1
|
Shaath H, Vishnubalaji R, Ouararhni K, Alajez NM. Epigenetic Silencing of miR-218-5p Modulates BIRC5 and DDX21 Expression to Promote Colorectal Cancer Progression. Int J Mol Sci 2025; 26:4146. [PMID: 40362385 PMCID: PMC12071466 DOI: 10.3390/ijms26094146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Colorectal cancer remains one of the leading causes of cancer-related deaths globally. Non-protein coding RNAs, including microRNAs, have emerged as crucial regulators in cancer progression. Herein, we analyzed publicly available datasets for miRNA expression in healthy controls, adenomatous polyps, and colorectal cancer and identified their regulatory networks using HCT116 and HT-29 CRC models. Differentially expressed miRNAs in adenomatous polyps and colorectal cancer were identified, highlighting their role in colorectal cancer initiation and progression. Notably, miR-218-5p was significantly downregulated in adenomatous polyps and colorectal cancer, suggesting a role in colorectal cancer initiation. Functional investigations revealed a tumor suppressive role for miR-218-5p in HCT116 and HT-29 CRC cell models, affecting cell proliferation and three-dimensional organoid formation and promoting cell death. RNA-Seq and bioinformatics identified BIRC5 and DDX21 as bona fide gene targets for miR-218-5p, validated by reverse transcription quantitative PCR and Western blotting. Further investigation into the genomic location of miR-218-5p, embedded within the SLIT2 and SLIT3 introns on chromosome 4 and chromosome 5, respectively, revealed epigenetic silencing through promoter hypermethylation in colorectal cancer cell models. These findings highlight epigenetic silencing of miR-218-5p in colorectal cancer, suggesting its potential as a biomarker and therapeutic target for early detection and intervention.
Collapse
Affiliation(s)
- Hibah Shaath
- Translational Oncology Research Center (TORC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (H.S.); (R.V.)
| | - Radhakrishnan Vishnubalaji
- Translational Oncology Research Center (TORC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (H.S.); (R.V.)
| | - Khalid Ouararhni
- Genomics Core Facility, Hamad Bin Khalifa University, Qatar Foundation (QF), Doha P.O. Box 34110, Qatar;
| | - Nehad M. Alajez
- Translational Oncology Research Center (TORC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (H.S.); (R.V.)
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| |
Collapse
|
2
|
Liu J, Liang L, Gan P, Lin F, Dai Z, Chen Z, Xu Y, Yang Q, Cao M, Wang S, Gu Y, Yuan Z, Zhong Q, Hu D, Yao Y. Development of a Highly Efficient NIR-II Phototherapeutic Agent for Fluorescence Imaging-Guided Synergistic PTT/PDT/Chemotherapy of Colorectal Cancer. J Med Chem 2025; 68:7592-7604. [PMID: 40168043 DOI: 10.1021/acs.jmedchem.5c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
NIR-II-triggered phototherapy presents a noninvasive, resistance-free alternative therapeutic approach with deeper tissue penetration and improved imaging of deep tumors. However, many NIR-II phototherapeutic agents suffer from low fluorescence quantum yields, poor photothermal conversion efficiency (PCE), and reduced efficacy due to the upregulation of heat shock protein HSP70. This study develops a small-molecule NIR-II phototherapeutic agent (IRF) with a high fluorescence quantum yield (17.4%), excellent PCE (96.8%) for photothermal therapy (PTT), and photodynamic therapy (PDT) activity. To decrease thermal resistance during phototherapy, IRF and evodiamine (EVO) were loaded onto hyaluronic acid (HA)-modified nanoparticles, creating a multifunctional nanoplatform termed EVO/IRF@HA NPs. EVO/IRF@HA NPs can actively target tumors for NIR-II fluorescence imaging via the HA moiety. Upon 980 nm laser irradiation, IRF increases the temperature and content of reactive oxygen species for synergistic PTT/PDT. Importantly, EVO effectively inhibits the overexpression of HSP70, enabling combined PTT/PDT/chemotherapy for effective colorectal cancer (CRC) treatment.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Luyin Liang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Ping Gan
- Department of Pharmacy, The Affiliated Taizhou Second People's Hospital of Yangzhou University, No.27 Jiankang Road, Jiangyan District, Taizhou 225500, China
| | - Fanjie Lin
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Zhiyue Dai
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Zhangjing Chen
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Yifan Xu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Qiuxing Yang
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong 226001, China
| | - Mingyi Cao
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Shiya Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Zhenwei Yuan
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Qifeng Zhong
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Dejun Hu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| | - Yongrong Yao
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China
| |
Collapse
|
3
|
Telkoparan-Akillilar P, Chichiarelli S, Tucci P, Saso L. Integration of MicroRNAs with nanomedicine: tumor targeting and therapeutic approaches. Front Cell Dev Biol 2025; 13:1569101. [PMID: 40260417 PMCID: PMC12009947 DOI: 10.3389/fcell.2025.1569101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/12/2025] [Indexed: 04/23/2025] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a pivotal role in the post-transcriptional regulation of gene expression. Over the past decade, they have emerged as key regulators in cancer progression, influencing different cellular processes such as proliferation, apoptosis, metastasis, and immune evasion. Their unique ability to target multiple genes simultaneously makes miRNAs highly attractive as potential therapeutic agents in oncology. However, several challenges have hindered their direct clinical application, most notably their inherent instability in biological fluids, rapid degradation by nucleases, and inefficient delivery to specific tumor sites. Additionally, off-target effects and the potential for toxicity further complicate the therapeutic use of miRNAs. Nanomedicine offers a promising solution to these challenges by enabling the development of advanced platforms for the stable, safe, and targeted delivery of miRNAs. Nanoparticle-based delivery systems, such as liposomes, polymeric nanoparticles, and inorganic nanocarriers, can protect miRNAs from degradation, improve their bioavailability, and allow for precise tumor targeting through passive or active targeting mechanisms. These nanocarriers can also be engineered to release miRNAs in response to specific stimuli within the tumor microenvironment, enhancing therapeutic efficacy while minimizing side effects. This review will explore the integration of miRNAs with nanotechnology, focusing on various nanoparticle formulations and their roles in enhancing miRNA stability, specificity, and function in cancer treatment. In addition, we will discuss current advances in preclinical and clinical applications, highlight promising tumor-targeting strategies, and address the remaining challenges such as toxicity, immunogenicity, and scalability. Future research should focus on overcoming these barriers, ultimately paving the way for the widespread adoption of personalized miRNA-based nanomedicine in cancer therapy.
Collapse
Affiliation(s)
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Ma F, Wang W, Wang M, Zhang W, Zhang S, Wilson G, Sa Y, Zhang Y, Chen G, Ma X. Fluorescence paper sensor meets magnetic affinity chromatography: discovering potent neuraminidase inhibitors in herbal medicines. Anal Bioanal Chem 2025; 417:1819-1832. [PMID: 39890624 DOI: 10.1007/s00216-025-05761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Given the inherent complexity of natural medicines, finding a straightforward and efficient method for identifying active ingredients remains a significant challenge, yet it is of paramount importance. Influenza virus neuraminidase (NA), a primary target for anti-influenza drug development, plays a crucial role in the infection process, making it essential to develop rapid and facile methods for screening NA inhibitors. Herein, we developed a novel and efficient analytical technique for the identification of NA inhibitors from complex herbal medicines by integrating dual sensing with affinity chromatography. This approach simplifies the experimental process and highlights the benefits of being quicker, more sensitive, and cost-effective. Regarding the biosensing section, the innovative concept of a 4-methylumbelliferyl-N-acetylneuraminic acid-NA-based fluorescence paper sensor strategy enables the rapid detection of NA inhibitors in complex herbal samples. In affinity chromatography, bioactive compounds were precisely captured, separated, and identified. The efficacy and reliability of the developed method were confirmed using both negative and positive controls. Then, the method was applied to screen for NA inhibitors in 20 different herbal medicines. The results revealed that Bupleurum chinense DC. exhibited the most pronounced inhibitory effect on NA. Subsequent analysis utilizing affinity chromatography identified three bioactive compounds, namely saikosaponin a, saikosaponin d, and baicalin, as the active agents responsible for this inhibitory effect, with IC50 values of 177.3 μM, 262.9 μM, and 241.4 μM, respectively. Molecular docking studies further indicated that these three bioactive compounds exhibit a strong binding affinity with NA. This research provides novel insights into the screening of enzyme inhibitors within herbal medicines.
Collapse
Affiliation(s)
- Fen Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Weibiao Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Mei Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Weiman Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Shuxian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Gidion Wilson
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Yuping Sa
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Yue Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Guoning Chen
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China.
| | - Xueqin Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China.
| |
Collapse
|
5
|
Włodarczyk M, Maryńczak K, Burzyński J, Włodarczyk J, Basak J, Fichna J, Majsterek I, Ciesielski P, Spinelli A, Dziki Ł. The role of miRNAs in the pathogenesis, diagnosis, and treatment of colorectal cancer and colitis-associated cancer. Clin Exp Med 2025; 25:86. [PMID: 40091000 PMCID: PMC11911275 DOI: 10.1007/s10238-025-01582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/01/2025] [Indexed: 03/19/2025]
Abstract
MicroRNAs (miRNAs) are a group of noncoding single-stranded RNA biomolecules that act in posttranscriptional regulation of gene expression. Their role in the development of inflammatory bowel disease (IBD), colitis-associated cancer (CAC), and colorectal cancer (CRC) is currently under investigation. A few miRNAs present promising results in terms of diagnostic or therapeutic use, for example, miR-21 increases in CRC and inflammation, while also being a possible target for cancer therapy; miR-301a increases in inflammation but only in patients with IBD; miR-31 increases in CRC, especially in advanced stages, namely III-IV in TNM scale; miR-200 family plays a role in carcinogenesis of CRC and other tumors; examined as a group, miR-31-5p, miR-223-3p, and let-7f-5p trigger and exacerbate CAC; miR-19a could potentially be used in therapy and prevention of both CRC and CAC. Here, we discuss available studies and outline future directions concerning the validity of using miRNAs in the diagnosis and/or therapy of IBD, CAC, and CRC. Extensive research confirms that miRNAs play an important role in the pathogenesis of CAC and CRC. Since the significantly altered expression of certain miRNAs is an early prognostic marker for the development of these diseases, miRNAs have the potential to serve as diagnostic tools, enabling quick and straightforward disease detection.
Collapse
Affiliation(s)
- Marcin Włodarczyk
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Kasper Maryńczak
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Jacek Burzyński
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Jakub Włodarczyk
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Justyna Basak
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Przemysław Ciesielski
- Department of General Surgery, Hospital of Our Lady of Perpetual Help in Wołomin, Wołomin, Poland
| | - Antonino Spinelli
- Colon and Rectal Surgery Division, Humanitas Clinical and Research Center, Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Rozzano, Italy
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| |
Collapse
|
6
|
Singh U, Kokkanti RR, Patnaik S. Beyond chemotherapy: Exploring 5-FU resistance and stemness in colorectal cancer. Eur J Pharmacol 2025; 991:177294. [PMID: 39863147 DOI: 10.1016/j.ejphar.2025.177294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, demanding continuous advancements in treatment strategies. This review explores the complexities of targeting colorectal cancer stem cells (CSCs) and the mechanisms contributing to resistance to 5-fluorouracil (5-FU). The efficacy of 5-FU is enhanced by combination therapies such as FOLFOXIRI and targeted treatments like bevacizumab, cetuximab, and panitumumab, particularly in KRAS wild-type tumors, despite associated toxicity. Biomarkers like thymidylate synthase (TYMS), thymidine phosphorylase (TP), and dihydropyrimidine dehydrogenase (DPD) are crucial for predicting 5-FU efficacy and resistance. Targeting CRC-CSCs remains challenging due to their inherent resistance to conventional therapies, marker variability, and the protective influence of the tumor microenvironment which promotes stemness and survival. Personalized treatment strategies are increasingly essential to address CRC's genetic and phenotypic diversity. Advances in immunotherapy, including immune checkpoint inhibitors and cancer vaccines, along with nanomedicine-based therapies, offer promising targeted drug delivery systems that enhance specificity, reduce toxicity, and provide novel approaches for overcoming resistance mechanisms. Integrating these innovative strategies with traditional therapies may enhance the effectiveness of CRC therapy by addressing the underlying causes of 5-FU resistance in CSCs.
Collapse
Affiliation(s)
- Ursheeta Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
7
|
Tout I, Bougarn S, Toufiq M, Gopinath N, Hussein O, Sathappan A, Chin-Smith E, Rehaman F, Mathew R, Mathew L, Wang K, Liu L, Salhab A, Soloviov O, Tomei S, Hasan W, Da'as S, Bejaoui Y, Hajj NE, Maalej KM, Dermime S, Rasul K, Dellabona P, Casorati G, Turdo A, Todaro M, Stassi G, Ferrone S, Wang X, Maccalli C. The integrative genomic and functional immunological analyses of colorectal cancer initiating cells to modulate stemness properties and the susceptibility to immune responses. J Transl Med 2025; 23:193. [PMID: 39962504 PMCID: PMC11834280 DOI: 10.1186/s12967-025-06176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) initiating cells (CICs) possess self-renewal capabilities and are pivotal in tumor recurrence and resistance to conventional therapies, including immunotherapy. The mechanisms underlying their interaction with immune cells remain unclear. METHODS We conducted a multi-omics analysis-encompassing DNA methylation, total RNA sequencing, and microRNAs (miRNAs; N = 800) profiling on primary CICs and differentiated tumor cell lines, including autologous pairs. Functional immunological assays were performed to assess the impact of miRNA modulation. RESULTS CICs exhibited distinct methylation patterns, transcriptomic profiles, and miRNA expressions compared to differentiated tumor cells (p < 0.05 or 0.01). Notably, miRNA-15a and -196a were implicated in regulating tumorigenic pathways, such as epithelial-to-mesenchymal transition (EMT), TGF-β signaling, and immune modulation. The transfection of CICs with miRNA mimics led to the downregulation of oncogenic EMT markers (CRKL, lncRNA SOX2-OT, JUNB, SMAD3) and TGF-β pathway, resulting in a significant reduction of the in vitro proliferation and the tumorigenicity and migration in a zebrafish xenograft model. Additionally, miRNA-15a enhanced the expression of antigen processing machinery and decreased the expression of immune checkpoints (PD-L1, PD-L2, CTLA-4) and immunosuppressive cytokines (IL-4). The co-culture of HLA-matched lymphocytes with CICs overexpressing the miRNA-15a, elicited robust tumor-specific immune responses, characterized by a shift toward central and effector memory T cell phenotypes and prevented their terminal differentiation and exhaustion. The combination of miRNA modulation with Indoleamine 2,3-dioxygenase blockade and immunomodulating agents further potentiated these effects. CONCLUSIONS Our study demonstrates that the modulation of miRNA-15a in CICs not only suppresses the tumorigenic properties but also enhances their visibility to the immune system by upregulating antigen presentation and reducing immunomodulatory molecules. These findings suggest that combining miRNA modulation with epigenetic or immunomodulatory agents holds significant promise for overcoming treatment resistance in CRC.
Collapse
Affiliation(s)
- Issam Tout
- Laboratory of Immune Biological Therapy, Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Salim Bougarn
- Laboratory of Immune Biological Therapy, Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Mohammed Toufiq
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Neha Gopinath
- Laboratory of Immune Biological Therapy, Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Ola Hussein
- Laboratory of Immune Biological Therapy, Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
- College of Pharmacy, Qatar University, Doha, Qatar
| | | | - Evonne Chin-Smith
- Laboratory of Immune Biological Therapy, Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Fazulur Rehaman
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Rebecca Mathew
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Lisa Mathew
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Kun Wang
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Li Liu
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Abdulrahman Salhab
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Oleksandr Soloviov
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Sara Tomei
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Waseem Hasan
- Zebrafish Functional Genomics Core, Research Department, Sidra Medicine, Doha, Qatar
| | - Sahar Da'as
- Zebrafish Functional Genomics Core, Research Department, Sidra Medicine, Doha, Qatar
- College of Health and Life Science, Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- College of Health and Life Science, Hamad Bin Khalifa University, Doha, Qatar
| | - Nady El Hajj
- College of Health and Life Science, Hamad Bin Khalifa University, Doha, Qatar
| | - Karama Makni Maalej
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
| | - Kakil Rasul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Paolo Dellabona
- Experimental Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Maccalli
- Laboratory of Immune Biological Therapy, Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Science, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
8
|
Zou L, Wang R, Zhao M, Li Y, Sun C, Xie J, Chen Y, Jing Q, Mi D, Shi S. PLGA confers upon conventional nonfluorescent molecules luminescent properties to trigger 1O 2-induced pyroptosis and immune response in tumors. J Nanobiotechnology 2025; 23:35. [PMID: 39844156 PMCID: PMC11752658 DOI: 10.1186/s12951-025-03094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025] Open
Abstract
Pyroptosis, a recently identified cellular demise regulated by gasdermin family proteins, is emerging as a promising avenue in cancer immunotherapy. However, the realm of light-controlled pyroptosis in cancer cells remains largely unexplored. In this study, we took a deliberate approach devoid of any chemical alterations to develop a novel photosensitizer called "pharmaceutical-dots (pharm-dots)" by combining nonemissive polymers (Poly (lactic-co-glycolic acid), PLGA) with nonfluorescent invisible molecules like curcumin, berberine, oridonin into PLGA nanoparticles (PLGA-NPs). Initially, our research commenced with a comprehensive mechanistic comparison study, consolidating fragmented information on optical mechanisms. This exploration revealed that surface passivation atoms play a dominant role in governing the fluorescence emission of PLGA-NPs. Remarkably, these new luminophores, composed of two non-inherently luminous components, exhibit a remarkable synergistic boost in photoluminescence through a "0 + 0 > 2" phenomenon. In-depth investigations uncovered that these luminous PLGA-NPs, capable of generating 1O2, induce pyroptosis under photoexcitation conditions through the caspase-3/gasdermin E (GSDME) pathway. Simultaneously, our findings highlight PLGA-NPs as a novel optical formulation suitable for imaging, displaying substantial biological activity when paired with photoirradiation. This discovery holds the potential to facilitate the application of light-controlled pyroptosis in antitumor therapy, marking a promising stride toward innovative approaches in cancer treatment.
Collapse
Affiliation(s)
- Lan Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rujing Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinjin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Jing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dandan Mi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Wu S, Lin L, Shi L, Liu S. An overview of lipid constituents in lipid nanoparticle mRNA delivery systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1978. [PMID: 38965928 DOI: 10.1002/wnan.1978] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024]
Abstract
mRNA therapeutics have shown great potential for a broad spectrum of disease treatment. However, the challenges of mRNA's inherent instability and difficulty in cellular entry have hindered its progress in the biomedical field. To address the cellular barriers and deliver mRNA to cells of interest, various delivery systems are designed. Among these, lipid nanoparticles (LNPs) stand out as the most extensively used mRNA delivery systems, particularly following the clinical approvals of corona virus disease 2019 (COVID-19) mRNA vaccines. LNPs are comprised of ionizable cationic lipids, phospholipids, cholesterol, and polyethylene glycol derived lipids (PEG-lipids). In this review, we primarily summarize the recent advancements of the LNP mRNA delivery technology, focusing on the structures of four lipid constituents and their biomedical applications. We delve into structure-activity relationships of the lipids, while also exploring the future prospects and challenges in developing more efficacious mRNA delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Shiqi Wu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lu Shi
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Wang X, Guan X, Tong Y, Liang Y, Huang Z, Wen M, Luo J, Chen H, Yang S, She Z, Wei Z, Zhou Y, Qi Y, Zhu P, Nong Y, Zhang Q. UHPLC-HRMS-based Multiomics to Explore the Potential Mechanisms and Biomarkers for Colorectal Cancer. BMC Cancer 2024; 24:644. [PMID: 38802800 PMCID: PMC11129395 DOI: 10.1186/s12885-024-12321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Understanding the metabolic changes in colorectal cancer (CRC) and exploring potential diagnostic biomarkers is crucial for elucidating its pathogenesis and reducing mortality. Cancer cells are typically derived from cancer tissues and can be easily obtained and cultured. Systematic studies on CRC cells at different stages are still lacking. Additionally, there is a need to validate our previous findings from human serum. METHODS Ultrahigh-performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HRMS)-based metabolomics and lipidomics were employed to comprehensively measure metabolites and lipids in CRC cells at four different stages and serum samples from normal control (NR) and CRC subjects. Univariate and multivariate statistical analyses were applied to select the differential metabolites and lipids between groups. Biomarkers with good diagnostic efficacy for CRC that existed in both cells and serum were screened by the receiver operating characteristic curve (ROC) analysis. Furthermore, potential biomarkers were validated using metabolite standards. RESULTS Metabolite and lipid profiles differed significantly among CRC cells at stages A, B, C, and D. Dysregulation of glycerophospholipid (GPL), fatty acid (FA), and amino acid (AA) metabolism played a crucial role in the CRC progression, particularly GPL metabolism dominated by phosphatidylcholine (PC). A total of 46 differential metabolites and 29 differential lipids common to the four stages of CRC cells were discovered. Eight metabolites showed the same trends in CRC cells and serum from CRC patients compared to the control groups. Among them, palmitoylcarnitine and sphingosine could serve as potential biomarkers with the values of area under the curve (AUC) more than 0.80 in the serum and cells. Their panel exhibited excellent performance in discriminating CRC cells at different stages from normal cells (AUC = 1.00). CONCLUSIONS To our knowledge, this is the first research to attempt to validate the results of metabolism studies of serum from CRC patients using cell models. The metabolic disorders of PC, FA, and AA were closely related to the tumorigenesis of CRC, with PC being the more critical factor. The panel composed of palmitoylcarnitine and sphingosine may act as a potential biomarker for the diagnosis of CRC, aiding in its prevention.
Collapse
Affiliation(s)
- Xuancheng Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xuan Guan
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Ying Tong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Yunxiao Liang
- Department of Gastroenterology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, PR China
| | - Zongsheng Huang
- Department of Gastroenterology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, PR China
| | - Mingsen Wen
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Jichu Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Hongwei Chen
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Shanyi Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Zhiyong She
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Zhijuan Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Yun Zhou
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Yali Qi
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Yanying Nong
- Department of Academic Affairs, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Qisong Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, 530004, PR China.
- Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
11
|
Ahmadieh-Yazdi A, Mahdavinezhad A, Tapak L, Nouri F, Taherkhani A, Afshar S. Using machine learning approach for screening metastatic biomarkers in colorectal cancer and predictive modeling with experimental validation. Sci Rep 2023; 13:19426. [PMID: 37940644 PMCID: PMC10632378 DOI: 10.1038/s41598-023-46633-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
Colorectal cancer (CRC) liver metastasis accounts for the majority of fatalities associated with CRC. Early detection of metastasis is crucial for improving patient outcomes but can be delayed due to a lack of symptoms. In this research, we aimed to investigate CRC metastasis-related biomarkers by employing a machine learning (ML) approach and experimental validation. The gene expression profile of CRC patients with liver metastasis was obtained using the GSE41568 dataset, and the differentially expressed genes between primary and metastatic samples were screened. Subsequently, we carried out feature selection to identify the most relevant DEGs using LASSO and Penalized-SVM methods. DEGs commonly selected by these methods were selected for further analysis. Finally, the experimental validation was done through qRT-PCR. 11 genes were commonly selected by LASSO and P-SVM algorithms, among which seven had prognostic value in colorectal cancer. It was found that the expression of the MMP3 gene decreases in stage IV of colorectal cancer compared to other stages (P value < 0.01). Also, the expression level of the WNT11 gene was observed to increase significantly in this stage (P value < 0.001). It was also found that the expression of WNT5a, TNFSF11, and MMP3 is significantly lower, and the expression level of WNT11 is significantly higher in liver metastasis samples compared to primary tumors. In summary, this study has identified a set of potential biomarkers for CRC metastasis using ML algorithms. The findings of this research may provide new insights into identifying biomarkers for CRC metastasis and may potentially lay the groundwork for innovative therapeutic strategies for treatment of this disease.
Collapse
Affiliation(s)
- Amirhossein Ahmadieh-Yazdi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Mahdavinezhad
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Tapak
- Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|