1
|
Pei J, Qiu H, Wang W, Wang Y, Wang M, Wang D, Li J, Qin Y. The Contribution and Perspectives of Proteomics to Epithelial Ovarian Cancer. Proteomics Clin Appl 2025; 19:e202300220. [PMID: 39865556 DOI: 10.1002/prca.202300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy which mainly consists of serous, mucinous, clear cell, and endometrioid subtypes. Due to the lack of classic symptoms at an early stage, EOC usually presented as advanced tumors with local and/or distant metastasis. Although a large portion of EOC was initially platinum-sensitive, most patients would acquire resistance to common chemotherapeutic agents. These aforementioned issues lead to a challenge for clinical treatments and unsatisfying outcomes. Previous studies have demonstrated the genetic features of EOC are hard to target and the alterations at DNA and RNA levels are not fully represented at the protein expression profiles which made it more complex. In recent years, a panel of studies attempted to explore the key proteins involved in the development and progression of EOC using high-throughput proteomic technologies. We herein summarized them to provide a full view of this topic.
Collapse
Affiliation(s)
- Jiayu Pei
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Haifeng Qiu
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wenjia Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yulu Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Min Wang
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dian Wang
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanru Qin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
2
|
Huo Z, Zhang S, Su G, Cai Y, Chen R, Jiang M, Yang D, Zhang S, Xiong Y, Zhang X. Immunohistochemical Profiling of Histone Modification Biomarkers Identifies Subtype-Specific Epigenetic Signatures and Potential Drug Targets in Breast Cancer. Int J Mol Sci 2025; 26:770. [PMID: 39859484 PMCID: PMC11765579 DOI: 10.3390/ijms26020770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Breast cancer (BC) subtypes exhibit distinct epigenetic landscapes, with triple-negative breast cancer (TNBC) lacking effective targeted therapies. This study investigates histone biomarkers and therapeutic vulnerabilities across BC subtypes. The immunohistochemical profiling of >20 histone biomarkers, including histone modifications, modifiers, and oncohistone mutations, was conducted on a discovery cohort and a validation cohort of BC tissues, healthy controls, and cell line models. Transcriptomic and cell growth analyses were conducted to evaluate the effects of the small-molecule G9a inhibitor in diverse BC models. Key histone biomarkers, including H3K9me2, H3K36me2, and H3K79me, were differentially expressed across BC subtypes. H3K9me2 emerged as an independent predictor for distinguishing TNBC from other less-aggressive BC subtypes, with elevated expression correlating with higher tumor grade and stage. G9a inhibition impaired cell proliferation and modulated epithelial-mesenchymal transition pathways, with the strongest impact in basal-like TNBC. The disruption of the oncogene and tumor suppressor regulation (e.g., TP53, SATB1) was observed in TNBC. This study highlights G9a's context-dependent roles in BC, supporting its potential as a therapeutic target. The findings provide a foundation for subtype-specific epigenetic therapies to improve outcomes in aggressive BC subtypes.
Collapse
Affiliation(s)
- Zirong Huo
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Sitong Zhang
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Guodong Su
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Yu Cai
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Rui Chen
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Mengju Jiang
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Dongyan Yang
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Shengchao Zhang
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Yuyan Xiong
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Xi Zhang
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
- School of Professional Studies, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
3
|
Ma Y, Lv W, Guo Y, Yin T, Bai Y, Liu Z, Chen C, WenjuanYang, Feng J, Qian W, Tang R, Su Y, Shan S, Dong H, Bao Y, Qu L. Histone demethylases in autophagy and inflammation. Cell Commun Signal 2025; 23:24. [PMID: 39806430 PMCID: PMC11727796 DOI: 10.1186/s12964-024-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses. Among post-translational modifications, histone lysine methylation holds significant importance. There are over 30 members of histone lysine demethylases (KDMs), which act as epigenetic regulators in physiological processes and diseases. Importantly, KDMs are abnormally expressed in the regulation of cellular autophagy and inflammation, representing a crucial mechanism affecting inflammation-related diseases. This article reviewed the function of KDMs proteins in autophagy and inflammation. Specifically, It focused on the specific regulatory mechanisms underlying the activation or inhibition of autophagy, as well as their abnormal expression in inflammatory responses. By analyzing each KDM in epigenetic modification, this review provides a reliable theoretical basis for clinical decision marking regarding autophagy abnormalities and inflammatory diseases.
Collapse
Affiliation(s)
- Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Wenting Lv
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yi Guo
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Tong Yin
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziqi Liu
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - WenjuanYang
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Jiayi Feng
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Wenbin Qian
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Ruiling Tang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Yanting Su
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei, 437000, China
| | - Huifen Dong
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| | - Yongfen Bao
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
| | - Lihua Qu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| |
Collapse
|
4
|
Wagih N, Abdel-Rahman IM, El-Koussi NA, El-Din A Abuo-Rahma G. Anticancer benzimidazole derivatives as inhibitors of epigenetic targets: a review article. RSC Adv 2025; 15:966-1010. [PMID: 39807197 PMCID: PMC11726184 DOI: 10.1039/d4ra05014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy. Benzimidazole derivatives have gained attention for their potent epigenetic modulatory effects as they interact with various epigenetic targets, including DNA methyltransferases, histone deacetylases and histone methyltransferases. This review provides a comprehensive overview of benzimidazole derivatives that inhibit different acetylation and methylation reader, writer and eraser epigenetic targets. Herein, we emphasize the therapeutic potential of these compounds in developing targeted, less toxic cancer therapies. Presently, some promising benzimidazole derivatives have entered clinical trials and shown great advancements in the fields of hematological and solid malignancy therapies. Accordingly, we highlight the recent advancements in benzimidazole research as epigenetic agents that could pave the way for designing new multi-target drugs to overcome resistance and improve clinical outcomes for cancer patients. This review can help researchers in designing new anticancer benzimidazole derivatives with better properties.
Collapse
Affiliation(s)
- Nardin Wagih
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Islam M Abdel-Rahman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Nawal A El-Koussi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University 71526 Assiut Egypt
| | - Gamal El-Din A Abuo-Rahma
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| |
Collapse
|
5
|
Gronkowska K, Robaszkiewicz A. Genetic dysregulation of EP300 in cancers in light of cancer epigenome control - targeting of p300-proficient and -deficient cancers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200871. [PMID: 39351073 PMCID: PMC11440307 DOI: 10.1016/j.omton.2024.200871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Some cancer types including bladder, cervical, and uterine cancers are characterized by frequent mutations in EP300 that encode histone acetyltransferase p300. This enzyme can act both as a tumor suppressor and oncogene. In this review, we describe the role of p300 in cancer initiation and progression regarding EP300 aberrations that have been identified in TGCA Pan-Cancer Atlas studies and we also discuss possible anticancer strategies that target EP300 mutated cancers. Copy number alterations, truncating mutations, and abnormal EP300 transcriptions that affect p300 abundance and activity are associated with several pathological features such as tumor grading, metastases, and patient survival. Elevated EP300 correlates with a higher mRNA level of other epigenetic factors and chromatin remodeling enzymes that co-operate with p300 in creating permissive conditions for malignant transformation, tumor growth and metastases. The status of EP300 expression can be considered as a prognostic marker for anticancer immunotherapy efficacy, as EP300 mutations are followed by an increased expression of PDL-1.HAT activators such as CTB or YF2 can be applied for p300-deficient patients, whereas the natural and synthetic inhibitors of p300 activity, as well as dual HAT/bromodomain inhibitors and the PROTAC degradation of p300, may serve as strategies in the fight against p300-fueled cancers.
Collapse
Affiliation(s)
- Karolina Gronkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
6
|
Micallef I, Fenech K, Baron B. Therapeutic targeting potential of the protein lysine and arginine methyltransferases to reverse cancer chemoresistance. Front Mol Biosci 2024; 11:1455415. [PMID: 39703687 PMCID: PMC11656028 DOI: 10.3389/fmolb.2024.1455415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/10/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer treatments have continued to improve tremendously over the past decade, but therapy resistance is still a common, major factor encountered by patients diagnosed with cancer. Chemoresistance arises due to various circumstances and among these causes, increasing evidence has shown that enzymes referred to as protein methyltransferases (PMTs) play a significant role in the development of chemoresistance in various cancers. These enzymes are responsible for the methylation of different amino acids, particularly lysine and arginine, via protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs), respectively. Various PMTs have been identified to be dysregulated in the development of cancer and chemoresistance. Nonetheless, the functional role of these PMTs in the development of chemoresistance is poorly characterised. This advocates the need for innovative approaches and technologies suitable for better characterisation of these PMTs and their potential clinical inhibitors. In the case of a handful of PMTs, inhibitory small molecules which can function as anticancer drugs have been developed and have also entered clinical trials. Considering all this, PMTs have become a promising and valuable target in cancer chemoresistance related research. This review will give a small introduction on the different PKMTs and PRMTs families which are dysregulated in different cancers and the known proteins targeted by the respective enzymes. The focus will then shift towards PMTs known to be involved in chemoresistance development and the inhibitors developed against these, together with their mode of action. Lastly, the current obstacles and future perspectives of PMT inhibitors in cancer chemoresistance will be discussed.
Collapse
Affiliation(s)
- Isaac Micallef
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimberly Fenech
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
7
|
Ma M, Xue Z, Li C, Zhang X, Gao J, Deng T, Gao C, Wang N. Inhibition of pseudo-allergic reactions by vitamin K3 directly targeting GAB1 in mast cells. Int Immunopharmacol 2024; 137:112490. [PMID: 38897121 DOI: 10.1016/j.intimp.2024.112490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Vitamin K3 (VK3), a fat-soluble synthetic analog of the vitamin K family, has coagulant, anti-inflammatory, antibacterial, and anticancer properties. Pseudo allergy is a IgE-independent immune response associated with mast cells. This study investigated the role of VK3 in IgE-independent mast cell activation. METHODS Substance P (SP) was used to induce LAD2-cell activation in order to analyze the effects of VK3 in vitro. Cutaneous allergy and systemic allergy mouse models were used to analyze the anti-pseudo-allergic effects of VK3. Proteome microarray assays were used to analyze VK3-binding protein. Biolayer interferometry and immunoprecipitation were used to verify interaction between VK3 and its key targets. RNA interference was used to determine the role of GAB1 in LAD2cell activation. RESULTS VK3 inhibited SP-induced LAD2-cell activation, and resulted in the release of β-hexosaminidase, histamine and cytokines; VK3 inhibited SP-induced pseudo allergic reactions in mice, and serum histamine and TNF-α levels decreased. Degranulation of skin mast cells was reduced; GAB1 in mast cells was stably bound to VK3. GAB1 participated in SP-induced LAD2-cell activation. GAB1 knockdown in LAD2 cells prevented SP-induced β-hexosaminidase release, calcium mobilization and cell skeletal remodeling. VK3 directly binds to GAB1 and reduces its expression to inhibited SP-induced LAD2 cell activation. CONCLUSION The anti-pseudo-allergic activity of VK3 was confirmed in vitro and in vivo. VK3 can inhibit SP-induced mast cell activation by directly targeting GAB1. This study provides new insights on the activity of VK3 and the mechanism of pseudoallergic reaction.
Collapse
Affiliation(s)
- Mengyang Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Zhuoyin Xue
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenjia Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xinping Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jie Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Tingting Deng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Chang Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
8
|
Roth GV, Gengaro IR, Qi LS. Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chem Biol 2024; 31:S2451-9456(24)00309-X. [PMID: 39137782 PMCID: PMC11799355 DOI: 10.1016/j.chembiol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The epigenome is a complex framework through which gene expression is precisely and flexibly modulated to incorporate heritable memory and responses to environmental stimuli. It governs diverse cellular processes, including cell fate, disease, and aging. The need to understand this system and precisely control gene expression outputs for therapeutic purposes has precipitated the development of a diverse set of epigenetic editing tools. Here, we review the existing toolbox for targeted epigenetic editing, technical considerations of the current technologies, and opportunities for future development. We describe applications of therapeutic epigenetic editing and their potential for treating disease, with a discussion of ongoing delivery challenges that impede certain clinical interventions, particularly in the brain. With simultaneous advancements in available engineering tools and appropriate delivery technologies, we predict that epigenetic editing will increasingly cement itself as a powerful approach for safely treating a wide range of disorders in all tissues of the body.
Collapse
Affiliation(s)
- Goldie V Roth
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Huang G, Liu J, Yu A, Luo C, Zhu J, Wang Y, Dai Z, Zhang L, Feng Z, Lu J, Dong Z, Luo J, Chen W, Chen Z. Nuclear translocation of ISG15 regulated by PPP2R2B inhibits cisplatin resistance of bladder cancer. Cell Mol Life Sci 2024; 81:292. [PMID: 38976080 PMCID: PMC11335216 DOI: 10.1007/s00018-024-05320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024]
Abstract
Cisplatin resistance is a major challenge for systemic therapy against advanced bladder cancer (BC). Little information is available on the regulation of cisplatin resistance and the underlying mechanisms require elucidation. Here, we detected that downregulation of the tumor suppressor, PPP2R2B (a serine/threonine protein phosphatase 2 A regulatory subunit), in BC promoted cell proliferation and migration. What's more, low PPP2R2B expression was correlated with cisplatin resistance. In vitro and in vivo experiments verified that PPP2R2B could promote BC sensitivity to cisplatin. In terms of mechanism, we identified a novel function of PPP2R2B as a nucleocytoplasmic transport molecule. PPP2R2B promoted ISG15 entry into the nucleus by mediating binding of IPO5 with ISG15. Nuclear translocation of ISG15 inhibited DNA repair, further increasing ISG15 expression through activation of the STING pathway. Besides, PPP2R2B was down-regulated by SUV39H1-mediated histone 3 lysine 9 trimethylation, which could be restored by the SUV39H1-specific inhibitor, chaetocin. Our data suggest that PPP2R2B expression level is a potential biomarker for chemotherapy response and that chemotherapy in combination with chaetocin may be a feasible treatment strategy for patients with BC.
Collapse
Affiliation(s)
- Gaowei Huang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Urology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Jinwen Liu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Anze Yu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chenggong Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou University, Guiyang, 550002, China
| | - Jiangquan Zhu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yinghan Wang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziran Dai
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lizhen Zhang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zihao Feng
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Lu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhong Dong
- Department of Urology, Huizhou Central People's Hospital, Huizhou, 516001, China.
| | - Junhang Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhenhua Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Li NN, Lun DX, Gong N, Meng G, Du XY, Wang H, Bao X, Li XY, Song JW, Hu K, Li L, Li SY, Liu W, Zhu W, Zhang Y, Li J, Yao T, Mou L, Han X, Hao F, Hu Y, Liu L, Zhu H, Wu Y, Liu B. Targeting the chromatin structural changes of antitumor immunity. J Pharm Anal 2024; 14:100905. [PMID: 38665224 PMCID: PMC11043877 DOI: 10.1016/j.jpha.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 04/28/2024] Open
Abstract
Epigenomic imbalance drives abnormal transcriptional processes, promoting the onset and progression of cancer. Although defective gene regulation generally affects carcinogenesis and tumor suppression networks, tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes, which may have significant implications for the development and application of epigenetic therapy, cancer immunotherapy, and their combinations. Herein, we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes, DNA methylation, histone post-translational modification, and chromatin structure in tumor immunogenicity, and introduce these epigenetic research methods. We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immunotherapy through the complex interaction between cancer epigenetics and cancer immunology.
Collapse
Affiliation(s)
- Nian-nian Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deng-xing Lun
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Ningning Gong
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Gang Meng
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, Shaanxi, 725000, China
| | - Xin-ying Du
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - He Wang
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiangxiang Bao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xin-yang Li
- Guizhou Education University, Guiyang, 550018, China
| | - Ji-wu Song
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Kewei Hu
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Lala Li
- Guizhou Normal University, Guiyang, 550025, China
| | - Si-ying Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wenbo Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wanping Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yunlong Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jikai Li
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, Tianjin, 300299, China
| | - Ting Yao
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| | - Leming Mou
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiaoqing Han
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Furong Hao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yongcheng Hu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Lin Liu
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongguang Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yuyun Wu
- Xinqiao Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Bin Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| |
Collapse
|
11
|
Ma T, Xu F, Hou Y, Shu Y, Zhao Z, Zhang Y, Bai L, Feng L, Zhong L. SETDB1: Progress and prospects in cancer treatment potential and inhibitor research. Bioorg Chem 2024; 145:107219. [PMID: 38377821 DOI: 10.1016/j.bioorg.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
SET domain bifurcated methyltransferase 1 (SETDB1) serves as a histone lysine methyltransferase, catalyzing the di- and tri-methylation of histone H3K9. Mounting evidence indicates that the abnormal expression or activity of SETDB1, either through amplification or mutation, plays a crucial role in tumorigenesis and progression. This is particularly evident in the context of tumor immune evasion and resistance to immune checkpoint blockade therapy. Furthermore, there is a robust association between SETDB1 dysregulation and an unfavorable prognosis across various types of tumors. The oncogenic role of SETDB1 primarily arises from its methyltransferase function, which contributes to the establishment of a condensed and transcriptionally inactive heterochromatin state. This results in the inactivation of genes that typically hinder cancer development and silencing of retrotransposons that could potentially trigger an immune response. These findings underscore the substantial potential for SETDB1 as an anti-tumor therapeutic target. Nevertheless, despite significant strides in recent years in tumor biology research, challenges persist in SETDB1-targeted therapy. To better facilitate the development of anti-tumor therapy targeting SETDB1, we have conducted a comprehensive review of SETDB1 in this account. We present the structure and function of SETDB1, its role in various tumors and immune regulation, as well as the advancements made in SETDB1 antagonists. Furthermore, we discuss the challenges encountered and provide perspectives for the development of SETDB1-targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Tingnan Ma
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Feifei Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China; State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yingying Hou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yongquan Shu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhipeng Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yaru Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| |
Collapse
|
12
|
Zhang L, Zhang X, Shi Y, Ni Y, Fei J, Jin Z, Li W, Wang X, Wu N. Role and potential therapeutic value of histone methyltransferases in drug resistance mechanisms in lung cancer. Front Oncol 2024; 14:1376916. [PMID: 38525426 PMCID: PMC10957659 DOI: 10.3389/fonc.2024.1376916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Lung cancer, ranking second globally in both incidence and high mortality among common malignant tumors, presents a significant challenge with frequent occurrences of drug resistance despite the continuous emergence of novel therapeutic agents. This exacerbates disease progression, tumor recurrence, and ultimately leads to poor prognosis. Beyond acquired resistance due to genetic mutations, mounting evidence suggests a critical role of epigenetic mechanisms in this process. Numerous studies have indicated abnormal expression of Histone Methyltransferases (HMTs) in lung cancer, with the abnormal activation of certain HMTs closely linked to drug resistance. HMTs mediate drug tolerance in lung cancer through pathways involving alterations in cellular metabolism, upregulation of cancer stem cell-related genes, promotion of epithelial-mesenchymal transition, and enhanced migratory capabilities. The use of HMT inhibitors also opens new avenues for lung cancer treatment, and targeting HMTs may contribute to reversing drug resistance. This comprehensive review delves into the pivotal roles and molecular mechanisms of HMTs in drug resistance in lung cancer, offering a fresh perspective on therapeutic strategies. By thoroughly examining treatment approaches, it provides new insights into understanding drug resistance in lung cancer, supporting personalized treatment, fostering drug development, and propelling lung cancer therapy into novel territories.
Collapse
Affiliation(s)
- Linxiang Zhang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xueying Zhang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yan Shi
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuhan Ni
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jiaojiao Fei
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhixin Jin
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenjuan Li
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Nan Wu
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
13
|
de Oliveira Filho RS, de Oliveira DA, Nisimoto MM, Marti LC. A Review of Advanced Cutaneous Melanoma Therapies and Their Mechanisms, from Immunotherapies to Lysine Histone Methyl Transferase Inhibitors. Cancers (Basel) 2023; 15:5751. [PMID: 38136297 PMCID: PMC10741407 DOI: 10.3390/cancers15245751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced cutaneous melanoma is considered to be the most aggressive type of skin cancer and has variable rates of treatment response. Currently, there are some classes of immunotherapy and target therapies for its treatment. Immunotherapy can inhibit tumor growth and its recurrence by triggering the host's immune system, whereas targeted therapy inhibits specific molecules or signaling pathways. However, melanoma responses to these treatments are highly heterogeneous, and patients can develop resistance. Epigenomics (DNA/histone modifications) contribute to cancer initiation and progression. Epigenetic alterations are divided into four levels of gene expression regulation: DNA methylation, histone modification, chromatin remodeling, and non-coding RNA regulation. Deregulation of lysine methyltransferase enzymes is associated with tumor initiation, invasion, development of metastases, changes in the immune microenvironment, and drug resistance. The study of lysine histone methyltransferase (KMT) and nicotinamide N-methyltransferase (NNMT) inhibitors is important for understanding cancer epigenetic mechanisms and biological processes. In addition to immunotherapy and target therapy, the research and development of KMT and NNMT inhibitors is ongoing. Many studies are exploring the therapeutic implications and possible side effects of these compounds, in addition to their adjuvant potential to the approved current therapies. Importantly, as with any drug development, safety, efficacy, and specificity are crucial considerations when developing methyltransferase inhibitors for clinical applications. Thus, this review article presents the recently available therapies and those in development for advanced cutaneous melanoma therapy.
Collapse
Affiliation(s)
- Renato Santos de Oliveira Filho
- Department of Plastic Surgery, Escola Paulista de Medicina–Universidade Federal de São Paulo–EPM-UNIFESP, São Paulo 04023-062, SP, Brazil
| | - Daniel Arcuschin de Oliveira
- Department of Plastic Surgery, Universidade Federal de São Paulo–UNIFESP-Skin Cancer and Melanoma Fellow, São Paulo 04023-900, SP, Brazil;
| | | | - Luciana Cavalheiro Marti
- Experimental Research Department, Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| |
Collapse
|
14
|
Hu X, Wang Y, Zhang X, Li C, Zhang X, Yang D, Liu Y, Li L. DNA methylation of HOX genes and its clinical implications in cancer. Exp Mol Pathol 2023; 134:104871. [PMID: 37696326 DOI: 10.1016/j.yexmp.2023.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Homeobox (HOX) genes encode highly conserved transcription factors that play vital roles in embryonic development. DNA methylation is a pivotal regulatory epigenetic signaling mark responsible for regulating gene expression. Abnormal DNA methylation is largely associated with the aberrant expression of HOX genes, which is implicated in a broad range of human diseases, including cancer. Numerous studies have clarified the mechanisms of DNA methylation in both physiological and pathological processes. In this review, we focus on how DNA methylation regulates HOX genes and briefly discuss drug development approaches targeting these mechanisms.
Collapse
Affiliation(s)
- Xin Hu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yong Wang
- Shandong Xinchuang Biotechnology Co., LTD, Jinan 250102, Shandong, China; Laboratory of Precision Medicine, Zhangqiu District People's Hospital of Jinan, Jinan 250200, Shandong, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Chensheng Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xikun Zhang
- Department of Minimally Invasive Interventional, The Third Affiliated Hospital of Shandong First Medical University, Jinan 250031, Shandong, China
| | - Dongxia Yang
- Shandong Xinchuang Biotechnology Co., LTD, Jinan 250102, Shandong, China
| | - Yuanyuan Liu
- Shandong Xinchuang Biotechnology Co., LTD, Jinan 250102, Shandong, China
| | - Lianlian Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
15
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|