1
|
Ferreira JC, Villanueva AJ, Al Adem K, Fadl S, Alzyoud L, Ghattas MA, Rabeh WM. Identification of novel allosteric sites of SARS-CoV-2 papain-like protease (PLpro) for the development of COVID-19 antivirals. J Biol Chem 2024; 300:107821. [PMID: 39342997 PMCID: PMC11538808 DOI: 10.1016/j.jbc.2024.107821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024] Open
Abstract
Coronaviruses such as SARS-CoV-2 encode a conserved papain-like protease (PLpro) that is crucial for viral replication and immune evasion, making it a prime target for antiviral drug development. In this study, three surface pockets on SARS-CoV-2 PLpro that may function as sites for allosteric inhibition were computationally identified. To evaluate the effects of these pockets on proteolytic activity, 52 residues were separately mutated to alanine. In Pocket 1, located between the Ubl and thumb domains, the introduction of alanine at T10, D12, T54, Y72, or Y83 reduced PLpro activity to <12% of that of WT. In Pocket 2, situated at the interface of the thumb, fingers, and palm domains, Q237A, S239A, H275A, and S278A inactivated PLpro. Finally, introducing alanine at five residues in Pocket 3, between the fingers and palm domains, inactivated PLpro: S212, Y213, Y251, K254, and Y305. Pocket 1 has a higher druggability score than Pockets 2 and 3. MD simulations showed that interactions within and between domains play critical roles in PLpro activity and thermal stability. The essential residues in Pockets 1 and 2 participate in a combination of intra- and inter-domain interactions. By contrast, the essential residues in Pocket three predominantly participate in inter-domain interactions. The most promising targets for therapeutic development are Pockets one and 3, which have the highest druggability score and the largest number of essential residues, respectively. Non-competitive inhibitors targeting these pockets may be antiviral agents against COVID-19 and related coronaviruses.
Collapse
Affiliation(s)
- Juliana C Ferreira
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Adrian J Villanueva
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kenana Al Adem
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Lara Alzyoud
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mohammad A Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Wael M Rabeh
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Khambhati K, Alessa AH, Singh V. An overview to drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:1-8. [PMID: 38789176 DOI: 10.1016/bs.pmbts.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Identification and implementation of novel drug are not only time consuming and expensive but also it poses huge challenge to reach into the market. Currently, thousands of USFDA approved drugs licence are being expired that can be repurposed for treating other diseases. Drug repurposing is an alternative solution to reduce time, cost and steps for development of drugs and their applications for treating disease. The current chapter emphases to brief the steps involved in drug discovery and drug repurposing. The chapter also includes repurposed drugs for treating bacterial, fungal and viral diseases. Unlocking the potential of already existed drug and repurposing them for other diseases that could accelerate drug discovery and aid in managing outbreaks.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Abdulrahman H Alessa
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
3
|
Velásquez PA, Hernandez JC, Galeano E, Hincapié-García J, Rugeles MT, Zapata-Builes W. Effectiveness of Drug Repurposing and Natural Products Against SARS-CoV-2: A Comprehensive Review. Clin Pharmacol 2024; 16:1-25. [PMID: 38197085 PMCID: PMC10773251 DOI: 10.2147/cpaa.s429064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a betacoronavirus responsible for the COVID-19 pandemic, causing respiratory disorders, and even death in some individuals, if not appropriately treated in time. To face the pandemic, preventive measures have been taken against contagions and the application of vaccines to prevent severe disease and death cases. For the COVID-19 treatment, antiviral, antiparasitic, anticoagulant and other drugs have been reused due to limited specific medicaments for the disease. Drug repurposing is an emerging strategy with therapies that have already tested safe in humans. One promising alternative for systematic experimental screening of a vast pool of compounds is computational drug repurposing (in silico assay). Using these tools, new uses for approved drugs such as chloroquine, hydroxychloroquine, ivermectin, zidovudine, ribavirin, lamivudine, remdesivir, lopinavir and tenofovir/emtricitabine have been conducted, showing effectiveness in vitro and in silico against SARS-CoV-2 and some of these, also in clinical trials. Additionally, therapeutic options have been sought in natural products (terpenoids, alkaloids, saponins and phenolics) with promising in vitro and in silico results for use in COVID-19 disease. Among these, the most studied are resveratrol, quercetin, hesperidin, curcumin, myricetin and betulinic acid, which were proposed as SARS-CoV-2 inhibitors. Among the drugs reused to control the SARS-CoV2, better results have been observed for remdesivir in hospitalized patients and outpatients. Regarding natural products, resveratrol, curcumin, and quercetin have demonstrated in vitro antiviral activity against SARS-CoV-2 and in vivo, a nebulized formulation has demonstrated to alleviate the respiratory symptoms of COVID-19. This review shows the evidence of drug repurposing efficacy and the potential use of natural products as a treatment for COVID-19. For this, a search was carried out in PubMed, SciELO and ScienceDirect databases for articles about drugs approved or under study and natural compounds recognized for their antiviral activity against SARS-CoV-2.
Collapse
Affiliation(s)
- Paula Andrea Velásquez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Juan C Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Elkin Galeano
- Grupo Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Jaime Hincapié-García
- Grupo de investigación, Promoción y prevención farmacéutica, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wildeman Zapata-Builes
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
4
|
Wang W, Zhou Z, Ding S, Yang W, Jin W, Chu W, Xu Z. Degradation kinetics and formation of regulated and emerging disinfection by-products during chlorination of two expectorants ambroxol and bromhexine. WATER RESEARCH 2023; 235:119927. [PMID: 37023645 DOI: 10.1016/j.watres.2023.119927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Ambroxol hydrochloride (AMB) and bromhexine hydrochloride (BRO) are classic expectorants and bronchosecretolytic pharmaceuticals. In 2022, both AMB and BRO were recommended by medical emergency department of China to alleviate cough and expectoration for symptoms caused by COVID-19. The reaction characteristics and mechanism of AMB/BRO with chlorine disinfectant in the disinfection process were investigated in this study. The reaction of chlorine with AMB/BRO were well described by a second-order kinetics model, first-order in both AMB/BRO and chlorine. The second order rate reaction constant of AMB and BRO with chlorine at pH 7.0 were 1.15 × 102 M-1s-1 and 2.03 × 102 M-1s-1, respectively. During chlorination, a new class of aromatic nitrogenous disinfection by-products (DBPs) including 2-chloro-4, 6-dibromoaniline and 2, 4, 6-tribromoaniline were identified as the intermediate aromatic DBPs by gas chromatography-mass spectrometry. The effect of chlorine dosage, pH, and contact time on the formation of 2-chloro-4, 6-dibromoaniline and 2, 4, 6-tribromoaniline were evaluated. In addition, it was found that bromine in AMB/BRO were vital bromine source to greatly promote the formation of classic brominated DBPs, with the highest Br-THMs yields of 23.8% and 37.8%, respectively. This study inspired that bromine in brominated organic compounds may be an important bromine source of brominated DBPs.
Collapse
Affiliation(s)
- Wuming Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Zichong Zhou
- Changjiang Survey, Planning, Design and Research Co., Ltd., Wuhan 430010, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China.
| | - Wenyuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Khan AM, Atia-Tul-Wahab, Farooq S, Ullah A, Choudhary MI. Repurposing of US-FDA approved drugs against SARS-CoV-2 main protease (M pro) by using STD-NMR spectroscopy, in silico studies and antiviral assays. Int J Biol Macromol 2023; 234:123540. [PMID: 36740128 PMCID: PMC9896891 DOI: 10.1016/j.ijbiomac.2023.123540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
SARS-CoV-2 Main protease (Mpro) is a well-known drug target against SARS-CoV-2 infection. Identification of Mpro inhibitors is vigorously pursued due to its crucial role in viral replication. The present study was aimed to identify Mpro inhibitors via repurposing of US-FDA approved drugs by STD-NMR spectroscopy. In this study, 156 drugs and natural compounds were evaluated against Mpro. Among them, 10 drugs were found to be interacting with Mpro, including diltiazem HCl (1), mefenamic acid (2), losartan potassium (3), mexiletine HCl (4), glaucine HBr (5), trimebutine maleate (6), flurbiprofen (7), amantadine HCl (8), dextromethorphan (9), and lobeline HCl (10) in STD-NMR spectroscopy. Their interactions were compared with three standards (Repurposed anti-viral drugs), dexamethasone, chloroquine phosphate, and remdesivir. Thermal stability of Mpro and dissociation constant (Kd) of six interacting drugs were also determined using DSF. RMSD plots in MD simulation studies showed the formation of stable protein-ligand complexes. They were further examined for their antiviral activity by plaque reduction assay against SARS-CoV-2, which showed 55-100% reduction in viral plaques. This study demonstrates the importance of drug repurposing against emerging and neglected diseases. This study also exhibits successful application of STD-NMR spectroscopy combined with plaque reduction assay in rapid identification of potential anti-viral agents.
Collapse
Affiliation(s)
- Abdul Mateen Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Saba Farooq
- National Institute of Virology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Ullah
- Dr. Panjwani Center for Molecular and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
6
|
Wang X, Wang H, Yin G, Zhang YD. Network-based drug repurposing for the treatment of COVID-19 patients in different clinical stages. Heliyon 2023; 9:e14059. [PMID: 36855680 PMCID: PMC9951095 DOI: 10.1016/j.heliyon.2023.e14059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
In the severe acute respiratory coronavirus disease 2019 (COVID-19) pandemic, there is an urgent need to develop effective treatments. Through a network-based drug repurposing approach, several effective drug candidates are identified for treating COVID-19 patients in different clinical stages. The proposed approach takes advantage of computational prediction methods by integrating publicly available clinical transcriptome and experimental data. We identify 51 drugs that regulate proteins interacted with SARS-CoV-2 protein through biological pathways against COVID-19, some of which have been experimented in clinical trials. Among the repurposed drug candidates, lovastatin leads to differential gene expression in clinical transcriptome for mild COVID-19 patients, and estradiol cypionate mainly regulates hormone-related biological functions to treat severe COVID-19 patients. Multi-target mechanisms of drug candidates are also explored. Erlotinib targets the viral protein interacted with cytokine and cytokine receptors to affect SARS-CoV-2 attachment and invasion. Lovastatin and testosterone block the angiotensin system to suppress the SARS-CoV-2 infection. In summary, our study has identified effective drug candidates against COVID-19 for patients in different clinical stages and provides comprehensive understanding of potential drug mechanisms.
Collapse
Affiliation(s)
- Xin Wang
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China
| | - Han Wang
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China
| | - Guosheng Yin
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China.,Department of Mathematics, Imperial College London, London, The United Kingdom
| | - Yan Dora Zhang
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China.,Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Lu D, Liu D, Wang X, Liu Y, Liu Y, Ren R, Pang G. Kinetics of Drug Molecule Interactions with a Newly Developed Nano-Gold-Modified Spike Protein Electrochemical Receptor Sensor. BIOSENSORS 2022; 12:888. [PMID: 36291025 PMCID: PMC9599096 DOI: 10.3390/bios12100888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
In March 2020, the World Health Organization (WHO) declared COVID-19 a pandemic, and the spike protein has been reported to be an important drug target for anti-COVID-19 treatment. As such, in this study, we successfully developed a novel electrochemical receptor biosensor by immobilizing the SARS-CoV-2 spike protein and using AuNPs-HRP as an electrochemical signal amplification system. Moreover, the time-current method was used to quantify seven antiviral drug compounds, such as arbidol and chloroquine diphosphate. The results show that the spike protein and the drugs are linearly correlated within a certain concentration range and that the detection sensitivity of the sensor is extremely high. In the low concentration range of linear response, the kinetics of receptor-ligand interactions are similar to that of an enzymatic reaction. Among the investigated drug molecules, bromhexine exhibits the smallest Ka value, and thus, is most sensitively detected by the sensor. Hydroxychloroquine exhibits the largest Ka value. Molecular docking simulations of the spike protein with six small-molecule drugs show that residues of this protein, such as Asp, Trp, Asn, and Gln, form hydrogen bonds with the -OH or -NH2 groups on the branched chains of small-molecule drugs. The electrochemical receptor biosensor can directly quantify the interaction between the spike protein and drugs such as abidor and hydroxychloroquine and perform kinetic studies with a limit of detection 3.3 × 10-20 mol/L, which provides a new research method and idea for receptor-ligand interactions and pharmacodynamic evaluation.
Collapse
Affiliation(s)
- Dingqiang Lu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China
| | - Danyang Liu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinqian Wang
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yujiao Liu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yixuan Liu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ruijuan Ren
- Tianjin Institute for Food Safety Inspection Technology, Tianjin 300134, China
| | - Guangchang Pang
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China
| |
Collapse
|
8
|
Masaret GS, Farghaly TA, Al-Hussain SA, Zaki MEA, Alsaedi AMR, Muhammad ZA. Site-Selectivity of the Reaction of 3-Amino-4-Cyano-5-Phenyl-1 H-Pyrrole-2-Carboxylic Acid Amide with α-Halocarbonyl Compounds. Antimicrobial Activity and Docking Study for COVID-19 of the Products. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2130371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ghada S. Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Amani M. R. Alsaedi
- Department of Chemistry, Collage of Science, Taif University, Taif, Saudi Arabia
| | - Zeinab A. Muhammad
- National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| |
Collapse
|
9
|
Nagpal D, Nagpal S, Kaushik D, Kathuria H. Current clinical status of new COVID-19 vaccines and immunotherapy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70772-70807. [PMID: 36063274 PMCID: PMC9442597 DOI: 10.1007/s11356-022-22661-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 04/15/2023]
Abstract
COVID-19, caused by SARS-CoV-2, is a positive-strand RNA belonging to Coronaviridae family, along with MERS and SARS. Since its first report in 2019 in Wuhan, China, it has affected over 530 million people and led to 6.3 million deaths worldwide until June 2022. Despite eleven vaccines being used worldwide already, new variants are of concern. Therefore, the governing bodies are re-evaluating the strategies for achieving universal vaccination. Initially, the WHO expected that vaccines showing around 50-80% efficacy would develop in 1-2 years. However, US-FDA announced emergency approval of the two m-RNA vaccines within 11 months of vaccine development, which enabled early vaccination for healthcare workers in many countries. Later, in January 2021, 63 vaccine candidates were under human clinical trials and 172 under preclinical development. Currently, the number of such clinical studies is still increasing. In this review, we have summarized the updates on the clinical status of the COVID-19 and the available treatments. Additionally, COVID-19 had created negative impacts on world's economy; affected agriculture, industries, and tourism service sectors; and majorly affected low-income countries. The review discusses the clinical outcomes, latest statistics, socio-economic impacts of pandemic and treatment approaches against SARS-CoV-2, and strategies against the new variant of concern. The review will help understand the current status of vaccines and other therapies while also providing insights about upcoming vaccines and therapies for COVID-19 management.
Collapse
Affiliation(s)
- Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Shakti Nagpal
- Department of Pharmacy, National University of Singapore, Singapore, 117543 Republic of Singapore
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore, 117543 Republic of Singapore
- Nusmetics Pte Ltd, Makerspace, i4 building, 3 Research Link, Singapore, 117602 Republic of Singapore
| |
Collapse
|
10
|
Feng H, Chen G, Zhang Y, Guo M. Potential Multifunctional Bioactive Compounds from Dysosma versipellis Explored by Bioaffinity Ultrafiltration-HPLC/MS with Topo I, Topo II, COX-2 and ACE2. J Inflamm Res 2022; 15:4677-4692. [PMID: 35996684 PMCID: PMC9392260 DOI: 10.2147/jir.s371830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dysosma versipellis (D. versipellis) has been traditionally used as a folk medicine for ages. However, the specific phytochemicals responsible for their correlated anti-inflammatory, anti-proliferative and antiviral activities remain unknown. Purpose This study aimed to explore the specific active components in D. versipellis responsible for its potential anti-inflammatory, anti-proliferative, and antiviral effects, and further elucidate the corresponding mechanisms of action. Methods Bioaffinity ultrafiltration coupled to liquid chromatography–mass spectrometry (UF-LC/MS) was firstly hired to fast screen for the anti-inflammatory, anti-proliferative and antiviral compounds from rhizomes of D. versipellis, and then further validation was conducted using in vitro inhibition assays and molecular docking. Results A total of 12, 12, 9 and 12 phytochemicals with considerable affinities to Topo I, Topo II, COX-2 and ACE2 were fished out, respectively. The anti-proliferative assay in vitro indicated that podophyllotoxin and quercetin exhibited comparably strong inhibitory rates on A549 and HT-29 cells compared with 5-FU and etoposide. Meanwhile, kaempferol displayed prominent dose-dependent inhibition against COX-2 with IC50 value at 0.36 ± 0.02 μM lower than indomethacin at 0.73 ± 0.07 μM. Furthermore, quercetin exerted stronger inhibitory effect against ACE2 with IC50 value at 104.79 ± 8.26 μM comparable to quercetin 3-O-glucoside at 135.25 ± 6.54 μM. Conclusion We firstly showcased an experimental investigation on the correlations between bioactive phytochemicals of D. versipellis and their multiple drug targets reflecting its potential pharmacological activities, and further constructed a multi-target and multi-component network to decipher its empirical traditional applications. It could not only offer a reliable and valuable experimental basis to better comprehend the curative effects of D. versipellis but also provide more new insights and strategies for other traditional medicinal plants.
Collapse
Affiliation(s)
- Huixia Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Yongli Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| |
Collapse
|
11
|
Kato Y, Nishiyama K, Nishimura A, Noda T, Okabe K, Kusakabe T, Kanda Y, Nishida M. Drug repurposing for the treatment of COVID-19. J Pharmacol Sci 2022; 149:108-114. [PMID: 35641023 PMCID: PMC9040495 DOI: 10.1016/j.jphs.2022.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) remains prevalent worldwide since its onset was confirmed in Wuhan, China in 2019. Vaccines against the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have shown a preventive effect against the onset and severity of COVID-19, and social and economic activities are gradually recovering. However, the presence of vaccine-resistant variants has been reported, and the development of therapeutic agents for patients with severe COVID-19 and related sequelae remains urgent. Drug repurposing, also called drug repositioning or eco-pharma, is the strategy of using previously approved and safe drugs for a therapeutic indication that is different from their original indication. The risk of severe COVID-19 and mortality increases with advancing age, cardiovascular disease, hypertension, diabetes, and cancer. We have reported three protein-protein interactions that are related to heart failure, and recently identified that one mechanism increases the risk of SARS-CoV-2 infection in mammalian cells. This review outlines the global efforts and outcomes of drug repurposing research for the treatment of severe COVID-19. It also discusses our recent finding of a new protein-protein interaction that is common to COVID-19 aggravation and heart failure.
Collapse
Affiliation(s)
- Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Nishiyama
- Department of Physiology, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Creative Research, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi, Japan
| | - Takamasa Noda
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan; Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Brain Bioregulatory Science, The Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Kaori Okabe
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan; Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Creative Research, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
| |
Collapse
|
12
|
Mi Y, Hu W, Li W, Wan S, Xu X, Liu M, Wang H, Mei Q, Chen Q, Yang Y, Chen B, Jiang M, Li X, Yang W, Guo D. Systematic Qualitative and Quantitative Analyses of Wenxin Granule via Ultra-High Performance Liquid Chromatography Coupled with Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry and Triple Quadrupole-Linear Ion Trap Mass Spectrometry. Molecules 2022; 27:3647. [PMID: 35684583 PMCID: PMC9181919 DOI: 10.3390/molecules27113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022] Open
Abstract
Wenxin granule (WXG) is a popular traditional Chinese medicine (TCM) preparation for the treatment of arrhythmia disease. Potent analytical technologies are needed to elucidate its chemical composition and assess the quality differences among multibatch samples. In this work, both a multicomponent characterization and quantitative assay of WXG were conducted using two liquid chromatography-mass spectrometry (LC-MS) approaches. An ultra-high performance liquid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) approach combined with intelligent peak annotation workflows was developed to characterize the multicomponents of WXG. A hybrid scan approach enabling alternative data-independent and data-dependent acquisitions was established. We characterized 205 components, including 92 ginsenosides, 53 steroidal saponins, 14 alkaloids, and 46 others. Moreover, an optimized scheduled multiple reaction monitoring (sMRM) method was elaborated, targeting 24 compounds of WXG via ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry (UHPLC/QTrap-MS), which was validated based on its selectivity, precision, stability, repeatability, linearity, sensitivity, recovery, and matrix effect. By applying this method to 27 batches of WXG samples, the content variations of multiple markers from Notoginseng Radix et Rhizoma (21) and Codonopsis Radix (3) were depicted. Conclusively, we achieved the comprehensive multicomponent characterization and holistic quality assessment of WXG by targeting the non-volatile components.
Collapse
Affiliation(s)
- Yueguang Mi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Wandi Hu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Weiwei Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Shiyu Wan
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Xiaoyan Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Meiyu Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Hongda Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Quanxi Mei
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China; (S.W.); (Q.M.); (Q.C.); (Y.Y.)
| | - Boxue Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Xue Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
| | - Dean Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China; (Y.M.); (W.H.); (W.L.); (X.X.); (M.L.); (H.W.); (B.C.); (M.J.); (X.L.); (D.G.)
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
13
|
Chakraborty C, Sharma AR, Bhattacharya M, Agoramoorthy G, Lee SS. The Drug Repurposing for COVID-19 Clinical Trials Provide Very Effective Therapeutic Combinations: Lessons Learned From Major Clinical Studies. Front Pharmacol 2021; 12:704205. [PMID: 34867318 PMCID: PMC8636940 DOI: 10.3389/fphar.2021.704205] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 has spread across the globe in no time. In the beginning, people suffered due to the absence of efficacious drugs required to treat severely ill patients. Nevertheless, still, there are no established therapeutic molecules against the SARS-CoV-2. Therefore, repurposing of the drugs started against SARS-CoV-2, due to which several drugs were approved for the treatment of COVID-19 patients. This paper reviewed the treatment regime for COVID-19 through drug repurposing from December 8, 2019 (the day when WHO recognized COVID-19 as a pandemic) until today. We have reviewed all the clinical trials from RECOVERY trials, ACTT-1 and ACTT-2 study group, and other major clinical trial platforms published in highly reputed journals such as NEJM, Lancet, etc. In addition to single-molecule therapy, several combination therapies were also evaluated to understand the treatment of COVID-19 from these significant clinical trials. To date, several lessons have been learned on the therapeutic outcomes for COVID-19. The paper also outlines the experiences gained during the repurposing of therapeutic molecules (hydroxychloroquine, ritonavir/ lopinavir, favipiravir, remdesivir, ivermectin, dexamethasone, camostatmesylate, and heparin), immunotherapeutic molecules (tocilizumab, mavrilimumab, baricitinib, and interferons), combination therapy, and convalescent plasma therapy to treat COVID-19 patients. We summarized that anti-viral therapeutic (remdesivir) and immunotherapeutic (tocilizumab, dexamethasone, and baricitinib) therapy showed some beneficial outcomes. Until March 2021, 4952 clinical trials have been registered in ClinicalTrials.gov toward the drug and vaccine development for COVID-19. More than 100 countries have participated in contributing to these clinical trials. Other than the registered clinical trials (medium to large-size), several small-size clinical trials have also been conducted from time to time to evaluate the treatment of COVID-19. Four molecules showed beneficial therapeutic to treat COVID-19 patients. The short-term repurposing of the existing drug may provide a successful outcome for COVID-19 patients. Therefore, more clinical trials can be initiated using potential anti-viral molecules by evaluating in different phases of clinical trials.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | | | | | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|