxyprogesterone (17OHP) cutoffs. The objective of this study is to evaluate whether 17OHP screening cutoffs adjusted for both collection time (CT) and birth weight (BW) improved the sensitivity and PPV of 21OHD screening. Unaffected newborn screening samples were stratified based on BW and CT to establish 17OHP concentration cutoffs at the 95th and 99th percentile. These cutoffs were applied to a cohort of confirmed cases of 21OHD to determine the sensitivity and PPV of the modified screening parameters. 17OHP cutoffs at the 99th percentile, adjusted for BW and CT, had a sensitivity of 96.3% and a specificity of 98.9%, but a relatively low PPV (0.130) for the identification of 21OHD and did not detect all cases. Use of the 95th percentile further increased sensitivity to 98.1% but resulted in a notably lower PPV (0.027). Alternative approaches that do not rely exclusively on 17OHP are needed to improve newborn screening accuracy for 21OHD.
Collapse
Affiliation(s)
- Preet K. Matharu
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Patrice K. Held
- Oregon State Public Health Laboratory, Oregon Health Authority, Hillsboro, OR 97124, USA
| | - David B. Allen
- Department of Pediatrics, Division of Endocrinology and Diabetes, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Correspondence: ; Tel.: +1-608-263-5835
| |
Collapse
|
9
|
Evaluation of a New Laboratory Protocol for Newborn Screening for Congenital Adrenal Hyperplasia in New Zealand. Int J Neonatal Screen 2022; 8:ijns8040056. [PMID: 36278626 PMCID: PMC9590017 DOI: 10.3390/ijns8040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Between 2005 and 2021, 49 cases of classical congenital adrenal hyperplasia were diagnosed in New Zealand, 39 were detected in newborns and 10 were not detected by screening. Currently, for every case of CAH detected by screening, 10 false-positive tests are encountered. Second-tier liquid chromatography-tandem mass spectrometry (LCMSMS) has the potential to improve screening sensitivity and specificity. A new laboratory protocol for newborn screening for CAH was evaluated. Birthweight-adjusted thresholds for first- and second-tier 17-hydroxyprogesterone, second-tier 21-deoxycortisol and a steroid ratio were applied to 4 years of newborn screening data. The study was enriched with 35 newborn screening specimens from confirmed CAH cases. Newborn screening was conducted on 232,542 babies, and 11 cases of classical CAH were detected between 2018 and 2021. There were 98 false-positive tests (specificity 99.96%, PPV = 10.1%) using the existing protocol. Applying the new protocol, the same 11 cases were detected, and there were 13 false-positive tests (sensitivity > 99.99%, PPV = 45.8%, (X2 test p < 0.0001). Incorporating the retrospective specimens, screening sensitivity for classical CAH was 78% (existing protocol), compared to 87% for the new protocol (X2 test p = 0.1338). Implementation of LCMSMS as a second-tier test will improve newborn screening for classical CAH in New Zealand.
Collapse
|