1
|
Zhan S, Zhou X, Fu J. Noninvasive Urinary Biomarkers for Obesity-Related Metabolic Diseases: Diagnostic Applications and Future Directions. Biomolecules 2025; 15:633. [PMID: 40427524 PMCID: PMC12109552 DOI: 10.3390/biom15050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Obesity-related metabolic diseases include conditions linked to obesity, such as type 2 diabetes, hypertension, steatotic liver disease, and polycystic ovary syndrome. These disorders are primarily caused by insulin resistance, chronic inflammation, and excessive fat accumulation. They represent significant health challenges and often remain asymptomatic during their early stages. Traditional diagnostic tools, including blood glucose, lipid levels, blood pressure, and uric acid measurements, provide valuable insights but fall short of fully capturing the complexity of metabolic dysfunction. Consequently, there is a growing need for noninvasive, easily accessible biomarkers, especially those found in urine, to enable more accurate, sensitive, and patient-friendly diagnostic methods. Urine, with its diverse range of metabolites that reflect the body's metabolic changes, is an ideal sample for early detection. Recent advancements in urine metabolomics and proteomics have highlighted the potential of urinary biomarkers for diagnosing obesity-related metabolic diseases. Despite challenges such as the need for standardized detection techniques and clinical validation, the integration of artificial intelligence and multi-omics approaches holds significant promise for enhancing diagnostic accuracy and advancing disease management strategies.
Collapse
Affiliation(s)
| | | | - Junfen Fu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310051, China
| |
Collapse
|
2
|
Prajumwongs P, Titapun A, Thanasukarn V, Jareanrat A, Khuntikeo N, Namwat N, Klanrit P, Wangwiwatsin A, Chindaprasirt J, Koonmee S, Sa-Ngiamwibool P, Muangritdech N, Roytrakul S, Loilome W. Identification of serum metabolite biomarkers and metabolic reprogramming mechanisms to predict recurrence in cholangiocarcinoma. Sci Rep 2025; 15:12782. [PMID: 40229491 PMCID: PMC11997029 DOI: 10.1038/s41598-025-97641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
Cholangiocarcinoma (CCA) has high recurrence rates that severely limit long-term survival. Effective tools for accurate recurrence monitoring and diagnosis remain lacking. Metabolic reprogramming, a key driver of CCA growth and recurrence, is underutilized in cancer screening and management. This study aimed to identify metabolite-based biomarkers to evaluate recurrence severity, enhance disease management, and elucidate the molecular mechanisms underlying CCA recurrence. A comprehensive, non-targeted serum metabolomics analysis using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was conducted. Support Vector Machine (SVM) modeling was employed to develop a predictive framework based on metabolite biomarkers. The analysis revealed significant alterations in metabolomics and lipidomics across CCA recurrence subtypes. Notably, changes in metabolites such as amino acids, lipid-derived carnitines, and glycerophospholipids were associated with cancer progression through enhanced energy production and lipid remodeling. The SVM-constructed metabolite-based predictive model demonstrated predictive accuracy comparable to current clinical diagnostic standards. These findings provide novel insights into the metabolic mechanisms underlying CCA recurrence, addressing critical clinical challenges. By advancing early diagnostic approaches, particularly for preoperative detection, this study offers a reliable method for predicting recurrence in CCA patients. This enables effective treatment planning and supports the development of personalized therapeutic strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Piya Prajumwongs
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vasin Thanasukarn
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apiwat Jareanrat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Natcha Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jarin Chindaprasirt
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supinda Koonmee
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Prakasit Sa-Ngiamwibool
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nattha Muangritdech
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
3
|
Yan L, Wang W, Dong M, Wang R, Li C. Skin Metabolic Signatures of Psoriasis and Psoriasis Concurrent with Metabolic Syndrome. J Inflamm Res 2025; 18:505-517. [PMID: 39810975 PMCID: PMC11730757 DOI: 10.2147/jir.s493338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Psoriasis is a complex inflammatory skin disorder that is closely associated with metabolic syndrome (MetS). Limited information is available on skin metabolic changes in psoriasis; the effect of concurrent MetS on psoriatic skin metabolite levels is unknown. We aimed to expand this information through skin metabolomic analysis. Patients and Methods Untargeted metabolomics was conducted using skin samples from 38 patients with psoriasis vulgaris with MetS (PVMS), 23 patients with psoriasis vulgaris without MetS (PVNMS), and 10 healthy controls (HC). Data analyses, including multivariate statistical analysis, KEGG pathway enrichment analysis, correlation analysis, and receiver operating characteristic curve analysis, were performed. Results Significant discrepancies were found between skin metabolites in the HC and PVNMS groups, particularly those involved in nucleotide and glycerophospholipid metabolism. Fifteen of these metabolites were positively correlated with psoriasis severity. Furthermore, MetS was found to affect the metabolic profiles of patients with psoriasis. There were some metabolites with consistent alterations in both the PVNMS/HC and PVMS/PVNMS comparisons. Conclusion This study may provide new insights into the link between skin metabolism and psoriatic inflammation and the mechanism underlying the interaction between psoriasis and MetS.
Collapse
Affiliation(s)
- Liang Yan
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- Department of Dermatology, General Hospital of Central Theater Command of PLA, Wuhan, 430070, People’s Republic of China
| | - Wenqiu Wang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Meihan Dong
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Rui Wang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Chengxin Li
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, People’s Republic of China
| |
Collapse
|
4
|
Chen C, Zheng T, Chen Y, Li Z, Wu H. A systematic evaluation of quenching, extraction and analysis procedures for metabolomics study of the mechanism of QYSLD intervention in A549 cells. Anal Bioanal Chem 2024; 416:6621-6638. [PMID: 39467912 DOI: 10.1007/s00216-024-05563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024]
Abstract
The preparation of cellular metabolomics samples and how to achieve comprehensive coverage of different polar metabolites in cell samples in the analysis pose a challenge for cellular metabolomics. In this study, we optimized a metabolomics protocol based on ultra-high-performance liquid chromatography high-resolution mass spectrometry (UPLC/HRMS) for the extraction and detection of metabolites in A549 cells and exploration of the intervention effect of Qi-Yu-San-Long decoction (QYSLD) on A549 cells. The results indicate that the lowest level of ATP leakage was observed when A549 cells were quenched under liquid nitrogen. MeOH/chloroform/H2O (1:2:1) extraction yielded more chromatographic peaks and excellent reproducibility, and the relative extraction efficiency of most target metabolites was also high. And we optimized the chromatographic separation conditions in both HILIC and RPLC modes, enabling comprehensive detection and analysis of metabolites with varying polarities. Then, we applied the optimized method to UPLC-Q-TOF/MS-based metabolomics of A549 cells to study the mechanism of QYSLD intervention in non-small cell lung cancer (NSCLC). The CCK-8, EdU staining, and cell cycle assay showed that QYSLD inhibited the proliferation of A549 cells by interfering with the cell cycle and blocking them in the G1 phase. A total of 36 differential metabolites associated with the antitumor effects of QYSLD on NSCLC were identified, mainly involving nicotinate and nicotinamide metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. And western blotting confirmed that the change in 1-methylnicotinamide levels after QYSLD intervention was associated with the inhibition of nicotinamide N-methyltransferase expression in A549 cells.
Collapse
Affiliation(s)
- Chang Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road No.103, Hefei, 230038, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China
| | - Ting Zheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road No.103, Hefei, 230038, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zegeng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road No.103, Hefei, 230038, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road No.103, Hefei, 230038, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China.
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
5
|
Kadokura K, Tomita T, Suruga K. Potential Beneficial Effects of Crab-Flavored Seafood Intake in Young Rats. Nutr Metab Insights 2024; 17:11786388241263717. [PMID: 39483418 PMCID: PMC11526318 DOI: 10.1177/11786388241263717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/06/2024] [Indexed: 11/03/2024] Open
Abstract
Background Crab-flavored seafood is a well-known traditional Japanese product that is sold as "imitation crab" worldwide. Although it is a low-cost, low-fat, high-protein food, there are few data on its potential health benefits. Here, we have assessed the effects of crab-flavored seafood consumption on organ weight and serum biomarkers levels in rats. Methods Sprague-Dawley rats (male; aged 6 weeks) were fed a normal diet (n = 8) or a normal diet with 5% dried crab-flavored seafood (n = 8) for 84 days. Food intake and overall body weight were measured every week; organ weight and blood biochemistry were evaluated at the end of the administration period. Results After 84 days, there were no significant differences in food intake, overall body weight, or organ weight between the 2 groups; however, the muscle weight of rats fed crab-flavored seafood tended to be higher than that of rats fed the normal diet. Several serum biomarkers did not differ between the 2 groups, but serum high-density lipoprotein, total bilirubin, and indirect bilirubin levels were significantly raised in rats fed crab-flavored seafood. Moreover, blood urea nitrogen was significantly lower, and some liver function parameters tended to be lower in rats fed crab-flavored seafood. Conclusions Consumption of crab-flavored seafood may be effective for promoting muscle protein synthesis and improving serum biomarkers associated with disorders such as cardiovascular disease and stroke. Thus, crab-flavored seafood may have application as a functional food for the global management of human health.
Collapse
Affiliation(s)
- Kazunari Kadokura
- Research & Development Division, Development Department, Kibun Foods Inc., Inagi, Tokyo, Japan
| | - Tsuyoshi Tomita
- Research & Development Division, Development Department, Kibun Foods Inc., Inagi, Tokyo, Japan
| | - Kohei Suruga
- Research & Development Division, Development Department, Kibun Foods Inc., Inagi, Tokyo, Japan
| |
Collapse
|
6
|
Alwahsh M, Alejel R, Hasan A, Abuzaid H, Al-Qirim T. The Application of Metabolomics in Hyperlipidemia: Insights into Biomarker Discovery and Treatment Efficacy Assessment. Metabolites 2024; 14:438. [PMID: 39195534 DOI: 10.3390/metabo14080438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Hyperlipidemia is a lipid metabolism disorder that refers to increased levels of total triglycerides (TGs), cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) and decreased levels of high-density lipoprotein-cholesterol (HDL-C). It is a major public health issue with increased prevalence and incidence worldwide. The ability to identify individuals at risk of this disorder before symptoms manifest will facilitate timely intervention and management to avert potential complications. This can be achieved by employing metabolomics as an early detection method for the diagnostic biomarkers of hyperlipidemia. Metabolomics is an analytical approach used to detect and quantify metabolites. This provides the ability to explain the metabolic processes involved in the development and progression of certain diseases. In recent years, interest in the use of metabolomics to identify disease biomarkers has increased, and several biomarkers have been discovered, such as docosahexaenoic acid, glycocholic acid, citric acid, betaine, and carnitine. This review discusses the primary metabolic alterations in the context of hyperlipidemia. Furthermore, we provide an overview of recent studies on the application of metabolomics to the assessment of the efficacy of traditional herbal products and common lipid-lowering medications.
Collapse
Affiliation(s)
- Mohammad Alwahsh
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Rahaf Alejel
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Aya Hasan
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Haneen Abuzaid
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Tariq Al-Qirim
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| |
Collapse
|
7
|
Chen D, Liang Y, Liang J, Shen F, Cheng Y, Qu H, Wa Y, Guo C, Gu R, Qian J, Chen X, Zhang C, Guan C. Beneficial effects of Lactobacillus rhamnosus hsryfm 1301 fermented milk on rats with nonalcoholic fatty liver disease. J Dairy Sci 2023; 106:1533-1548. [PMID: 36710180 DOI: 10.3168/jds.2022-22383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/12/2022] [Indexed: 01/30/2023]
Abstract
A growing stream of research suggests that probiotic fermented milk has a good effect on nonalcoholic fatty liver disease. This work aimed to study the beneficial effects of Lactobacillus rhamnosus hsryfm 1301 fermented milk (fermented milk) on rats with nonalcoholic fatty liver disease induced by a high-fat diet. The results showed that the body weight and the serum levels of total cholesterol, total glyceride, low-density lipoprotein, alanine transaminase, aspartate aminotransferase, free fatty acid, and reactive oxygen species were significantly increased in rats fed a high-fat diet (M) for 8 wk, whereas high-density lipoprotein cholesterol and superoxide dismutase were significantly decreased. However, the body weight and the serum levels of total cholesterol, total glyceride, alanine transaminase, aspartate aminotransferase, free fatty acid, reactive oxygen species, interleukin-8, tumor necrosis factor-α, and interleukin-6 were significantly decreased with fermented milk (T) for 8 wk, and the number of fat vacuoles in hepatocytes was lower than that in the M group. There were significant differences in 19 metabolites in serum between the M group and the C group (administration of nonfermented milk) and in 17 metabolites between the T group and the M group. The contents of 7 different metabolites, glycine, glycerophosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphocholine, thioetheramide-PC, d-aspartic acid, oleic acid, and l-glutamate, were significantly increased in the M group rat serum, and l-palmitoyl carnitine, N6-methyl-l-lysine, thymine, and 2-oxadipic acid were significantly decreased. In the T group rat serum, the contents of 8 different metabolites-1-O-(cis-9-octadecenyl)-2-O-acetyl-sn-glycero-3-phosphocholine, acetylcarnitine, glycine, glycerophosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphocholine, d-aspartic acid, oleic acid, and l-glutamate were significantly decreased, whereas creatinine and thymine were significantly increased. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that 50 metabolic pathways were enriched in the M/C group and T/M group rat serum, of which 12 metabolic pathways were significantly different, mainly distributed in lipid metabolism, amino acid, and endocrine system metabolic pathways. Fermented milk ameliorated inflammation, oxygenation, and hepatocyte injury by regulating lipid metabolism, amino acid metabolic pathways, and related metabolites in the serum of rats with nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China; Jiangsu Yuhang Food Technology Co., Ltd., Yancheng 224200, China
| | - Yating Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Jiaojiao Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Feifei Shen
- Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou 225127, China
| | - Yue Cheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Hengxian Qu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Congcong Guo
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Jianya Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Xia Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China
| | - Chengran Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou 225127, China.
| |
Collapse
|
8
|
Abduh MS, Saghir SAM, Al Hroob AM, Bin-Ammar A, Al-Tarawni AH, Murugaiyah V, Mahmoud AM. Averrhoa carambola leaves prevent dyslipidemia and oxidative stress in a rat model of poloxamer-407-induced acute hyperlipidemia. Front Pharmacol 2023; 14:1134812. [PMID: 36814487 PMCID: PMC9939629 DOI: 10.3389/fphar.2023.1134812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Background: The star fruit [Averrhoa carambola L (Oxalidaceae)] is traditionally used in the treatment of many ailments in many countries. It possesses several pharmacological activities, including antioxidant and anti-inflammatory effects. However, it contains the neurotoxic caramboxin and its high content of oxalic acid limits its consumption by individuals with compromised kidney function. This study assessed the anti-hyperlipidemic and antioxidant activities of different fractions of the methanolic extract of A. carambola leaves (MEACL). Methods: The antioxidant activity was investigated using FRAP, and ABTS and DPPH radical-scavenging assays and the inhibitory activity toward pancreatic lipase (PL) and HMG-CoA reductase was assayed in vitro. Acute hyperlipidemia was induced by poloxamer-407 (P-407) in rats and different fractions of MEACL (n-hexane, chloroform, n-butanol, ethyl acetate (EA), water, and chloroform) were orally administered. Cholesterol and triglycerides were determined at 0, 12, 24, and 48 h and LDL-C, vLDL-C, HDL-C, lipid peroxidation (LPO) and antioxidants were assayed after 48 h. The expression of ABCA1, ABCG5, ABCG8, LDL-R, SREBP-1, and SREBP-2 and the activity of HMG-CoA reductase were assayed in the liver of P-407-administered rats treated with the EA fraction. Results: The in vitro data revealed potent radical-scavenging activities of MEACL fractions with the most potent effect showed by the EA fraction that also suppressed the activities of HMG-CoA reductase and PL. In P-407-induced hyperlipidemic rats, all fractions prevented dyslipidemia as shown by the decrease in total cholesterol, triglycerides, LDL-C, vLDL-C and atherogenic index. MEACL and its fractions prevented LPO and boosted GSH, superoxide dismutase, glutathione peroxidase, and catalase in P-407-administered rats. The EA fraction showed more effective anti-hyperlipidemic and antioxidant effects than other fractions and downregulated SREBP-2 while upregulated ABCA1 and LDL-R and ameliorated LPL and HMG-CoA reductase in hyperlipidemic rats. Conclusion: MEACL showed in vitro and in vivo antioxidant activity and the EA fraction significantly ameliorated dyslipidemia in a rat model of P-407-induced acute hyperlipidemia by modulating LPL, PL, HMG-CoA reductase, and cholesterolgenesis-related factors. Therefore, the leaves of A. carambola represent a safe alternative for the star fruit particularly in kidney disease patients, and the EA is the most effective anti-hyperlipidemic and antioxidant fraction.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultan A. M. Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Amir M. Al Hroob
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Albandari Bin-Ammar
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | | | - Vikneswaran Murugaiyah
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ayman M. Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
9
|
Li SJ, Wang YQ, Zhuang G, Jiang X, Shui D, Wang XY. Overall metabolic network analysis of urine in hyperlipidemic rats treated with Bidens bipinnata L. Biomed Chromatogr 2023; 37:e5509. [PMID: 36097410 DOI: 10.1002/bmc.5509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/15/2022]
Abstract
Hyperlipidemia has been highlighted as one of the most prominent and global chronic conditions nowadays. Bidens bipinnata L. (BBL), a folk medicine in contemporary China, has efficacy in the treatment of hyperlipidemia (HLP) in China. Although some physiological and pathological function parameters of hyperlipidemia have been investigated, little information about the changes in small metabolites in biofluids has been reported. In the present study, global metabolic profiling with high-performance liquid chromatography-linear ion trap/Orbitrap high-resolution mass spectrometry (HPLC-LTQ/Orbitrap MS) combined with a pattern recognition method was performed to discover the underlying lipid-regulating mechanisms of BBL on hyperlipidemic rats induced by high-fat diet (HFD). The total of four metabolites, up- or down-regulated (p < 0.05 or 0.01), were identified and contributed to the progression of hyperlipidemia. These promising identified biomarkers underpin the metabolic pathway, including glyoxylate and dicarboxylate metabolism, the TCA cycle, sphingolipid metabolism and purine metabolism. They are disturbed in hyperlipidemic rats, and are identified using pathway analysis with MetPA. The altered metabolite indices could be regulated closer to normal levels after BBL intervention. The results demonstrated that urinary metabolomics is a powerful tool in the clinical diagnosis and treatment of hyperlipidemia to provide information on changes in metabolite pathways.
Collapse
Affiliation(s)
- Shu-Jiao Li
- Center of Scientific Research, and Henan Key Laboratory of Traditional Chinese Medicine for Effective Substances and Quality Control, Nanyang Medical College, Nanyang, China
| | - Yu-Qing Wang
- Center of Scientific Research, and Henan Key Laboratory of Traditional Chinese Medicine for Effective Substances and Quality Control, Nanyang Medical College, Nanyang, China
| | - Guo Zhuang
- Center of Scientific Research, and Henan Key Laboratory of Traditional Chinese Medicine for Effective Substances and Quality Control, Nanyang Medical College, Nanyang, China
| | - Xu Jiang
- Center of Scientific Research, and Henan Key Laboratory of Traditional Chinese Medicine for Effective Substances and Quality Control, Nanyang Medical College, Nanyang, China
| | - Dong Shui
- Center of Scientific Research, and Henan Key Laboratory of Traditional Chinese Medicine for Effective Substances and Quality Control, Nanyang Medical College, Nanyang, China
| | - Xiao-Yu Wang
- Center of Scientific Research, and Henan Key Laboratory of Traditional Chinese Medicine for Effective Substances and Quality Control, Nanyang Medical College, Nanyang, China
| |
Collapse
|
10
|
Anh NH, Yoon YC, Min YJ, Long NP, Jung CW, Kim SJ, Kim SW, Lee EG, Wang D, Wang X, Kwon SW. Caenorhabditis elegans deep lipidome profiling by using integrative mass spectrometry acquisitions reveals significantly altered lipid networks. J Pharm Anal 2022; 12:743-754. [PMID: 36320604 PMCID: PMC9615529 DOI: 10.1016/j.jpha.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Lipidomics coverage improvement is essential for functional lipid and pathway construction. A powerful approach to discovering organism lipidome is to combine various data acquisitions, such as full scan mass spectrometry (full MS), data-dependent acquisition (DDA), and data-independent acquisition (DIA). Caenorhabditis elegans (C. elegans) is a useful model for discovering toxic-induced metabolism, high-throughput drug screening, and a variety of human disease pathways. To determine the lipidome of C. elegans and investigate lipid disruption from the molecular level to the system biology level, we used integrative data acquisition. The methyl-tert-butyl ether method was used to extract L4 stage C. elegans after exposure to triclosan (TCS), perfluorooctanoic acid, and nanopolystyrene (nPS). Full MS, DDA, and DIA integrations were performed to comprehensively profile the C. elegans lipidome by Q-Exactive Plus MS. All annotated lipids were then analyzed using lipid ontology and pathway analysis. We annotated up to 940 lipids from 20 lipid classes involved in various functions and pathways. The biological investigations revealed that when C. elegans were exposed to nPS, lipid droplets were disrupted, whereas plasma membrane-functionalized lipids were likely to be changed in the TCS treatment group. The nPS treatment caused a significant disruption in lipid storage. Triacylglycerol, glycerophospholipid, and ether class lipids were those primarily hindered by toxicants. Finally, toxicant exposure frequently involved numerous lipid-related pathways, including the phosphoinositide 3-kinase/protein kinase B pathway. In conclusion, an integrative data acquisition strategy was used to characterize the C. elegans lipidome, providing valuable biological insights into hypothesis generation and validation. Multiple data acquisitions were used to profile the lipidome of C. elegans. 940 detected lipids of 20 main classes involved in various pathways. Relevant hypotheses were generated using high-coverable lipidomics and pathways analysis.
Collapse
|
11
|
Xu D, Zheng X, Li C, Wu J, Sun L, Qin X, Fan X. Insights into the response mechanism of Litopenaeus vannamei exposed to cold stress during live transport combining untargeted metabolomics and biochemical assays. J Therm Biol 2022; 104:103200. [DOI: 10.1016/j.jtherbio.2022.103200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/22/2023]
|
12
|
Metabolomics in liver injury induced by dietary cadmium exposure and protective effect of calcium supplementation. Anal Biochem 2022; 641:114556. [PMID: 35063435 DOI: 10.1016/j.ab.2022.114556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/19/2022]
|
13
|
Abshirini M, Cabrera D, Fraser K, Siriarchavatana P, Wolber FM, Miller MR, Tian HS, Kruger MC. Mass Spectrometry-Based Metabolomic and Lipidomic Analysis of the Effect of High Fat/High Sugar Diet and Greenshell TM Mussel Feeding on Plasma of Ovariectomized Rats. Metabolites 2021; 11:metabo11110754. [PMID: 34822412 PMCID: PMC8622240 DOI: 10.3390/metabo11110754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/05/2022] Open
Abstract
This study aimed to examine the changes in lipid and metabolite profiles of ovariectomized (OVX) rats with diet-induced metabolic syndrome-associated osteoarthritis (MetOA) after supplementation with greenshell mussel (GSM) using an untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics approach. Ninety-six rats were fed with one of four diets: control, control supplemented with GSM + GSM, high fat/high sugar (HFHS), or high fat/high sugar enriched with GSM (HFHS + GSM). After 8 weeks on experimental diets, half of the rats in each group underwent OVX and the other half were sham operated. After being fed for an additional 28 weeks, blood samples were collected for the metabolomics analysis. Lipid and polar metabolites were extracted from plasma and analysed by LC-MS. We identified 29 lipid species from four lipid subclasses (phosphatidylcholine, lysophosphatidylcholine, diacylglycerol, and triacylglycerol) and a set of eight metabolites involved in amino acid metabolism (serine, threonine, lysine, valine, histidine, pipecolic acid, 3-methylcytidine, and cholic acid) as potential biomarkers for the effect of HFHS diet and GSM supplementation. GSM incorporation more specifically in the control diet generated significant alterations in the levels of several lipids and metabolites. Further studies are required to validate these findings that identify potential biomarkers to follow OA progression and to monitor the impact of GSM supplementation.
Collapse
Affiliation(s)
- Maryam Abshirini
- School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand;
| | - Diana Cabrera
- Food Chemistry and Structure, AgResearch Grasslands, Palmerston North 4442, New Zealand; (D.C.); (K.F.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Karl Fraser
- Food Chemistry and Structure, AgResearch Grasslands, Palmerston North 4442, New Zealand; (D.C.); (K.F.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Parkpoom Siriarchavatana
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand; (P.S.); (F.M.W.)
| | - Frances M. Wolber
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand; (P.S.); (F.M.W.)
- Centre for Metabolic Health Research, Massey University, Palmerston North 4442, New Zealand
| | | | | | - Marlena C. Kruger
- School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand;
- Correspondence:
| |
Collapse
|
14
|
Berdún R, Jové M, Sol J, Cai W, He JC, Rodriguez-Mortera R, Martin-Garí M, Pamplona R, Uribarri J, Portero-Otin M. Restriction of Dietary Advanced Glycation End Products Induces a Differential Plasma Metabolome and Lipidome Profile. Mol Nutr Food Res 2021; 65:e2000499. [PMID: 34599622 DOI: 10.1002/mnfr.202000499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 02/10/2021] [Indexed: 12/30/2022]
Abstract
SCOPE Diets with low content in advanced glycation end products (AGEs) lead to beneficial properties in highly prevalent age-related diseases. To shed light on the mechanisms behind, the changes induced by a low AGE dietary intervention in the circulating metabolome are analyzed. METHODS AND RESULTS To this end, 20 non-diabetic patients undergoing peritoneal dialysis are randomized to continue their usual diet or to one with a low content of AGEs for 1 month. Then, plasmatic metabolome and lipidomes are analyzed by liquid-chromatography coupled to mass spectrometry. The levels of defined AGE structures are also quantified by ELISA and by mass-spectrometry. The results show that the low AGE diet impinged significant changes in circulating metabolomes (166 molecules) and lipidomes (91 lipids). Metabolic targets of low-AGE intake include sphingolipid, ether-lipids, and glycerophospholipid metabolism. Further, it reproduces some of the plasma characteristics of healthy aging. CONCLUSION The finding of common pathways induced by low-AGE diets with previous metabolic traits implicated in aging, insulin resistance, and obesity suggest the usefulness of the chosen approach and supports the potential extension of this study to other populations.
Collapse
Affiliation(s)
- Rebeca Berdún
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain.,Primary Care, Catalan Health Institute (ICS), Lleida, Spain.,Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain
| | - Weijing Cai
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John C He
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Reyna Rodriguez-Mortera
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Meritxell Martin-Garí
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Jaime Uribarri
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Manuel Portero-Otin
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| |
Collapse
|
15
|
Wang Y, Chen T, Gan Z, Li H, Li Y, Zhang Y, Zhao X. Metabolomic analysis of untargeted bovine uterine secretions in dairy cows with endometritis using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Res Vet Sci 2021; 139:51-58. [PMID: 34252702 DOI: 10.1016/j.rvsc.2021.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Endometritis is among the most common bovine uterine diseases; as a cause of infertility, it affects the progress of the cattle industry. In this study, we used a novel technique based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry for comparative metabolomics of uterine secretions in healthy cows and cows with endometritis, classified based on clinical symptoms. Univariate and multivariate statistical analyses revealed significant differences between the two groups (n = 12). Compared with healthy uterine secretion samples, in the clinical endometritis samples, coumaric acid, benzoic acid, and equol were downregulated. However, l-phenylalanine, glutamine, succinic acid, linoleate, arachidonic acid, and other metabolites were upregulated, revealing variations between healthy cows and cows with endometritis (p < 0.05). This metabolomic approach may provide an in-depth understanding of endometritis pathobiology, along with a theoretical framework for the diagnosis and treatment of this bovine disease.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ze Gan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Haijiang Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yina Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
16
|
Gao H, Yang T, Chen X, Song Y. Changes of Lipopolysaccharide-Induced Acute Kidney and Liver Injuries in Rats Based on Metabolomics Analysis. J Inflamm Res 2021; 14:1807-1825. [PMID: 33986608 PMCID: PMC8110281 DOI: 10.2147/jir.s306789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022] Open
Abstract
Background The bacterial endotoxin lipopolysaccharide (LPS) was the classic inducer to establish many inflammatory disease models, especially multiple organ injury. Evidences indicated that the mechanism that causes inflammation response is not just related to cytokine release. The main aim of this study was to better elucidate the possible links between metabolic changes and the pathogenesis of LPS-induced acute liver and kidney in order to understand the mechanisms and screening therapeutic targets for developing early diagnostic strategies and treatments. Methods An experimental rat model was established by intraperitoneal injection of 10 mg/kg LPS. An untargeted metabolomics analysis of the serum in the LPS and control groups was carried out using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOF-MS). LPS-induced pathological damage in the lungs, liver, kidneys, and colon was observed, along with changes in biochemical indexes, indicating that there was a severe inflammatory response in many organs after administration of LPS for 8 h. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) showed distinct separation in the serum metabolite profiles between the LPS and control groups, indicating significant changes in endogenous metabolites. Results The untargeted metabolomics analysis showed that there were 127 significantly different serum metabolites and 53 altered pathways after LPS administration, including pathways related to the metabolism of D-glutamine and D-glutamate, taurine and hypotaurine, beta-alanine, glutathione, and butanoate, which are involved in the inflammatory response, oxidative stress, and amino acid metabolism. Conclusion The study suggested that LPS-induced acute liver and kidney injury mainly involves inflammatory response, oxidative stress, and protein synthesis, finally causing multi-organ damage. Correcting the disturbances to the metabolites and metabolic pathways may help to prevent and/or treat LPS-induced acute liver and kidney damage.
Collapse
Affiliation(s)
- Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Tao Yang
- Houde Food Co., Ltd, Liaoyuan, 136200, People's Republic of China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yanqing Song
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
17
|
Gao X, Zhang Y, Mu JQ, Chen KX, Zhang HF, Bi KS. A Metabonomics Study of Guan-Xin-Shu-Tong Capsule against Diet-Induced Hyperlipidemia in Rats. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Iturrospe E, Da Silva KM, Talavera Andújar B, Cuykx M, Boeckmans J, Vanhaecke T, Covaci A, van Nuijs ALN. An exploratory approach for an oriented development of an untargeted hydrophilic interaction liquid chromatography-mass spectrometry platform for polar metabolites in biological matrices. J Chromatogr A 2020; 1637:461807. [PMID: 33360078 DOI: 10.1016/j.chroma.2020.461807] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The analysis of polar metabolites based on liquid chromatography-mass spectrometry (LC-MS) methods should take into consideration the complexity of interactions in LC columns to be able to cover a broad range of metabolites of key biological pathways. Therefore, in this study, different chromatographic columns were tested for polar metabolites including reversed-phase and hydrophilic interaction liquid chromatography (HILIC) columns. Based on a column screening, two new generations of zwitterionic HILIC columns were selected for further evaluation. A tree-based method optimization was applied to investigate the chromatographic factors affecting the retention mechanisms of polar metabolites with zwitterionic stationary phases. The results were evaluated based on a scoring system which was applied for more than 80 polar metabolites with a high coverage of key human metabolic pathways. The final optimized methods showed high complementarity to analyze a wide range of metabolic classes including amino acids, small peptides, sugars, amino sugars, phosphorylated sugars, organic acids, nucleobases, nucleosides, nucleotides and acylcarnitines. Optimized methods were applied to analyze different biological matrices, including human urine, plasma and liver cell extracts using an untargeted approach. The number of high-quality features (< 30% median relative standard deviation) ranged from 3,755 for urine to 5,402 for the intracellular metabolome of liver cells, showing the potential of the methods for untargeted purposes.
Collapse
Affiliation(s)
- Elias Iturrospe
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium.
| | | | - Begoña Talavera Andújar
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Cellular Neurobiology and Molecular Chemistry of the Central Nervous System Group, University of Castilla-La Mancha, Calle Almansa 14, 02008 Albacete, Spain
| | - Matthias Cuykx
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Laboratory of Clinical Medicine, Antwerp University Hospital, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | |
Collapse
|
19
|
Zou B, Sun Y, Xu Z, Chen Y, Li L, Lin L, Zhang S, Liao Q, Xie Z. Rapid simultaneous determination of gut microbial phenylalanine, tyrosine, and tryptophan metabolites in rat serum, urine, and faeces using LC–MS/MS and its application to a type 2 diabetes mellitus study. Biomed Chromatogr 2020; 35:e4985. [DOI: 10.1002/bmc.4985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Baorong Zou
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Guangzhou China
| | - Yangwen Sun
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Guangzhou China
| | - Zengmei Xu
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Guangzhou China
| | - Yongda Chen
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Lin Li
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Lei Lin
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Guangzhou China
| | - Shaobao Zhang
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Guangzhou China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Guangzhou China
| |
Collapse
|
20
|
Yang B, Xuan S, Ruan Q, Jiang S, Cui H, Zhu L, Luo X, Jin J, Zhao Z. UPLC/Q-TOF-MS/MS-based metabolomics revealed the lipid-lowering effect of Ilicis Rotundae Cortex on high-fat diet induced hyperlipidemia rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112784. [PMID: 32222573 DOI: 10.1016/j.jep.2020.112784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ilicis Rotundae Cortex (IRC), a Chinese crude drug, has been widely utilized in Guangdong and Guangxi provinces of China to treat or prevent cardiovascular diseases. AIM OF STUDY This investigation aims to study the lipid-lowering effect of IRC, as well as the regulating effect on the endogenous metabolites in hyperlipidemia rats. MATERIALS AND METHODS High-fat diet induced hyperlipidemia rats were administrated with different doses of IRC extract (0.5, 1.0 and 2.0 g/kg/day) for 5 weeks. Simvastatin was used as the positive control. Body weight, serum lipid levels and histopathology of liver were evaluated. The metabolic profiles of plasma, urine and cecum content were analyzed using UPLC/Q-TOF-MS/MS-based metabolomics approach coupled with multivariate data analysis. RESULTS The levels of serum TC, TG, LDL-C, AST and ALT were significantly decreased and HDL-C level was increased in IRC treatment groups. The hepatic histomorphology was partially restored. 23, 26 and 15 metabolites in plasma, urine and cecum content were determined as the biological biomarkers, respectively. IRC extract could partially recover the disturbed metabolic pathways of bile acid metabolism, linoleic acid metabolism, arachidonic acid metabolism, taurine and hypotaurine metabolism, glyoxylate and dicarboxylate metabolism, glycerophospholipid metabolism, synthesis and degradation of ketone bodies, sphingolipid metabolism and riboflavin metabolism. CONCLUSION This study demonstrated that IRC could effectively improve the serum lipids and partially restore the hepatic histomorphology. The underlying metabolic mechanism mainly included improving the metabolism of bile acids, glycerophospholipid, sphingolipid, fatty acid and amino acid. This is the first study on the lipid-lowering effect of IRC from the perspective of metabolomics.
Collapse
Affiliation(s)
- Bao Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shenxin Xuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qingfeng Ruan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shiqin Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liping Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiang Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Kadokura K, Tomita T, Kobayashi M, Mitsui T, Suruga K. Effect of fish paste products "Hanpen" intake in Sprague-Dawley rats. Food Sci Nutr 2020; 8:2773-2779. [PMID: 32566194 PMCID: PMC7300042 DOI: 10.1002/fsn3.1569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 12/23/2022] Open
Abstract
Fish paste product, "Hanpen," is a traditional type of Japanese food made from minced fish as well as imitation crab and kamaboko, and a marshmallow-like soft texture is characteristic of hanpen. Hanpen is known as a high-protein and low-fat food. However, there is a lack of evidence on its health benefits. The aim of this study was to investigate the effects of hanpen intake on organ weight and biomarker levels in Sprague-Dawley rats with diets consisting of hanpen for 84 days as an initial study. Male, 6-week-old Sprague-Dawley rats were divided into two groups: group I, fed normal diets, and group II, fed normal diets with 5% dried hanpen. Throughout the 84-day treatment period, we checked body weight and food intake, and after 84 days, we performed organ weight and blood biochemical analyses. No significant differences were seen in body weight, food intake, organ weight, and most biochemical parameters between group I and group II. Interestingly, total cholesterol (T-CHO) and high-density lipoprotein cholesterol (HDL-C) levels of group II were significantly higher than those of group I after administration for 84 days. Moreover, lactate dehydrogenase (LDH) level of group II was marked lower than that of group I, and other liver function parameters of group II tended to be lower than those of group I. As conclusion, "Hanpen," a Japanese traditional food, could be effective as a functional food for human health management worldwide.
Collapse
Affiliation(s)
- Kazunari Kadokura
- Food Function Research & Development DivisionInternational Operation DepartmentKibun Foods Inc.InagiTokyoJapan
| | - Tsuyoshi Tomita
- Food Function Research & Development DivisionInternational Operation DepartmentKibun Foods Inc.InagiTokyoJapan
| | | | | | - Kohei Suruga
- Food Function Research & Development DivisionInternational Operation DepartmentKibun Foods Inc.InagiTokyoJapan
| |
Collapse
|
22
|
Zhang Z, Zhou Y, Lin Y, Li Y, Xia B, Lin L, Liao D. GC-MS-based metabolomics research on the anti-hyperlipidaemic activity of Prunella vulgaris L. polysaccharides. Int J Biol Macromol 2020; 159:461-473. [PMID: 32387363 DOI: 10.1016/j.ijbiomac.2020.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022]
Abstract
Prunella vulgaris polysaccharides (PVPs) have a variety of biological activities, but the mechanism and extent of their anti-hyperlipidaemic effect remain unclear. In vitro, PVPs had a significant inhibitory effect on angiotensin (Ang II)-induced vascular smooth muscle cell (VSMC) proliferation. A metabolomics approach based on gas chromatography-mass spectrometry (GC-MS) and chemometrics was established in this study to evaluate the anti-hyperlipidaemic activity of PVPs in a high-fat Sprague-Dawley rat model. In vivo, PVPs could significantly reduce the weight gain and the increases in serum total cholesterol (TC), low-density lipoprotein (LDL)-C and non-high-density lipoprotein (HDL)-C levels observed in rats fed a high-fat diet; they could also significantly increase serum GSH-Px activity, reduce the content of MDA and TNF-α and decrease abdominal fat volume in rats. Furthermore, PVPs exerted a repairing effect on morphological and structural damage in liver tissue cells in hyperlipidaemic rats fed a high-fat diet. PVPs improved lipid metabolism disorder in rats. Alanine, threonine, succinic acid, proline, inositol and arachidonic acid levels in the serum were considered potential biomarkers involved in amino acid, glucose, energy and lipid metabolism. Therefore, PVPs may interfere with hyperlipidaemia through anti-lipid peroxidation effects, attenuation of inflammation and regulation of glucose, amino acid, energy and lipid metabolism.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamin Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Prima Drug Research Center Co., Ltd., Changsha 410311, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Duanfang Liao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
23
|
Zhao Y, Chen X, Zhao Y, Jia W, Chang X, Liu H, Liu N. Optimization of extraction parameters of Pleurotus eryngii polysaccharides and evaluation of the hypolipidemic effect. RSC Adv 2020; 10:11918-11928. [PMID: 35694324 PMCID: PMC9122559 DOI: 10.1039/c9ra10991a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/13/2020] [Indexed: 01/05/2023] Open
Abstract
The hot water extraction of polysaccharides from the fruiting body of Pleurotus eryngii was studied. In this paper, according to single-factor experiments, a response surface methodology and the Box–Behnken design were applied to optimize the extraction parameters of Pleurotus eryngii polysaccharides (PEP). The optimal extraction conditions were as follows: a temperature of 79 °C, a time of 3.11 h, a ratio of water to fruiting bodies of 52.6 mL g−1. Under these parameters, the yield of PEP was 7.53%. When mice with hyperlipidemia were administered low, medium or high doses of PEP, their body weight was reduced compared with the model group, and the degree of weight loss was proportional to the dose. At the 16th week of PEP treatment, blood lipid biochemical parameters such as total cholesterol, triglycerides, low-density lipoprotein-cholesterol, aspartate aminotransferase, and alanine aminotransferase levels were all decreased. However, high-density lipoprotein-cholesterol levels increased after PEP treatment. Histopathological examination of the liver showed that low, medium and high doses of PEP had a certain liver protective effect. High-dose PEP treatment had the best effect in regard to lipid-lowering and liver protection. In addition, the metabolome of the mice was analyzed by LC-MS, and the results indicated that C16 sphinganine can be used as a potential biomarker, which displayed significant differences among the six groups. In conclusion, the possible metabolic mechanism of the PEP on lipid-lowering was closely related to sphingolipid metabolism. The hot water extraction of polysaccharides from the fruiting body of Pleurotus eryngii was studied.![]()
Collapse
Affiliation(s)
- Yuanyuan Zhao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yanni Zhao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Xiangna Chang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Huan Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| |
Collapse
|
24
|
Shao M, Lu H, Yang M, Liu Y, Yin P, Li G, Wang Y, Chen L, Chen Q, Zhao C, Lu Q, Wu T, Ji G. Serum and urine metabolomics reveal potential biomarkers of T2DM patients with nephropathy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:199. [PMID: 32309346 PMCID: PMC7154445 DOI: 10.21037/atm.2020.01.42] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/02/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Diabetes is a metabolic disease and is often accompanied by severe microvascular and macrovascular complications. A comprehensive understanding of its complex mechanisms can help prevent type 2 diabetes mellitus (T2DM) complications, such as diabetic nephropathy (DN). METHODS To reveal the systemic metabolic changes related to renal injury, clinical information of T2DM patients with or without nephropathy was collected, and it was found that serum urea levels of DN patients were significantly higher in T2DM patients without nephropathy. Further along the disease progression, the serum urea levels also gradually increased. We used gas chromatograph coupled with time-of-flight mass spectrometry (GC-TOFMS) metabolomics to analyze the serum and urine metabolites of T2DM patients with or without nephropathy to study the metabolic changes associated with the disease. RESULTS Finally, we identified 61 serum metabolites and 46 urine metabolites as potential biomarkers related to DN (P<0.05, VIP >1). In order to determine which metabolic pathways were major altered in DN, we summarized pathway analysis based on P values from their impact values and enrichment. There were 9 serum metabolic pathways and 12 urine metabolic pathways with significant differences in serum and urine metabolism, respectively. CONCLUSIONS This study emphasizes that GC-TOFMS-based metabolomics provides insight into the potential pathways in the pathogenesis and progression of DN.
Collapse
Affiliation(s)
- Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hao Lu
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming Yang
- Department of Good Clinical Practice Office, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yang Liu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Peihao Yin
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Guowen Li
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yunman Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lin Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qingguang Chen
- Department of Endocrinology and Metabolism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Zhao
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Qun Lu
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
25
|
Şenol O, Palabiyik ŞS, Polat B, Kadioğlu Y, Yaman ME. Metabolomic profiling of liver tissues after acute administration of vardenafil in rats. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2020; 11:213-217. [PMID: 33133457 PMCID: PMC7597791 DOI: 10.30466/vrf.2019.95959.2302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/19/2019] [Indexed: 11/02/2022]
Abstract
Erectile dysfunction (ED) diseases have almost affected 100 million men all over the world. Orally administered phosphodiesterase 5 (PDE 5) inhibitors are the most used pharmaceutical formulations for the treatment of ED. In this study, it is aimed to investigate the metabolomics feature of orally administered vardenafil in rats. To carry out the experimental procedure eight male Wistar albino rats were used. Their livers were gently removed and metabolomics profiles of each sample were determined by UPLC Q-TOF MS. Identification of metabolites was achieved by the METLIN database. Cluster analysis was also performed via Principle Component Analysis. Several metabolites were identified and results were evaluated by XCMS software. UPLC Q-TOF MS could be successfully applied to profile biomarkers and help us understand the molecular mechanisms of vardenafil usage. It was concluded that the level of some metabolites, responsible for the collagen synthesis and Kreb's cycle, has been statistically significant after the vardenafil administration.
Collapse
Affiliation(s)
- Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey; ,Correspondence: Onur Şenol. DVM, PhD, Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey. E-mail:
| | | | - Beyzagül Polat
- Department of Pharmacology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey.
| | - Yücel Kadioğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey;
| | - Mehmet Emrah Yaman
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey;
| |
Collapse
|
26
|
Antihyperlipidemic and Antioxidant Effects of Averrhoa Carambola Extract in High-Fat Diet-Fed Rats. Biomedicines 2019; 7:biomedicines7030072. [PMID: 31527433 PMCID: PMC6784245 DOI: 10.3390/biomedicines7030072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 01/24/2023] Open
Abstract
The present study explored the antihyperlipidemic potential of a standardized methanolic extract of Averrhoa carambola (A. carambola) leaf (MEACL) in high-fat diet (HFD)-fed rats. The standardized MEACL was orally administered at different doses (250, 500, and 1000 mg/kg) to HFD-induced hyperlipidemic rats for five weeks. Serum lipid profile, body weight changes, body mass index (BMI), daily food intake, relative organ weight, and histology of the liver were evaluated. In addition, the effect of MEACL on HMG-CoA reductase and pancreatic lipase activities as well as hepatic and fecal lipids was demonstrated. MEACL supplementation reduced serum lipids in HFD-fed rats in a dose-dependent manner. Histopathological scores revealed that 1000 mg/kg MEACL restored the damage to liver tissue in hyperlipidemic rats. MEACL decreased the body mass index (BMI), atherogenic index, and hepatic cholesterol and triglycerides and increased fecal cholesterol and bile acids in HFD-fed rats. Also, MEACL ameliorated lipid peroxidation and improved antioxidant defenses in the liver of HFD-fed rats. Furthermore, HMG-CoA reductase and lipase were suppressed by MEACL. In conclusion, this study shows the potential effect of MEACL to ameliorate hyperlipidemia and oxidative stress in HFD-fed rats. It prevented hepatic lipid accumulation and exerted an inhibitory effect on HMG-CoA reductase and lipase.
Collapse
|
27
|
Qi Z, Li W, Tan J, Wang C, Lin H, Zhou B, Liu J, Li P. Effect of ginsenoside Rh 2 on renal apoptosis in cisplatin-induced nephrotoxicity in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152862. [PMID: 31048124 DOI: 10.1016/j.phymed.2019.152862] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Ginsenoside Rh2 (Rh2), an important ingredient from Panax ginseng, has received much attention due to a range of pharmacological actions. PURPOSE The aim of the study was to investigate the therapeutic potential Rh2 on cisplatin (CDDP)-induced nephrotoxicity and to elucidate involved mechanisms. STUDY DESIGN An in vivo mice model of CDDP-induced nephrotoxicity was established by a single intraperitoneal injection of CDDP (20 mg/kg) to assess the effects of Rh2 on renal biochemical parameter, oxidative stress, inflammation tubular cell apoptosis and serum metabolic profiles. RESULTS Rh2 protected against CDDP-induced renal dysfunction and ameliorated CDDP-induced oxidative stress, histopathological damage, inflammation and tubular cell apoptosis in kidney. Rh2 treatment had significantly increased expression of Bcl-2 and decreased expression of p53, Bax, cytochrome c, caspase-8, caspase-9, and caspase-3 in kidney tissues. Metabolomic analysis identified 29 altered serum metabolites in Rh2 treatment mice. CONCLUSION These results suggest that Rh2 protects against CDDP-induced nephrotoxicity via action on caspase-mediated pathway.
Collapse
Affiliation(s)
- Zeng Qi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
28
|
Fagiola M. Current and future directions of high resolution and tandem mass spectrometry in postmortem and human performance toxicology. Leg Med (Tokyo) 2019; 37:86-94. [PMID: 30797132 DOI: 10.1016/j.legalmed.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/09/2018] [Accepted: 02/15/2019] [Indexed: 11/17/2022]
Affiliation(s)
- Michael Fagiola
- Nassau County Medical Examiner - Department of Forensic Toxicology, 2251 Hempstead Turnpike - Building R, East Meadow, NY 11554, United States.
| |
Collapse
|
29
|
Cui X, Qian DW, Jiang S, Shang EX, Zhu ZH, Duan JA. Scutellariae Radix and Coptidis Rhizoma Improve Glucose and Lipid Metabolism in T2DM Rats via Regulation of the Metabolic Profiling and MAPK/PI3K/Akt Signaling Pathway. Int J Mol Sci 2018; 19:E3634. [PMID: 30453687 PMCID: PMC6274950 DOI: 10.3390/ijms19113634] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Aim Scutellariae Radix (SR) and Coptidis Rhizoma (CR) have often been combined to cure type 2 diabetes mellitus (T2DM) in the clinical practice for over thousands of years, but their compatibility mechanism is not clear. Mitogen-activated protein kinase (MAPK) signaling pathway has been suggested to play a critical role during the process of inflammation, insulin resistance, and T2DM. This study was designed to investigate their compatibility effects on T2DM rats and explore the underlying mechanisms by analyzing the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Methods The compatibility effects of SR and CR were evaluated with T2DM rats induced by a high-fat diet (HFD) along with a low dose of streptozocin (STZ). Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to discover potential biomarkers. The levels of pro-inflammatory cytokines; biochemical indexes in serum, and the activities of key enzymes related to glycometabolism in liver were assessed by ELISA kits. qPCR was applied to examine mRNA levels of key targets in MAPK and insulin signaling pathways. Protein expressions of p65; p-p65; phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K); phosphorylated-PI3K (p-PI3K); protein kinase B (Akt); phosphorylated Akt (p-Akt) and glucose transporter 2 (Glut2) in liver were investigated by Western blot analysis. Results Remarkably, hyperglycaemia, dyslipidemia, inflammation, and insulin resistance in T2DM were ameliorated after oral administration of SR and CR, particularly their combined extracts. The effects of SR, CR, low dose of combined extracts (LSC) and high dose of combined extracts (HSC) on pro-inflammatory cytokine transcription in T2DM rats showed that the MAPK pathway might account for the phenomenon with down-regulation of MAPK (P38 mitogen-activated protein kinases (P38), extracellular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK)) mRNA, and protein reduction in p-P65. While mRNA levels of key targets such as insulin receptor substrate 1 (IRS1), PI3K, Akt2, and Glut2 in the insulin signaling pathway were notably up-modulated, phosphorylations of PI3K, Akt, and expression of Glut2 were markedly enhanced. Moreover, the increased activities of phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-bisphosphatase (FBPase), glucose 6-phosphatase (G6Pase), and glycogen phosphorylase (GP) were highly reduced and the decreased activities of glucokinase (GK), phosphofructokinase (PFK), pyruvate kinase (PK), and glycogen synthase (GS) in liver were notably increased after treatment. Further investigation indicated that the metabolic profiles of plasma and urine were clearly improved in T2DM rats. Fourteen potential biomarkers (nine in plasma and five in urine) were identified. After intervention, these biomarkers returned to normal level to some extent. Conclusion The results showed that SR, CR, and combined extract groups were normalized. The effects of combined extracts were more remarkable than single herb treatment. Additionally, this study also showed that the metabonomics method is a promising tool to unravel how traditional Chinese medicines work.
Collapse
Affiliation(s)
- Xiang Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
30
|
Nie Q, Chen H, Hu J, Gao H, Fan L, Long Z, Nie S. Arabinoxylan Attenuates Type 2 Diabetes by Improvement of Carbohydrate, Lipid, and Amino Acid Metabolism. Mol Nutr Food Res 2018; 62:e1800222. [PMID: 30211972 DOI: 10.1002/mnfr.201800222] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
SCOPE Type 2 diabetes is a complex metabolic and endocrine disorder worldwide, which causes severe health and economic problems. The aim of this study is to investigate the molecular mechanisms by which arabinoxylan from Plantago asiatica L. attenuates type 2 diabetes from the perspective of urine metabolomics. METHODS AND RESULTS High-fat diet and streptozotocin-induced type 2 diabetic rats are treated with arabinoxylan, then the urine samples are collected for untargeted metabolomics analysis by UPLC-Triple-TOF/MS. Diabetes causes significant increases in the levels of acetone, glucose, 2-oxoglutarate, and leucine, and significant decreases in the concentrations of creatine, histidine, lysine, l-tryptophan, hippurate, l-cysteine, kynurenine, and arabitol as compared with normal rats (p < 0.01). And these 12 metabolites (with VIP cut-off value > 1) can be used as biomarkers in type 2 diabetes. A total of 21 urinary metabolites are significantly improved by arabinoxylan administration in diabetic rats, and these metabolites are mainly involved in TCA cycle, and metabolism of lipid and ketone body, taurine and hypotaurine, tryptophan, and branched chain amino acids. CONCLUSION Arabinoxylan administration improves carbohydrate, lipid, and amino acid metabolism in type 2 diabetic rats, which provide important insights into the mechanisms underlying type 2 diabetes as well as the effects of arabinoxylan.
Collapse
Affiliation(s)
- Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology, (Nanchang), Nanchang University, Nanchang, 330047, China
| | - Haihong Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology, (Nanchang), Nanchang University, Nanchang, 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology, (Nanchang), Nanchang University, Nanchang, 330047, China
| | - He Gao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology, (Nanchang), Nanchang University, Nanchang, 330047, China
| | - Linlin Fan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology, (Nanchang), Nanchang University, Nanchang, 330047, China
| | - Zhimin Long
- AB Sciex Analytical Instrument Trading Ltd., Shanghai, 200000, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology, (Nanchang), Nanchang University, Nanchang, 330047, China
| |
Collapse
|
31
|
Yang R, Zhao Q, Hu DD, Xiao XR, Li F. Optimization of extraction and analytical protocol for mass spectrometry-based metabolomics analysis of hepatotoxicity. Biomed Chromatogr 2018; 32:e4359. [PMID: 30091800 DOI: 10.1002/bmc.4359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming China
- University of Chinese Academy of Sciences; Beijing China
| | - Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming China
- University of Chinese Academy of Sciences; Beijing China
| | - Dan-Dan Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming China
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products; Kunming Medical University; Kunming China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany; Chinese Academy of Sciences; Kunming China
| |
Collapse
|
32
|
Wei X, Tao J, Shen Y, Xiao S, Jiang S, Shang E, Zhu Z, Qian D, Duan J. Sanhuang Xiexin Tang Ameliorates Type 2 Diabetic Rats via Modulation of the Metabolic Profiles and NF-κB/PI-3K/Akt Signaling Pathways. Front Pharmacol 2018; 9:955. [PMID: 30210342 PMCID: PMC6121076 DOI: 10.3389/fphar.2018.00955] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023] Open
Abstract
Sanhuang Xiexin Tang (SXT), a classic prescription, has been clinically used to cure diabetes for thousands of years, but its mechanism remains unclear. Here, a systematic in-depth research was performed to unravel how it worked by the signaling pathway and metabonomics analysis. Our studies were conducted using high-fat diets (HFD) and streptozocin (STZ)-induced type 2 diabetes mellitus (T2DM) rats. The blood glucose was measured by a glucose-meter. Protein contents were determined by western blotting or ELISA and mRNA expression was identified by RT-PCR analysis. The pathological status of pancreas was assessed by histopathological analysis. Furthermore, Ultra Performance Liquid Chromatography-Quadrupole-Time of Flight/Mass Spectrometry (UPLC-Q-TOF/MS) coupled with multivariate statistical analysis was performed to discover potential biomarkers and the associated pathways. Hyperglycaemia, insulin resistance, dyslipidemia and inflammation in T2DM rats were significantly ameliorated after 7-week oral administration of SXT. The expressions of phosphatidylinositol-3-kinase (PI-3K), protein kinase B (Akt), glucose transporters-4 (GLUT4) Mrna, and p-PI-3K, p-Akt, GLUT4 protein involved in the PI-3K/Akt signaling pathway of T2DM were markedly up-regulated. Further investigation indicated that the perturbance of metabolic profiling in T2DM rats was obviously reversed by SXT and 38 potential biomarkers were screened and identified. Our study might help clarify the mechanism of SXT and provide some evidences for its clinical application in the future.
Collapse
Affiliation(s)
- Xiaoyan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinhua Tao
- School of Pharmacy, Nantong University, Nantong, China
| | - Yumeng Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suwei Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
33
|
Yang XN, Liu XM, Fang JH, Zhu X, Yang XW, Xiao XR, Huang JF, Gonzalez FJ, Li F. PPARα Mediates the Hepatoprotective Effects of Nutmeg. J Proteome Res 2018; 17:1887-1897. [PMID: 29664296 PMCID: PMC6628927 DOI: 10.1021/acs.jproteome.7b00901] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nutmeg is a Traditional Chinese Medicine used to treat gastrointestinal diseases. Some reports have indicated that nutmeg has hepatoprotective activity. In this study, a thioacetamide (TAA)-induced acute liver injury model in mice was used to explore the mechanism of the protective effects of nutmeg extract (NME), including its major bioactive component myrislignan. The results indicated that NME could effectively protect TAA-induced liver damage as assessed by recovery of increased serumtransaminases, decrease in hepatic oxidative stress, and lower hepatic inflammation. Metabolomics analysis further revealed that treatment with NME led to the recovery of a series of lipids including lysophosphatidylcholines that were decreased and a lowering of acylcarnitines that were increased in mouse plasma and liver after TAA exposure. Gene expression analysis demonstrated that the hepatoprotective effect of NME was achieved by modulation of the peroxisome proliferator-activated receptor alpha (PPARα) as well as the decrease in oxidative stress. NME could not protect from TAA-induced liver injury in Ppara-null mice, suggesting that its protective effect was dependent on PPARα. Myrislignan, a representative neolignan in nutmeg, showed potent protective activity against TAA-induced liver toxicity. These data demonstrate that nutmeg alleviates TAA-induced liver injury through the modulation of PPARα and that the lignan compounds in nutmeg such as myrislignan partly contributed to this action.
Collapse
Affiliation(s)
- Xiao-Nan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xue-Mei Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- College of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Jian-He Fang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xu Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiu-Wei Yang
- School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jian-Feng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
34
|
Bezerra MLR, de Souza EL, de Sousa JMB, Lima MDS, Alves AF, Almeida MDG, Coutinho Alves R, Veríssimo de Araújo E, Soares NL, da Silva GA, Magnani M, Aquino JDS. Effects of honey fromMimosa quadrivalvisL. (malícia) produced by theMelipona subnitidaD. (jandaíra) stingless bee on dyslipidaemic rats. Food Funct 2018; 9:4480-4492. [DOI: 10.1039/c8fo01044g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The supplementation with malícia honey alters the lipid metabolism, antioxidant status and intestinal health parameters of rats with diet-induced dyslipidaemia.
Collapse
Affiliation(s)
| | | | | | - Marcos dos Santos Lima
- Departamento de Tecnologia de Alimentos
- Instituto Federal do Sertão de Pernambuco
- Petrolina
- Brazil
| | | | - Maria das Graças Almeida
- Departamento de Análises Clínicas e Toxicológicas
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | | | | | - Naís Lira Soares
- Departamento de Nutrição
- Universidade Federal da Paraíba
- João Pessoa
- Brazil
| | | | - Marciane Magnani
- Departamento de Engenharia de Alimentos
- Universidade Federal da Paraíba
- João Pessoa
- Brazil
| | | |
Collapse
|
35
|
Wawrzyniak R, Mpanga AY, Struck-Lewicka W, Kordalewska M, Polonis K, Patejko M, Mironiuk M, Szyndler A, Chrostowska M, Hoffmann M, Smoleński RT, Kaliszan R, Narkiewicz K, Markuszewski MJ. Untargeted Metabolomics Provides Insight into the Mechanisms Underlying Resistant Hypertension. Curr Med Chem 2017; 26:232-243. [PMID: 28990522 DOI: 10.2174/0929867324666171006122656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/05/2016] [Accepted: 09/20/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Resistant hypertension (RH) affects about 15-20% of treated hypertensive patients worldwide. RH increases the risk of cardiovascular events such as myocardial infarction and stroke by 50%. The pathological mechanisms underlying resistance to treatment are still poorly understood. OBJECTIVE The main goal of this pilot study was to determine and compare plasma metabolomic profiles in resistant and non-resistant hypertensive patients. METHODS We applied untargeted metabolomic profiling in plasma samples collected from 69 subjects with RH and 81 subjects with controlled hypertension. To confirm patients' compliance to antihypertensive treatment, levels of selected drugs and their metabolites were determined in plasma samples with the LC-ESI-TOF/MS technique. RESULTS The results showed no statistically significant differences in the administration of antihypertensive drug in the compared groups. We identified 19 up-regulated and 13 downregulated metabolites in the RH. CONCLUSION The metabolites altered in RH are linked to oxidative stress and inflammation, endothelium dysfunction, vasoconstriction and cell proliferation. Our results may generate new hypothesis about RH development and progression.
Collapse
Affiliation(s)
- Renata Wawrzyniak
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland
| | - Arlette Yumba Mpanga
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland
| | - Wiktoria Struck-Lewicka
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland
| | - Marta Kordalewska
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland
| | - Katarzyna Polonis
- Department of Hypertension and Diabetology, Medical University of Gdansk, Debinki 7c, 80-211 Gdansk, Poland
| | - Małgorzata Patejko
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland
| | - Monika Mironiuk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland
| | - Anna Szyndler
- Department of Hypertension and Diabetology, Medical University of Gdansk, Debinki 7c, 80-211 Gdansk, Poland
| | - Marzena Chrostowska
- Department of Hypertension and Diabetology, Medical University of Gdansk, Debinki 7c, 80-211 Gdansk, Poland
| | - Michał Hoffmann
- Department of Hypertension and Diabetology, Medical University of Gdansk, Debinki 7c, 80-211 Gdansk, Poland
| | - Ryszard T Smoleński
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Roman Kaliszan
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, Debinki 7c, 80-211 Gdansk, Poland.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Michał J Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland
| |
Collapse
|
36
|
Ma N, Yang Y, Liu X, Kong X, Li S, Qin Z, Jiao Z, Li J. UPLC-Q-TOF/MS-based metabonomic studies on the intervention effects of aspirin eugenol ester in atherosclerosis hamsters. Sci Rep 2017; 7:10544. [PMID: 28874840 PMCID: PMC5585262 DOI: 10.1038/s41598-017-11422-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Based on the pro-drug principle, aspirin and eugenol were used to synthesize aspirin eugenol ester (AEE) by esterification reaction. In present study, the anti-atherosclerosis effects of AEE were investigated in hamsters with the utilization of metabonomic approach based on UPLC-Q-TOF/MS. Biochemical parameters and histopathological injures in stomach, liver and aorta were evaluated. In atherosclerotic hamster, oral administration of AEE normalized biochemical profile such as reducing TG, TCH and LDL, and significantly reduced body weight gain, alleviated hepatic steatosis and improved pathological lesions in aorta. Slight damages in stomach mucous were found in AEE group. Plasma and urine samples in control, model and AEE groups were scattered in the partial least squares-discriminate analysis (PLS-DA) score plots. Thirteen endogenous metabolites in plasma such as lysophosphatidylcholine (LysoPC), leucine and valine, and seventeen endogenous metabolites in urine such as citric acid, phenol sulphate and phenylacetylglycine were selected as potential biomarkers associated with atherosclerosis. They were considered to be in response to anti-atherosclerosis effects of AEE, mainly involved in glycerophospholipid metabolism, amino acid metabolism and energy metabolism. This study extended the understanding of endogenous alterations of atherosclerosis and offered insights into the pharmacodynamic activity of AEE.
Collapse
Affiliation(s)
- Ning Ma
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaojun Kong
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shihong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zenghua Jiao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
37
|
Cholesterol-lowering effects of piceatannol, a stilbene from wine, using untargeted metabolomics. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
38
|
Urine and serum metabolite profiling of rats fed a high-fat diet and the anti-obesity effects of caffeine consumption. Molecules 2015; 20:3107-28. [PMID: 25689639 PMCID: PMC6272342 DOI: 10.3390/molecules20023107] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the clinical changes induced by a high fat diet (HFD) and caffeine consumption in a rat model. The mean body weight of the HFD with caffeine (HFDC)-fed rat was decreased compared to that of the HFD-fed rat without caffeine. The levels of cholesterol, triglycerides (TGs), and free fatty acid, as well as the size of adipose tissue altered by HFD, were improved by caffeine consumption. To investigate the metabolites that affected the change of the clinical factors, the urine and serum of rats fed a normal diet (ND), HFD, and HFDC were analyzed using ultra performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-Q-TOF-MS), gas chromatography (GC-TOF-MS), and linear trap quadruple mass spectrometry (LTQ-XL-MS) combined with multivariate analysis. A total of 68 and 52 metabolites were found to be different in urine and serum, respectively. After being fed caffeine, some glucuronide-conjugated compounds, lysoPCs, CEs, DGs, TGs, taurine, and hippuric acid were altered compared to the HFD group. In this study, caffeine might potentially inhibit HFD-induced obesity and we suggest possible biomarker candidates using MS-based metabolite profiling.
Collapse
|
39
|
Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R. Metabolomics for laboratory diagnostics. J Pharm Biomed Anal 2014; 113:108-20. [PMID: 25577715 DOI: 10.1016/j.jpba.2014.12.017] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 12/24/2022]
Abstract
Metabolomics is an emerging approach in a systems biology field. Due to continuous development in advanced analytical techniques and in bioinformatics, metabolomics has been extensively applied as a novel, holistic diagnostic tool in clinical and biomedical studies. Metabolome's measurement, as a chemical reflection of a current phenotype of a particular biological system, is nowadays frequently implemented to understand pathophysiological processes involved in disease progression as well as to search for new diagnostic or prognostic biomarkers of various organism's disorders. In this review, we discussed the research strategies and analytical platforms commonly applied in the metabolomics studies. The applications of the metabolomics in laboratory diagnostics in the last 5 years were also reviewed according to the type of biological sample used in the metabolome's analysis. We also discussed some limitations and further improvements which should be considered taking in mind potential applications of metabolomic research and practice.
Collapse
Affiliation(s)
- Renata Bujak
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, ul. Gen J. Hallera 107, Gdańsk 80-416, Poland
| | - Wiktoria Struck-Lewicka
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, ul. Gen J. Hallera 107, Gdańsk 80-416, Poland
| | - Michał J Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, ul. Gen J. Hallera 107, Gdańsk 80-416, Poland.
| | - Roman Kaliszan
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, ul. Gen J. Hallera 107, Gdańsk 80-416, Poland.
| |
Collapse
|