1
|
Zharmukhamedov SK, Shabanova MS, Huseynova IM, Karacan MS, Karacan N, Akar H, Kreslavski VD, Alharby HF, Bruce BD, Allakhverdiev SI. Probing the Influence of Novel Organometallic Copper(II) Complexes on Spinach PSII Photochemistry Using OJIP Fluorescence Transient Measurements. Biomolecules 2023; 13:1058. [PMID: 37509094 PMCID: PMC10377486 DOI: 10.3390/biom13071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Modern agricultural cultivation relies heavily on genetically modified plants that survive after exposure to herbicides that kill weeds. Despite this biotechnology, there is a growing need for new sustainable, environmentally friendly, and biodegradable herbicides. We developed a novel [CuL2]Br2 complex (L = bis{4H-1,3,5-triazino[2,1-b]benzothiazole-2-amine,4-(2-imidazole) that is active on PSII by inhibiting photosynthetic oxygen evolution on the micromolar level. [CuL2]Br2 reduces the FV of PSII fluorescence. Artificial electron donors do not rescind the effect of [CuL2]Br2. The inhibitory mechanism of [CuL2]Br2 remains unclear. To explore this mechanism, we investigated the effect of [CuL2]Br2 in the presence/absence of the well-studied inhibitor DCMU on PSII-containing membranes by OJIP Chl fluorescence transient measurements. [CuL2]Br2 has two effects on Chl fluorescence transients: (1) a substantial decrease of the Chl fluorescence intensity throughout the entire kinetics, and (2) an auxiliary "diuron-like" effect. The initial decrease dominates and is observed both with and without DCMU. In contrast, the "diuron-like" effect is small and is observed only without DCMU. We propose that [CuL2]Br2 has two binding sites for PSII with different affinities. At the high-affinity site, [CuL2]Br2 produces effects similar to PSII reaction center inhibition, while at the low-affinity site, [CuL2]Br2 produces effects identical to those of DCMU. These results are compared with other PSII-specific classes of herbicides.
Collapse
Affiliation(s)
| | - Mehriban S Shabanova
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1143 Baku, Azerbaijan
| | - Irada M Huseynova
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1143 Baku, Azerbaijan
| | - Mehmet Sayım Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | - Nurcan Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | - Hande Akar
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | | | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Barry D Bruce
- Departments of Biochemistry & Cellular and Molecular Biology, Chemical and Biomolecular Engineering and Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Suleyman I Allakhverdiev
- Institute of Basic Biological Problems, FRC PSCBR RAS, 142290 Pushchino, Russia
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul 34349, Turkey
| |
Collapse
|
2
|
Zharmukhamedov SK, Shabanova MS, Rodionova MV, Huseynova IM, Karacan MS, Karacan N, Aşık KB, Kreslavski VD, Alwasel S, Allakhverdiev SI. Effects of Novel Photosynthetic Inhibitor [CuL2]Br2 Complex on Photosystem II Activity in Spinach. Cells 2022; 11:cells11172680. [PMID: 36078088 PMCID: PMC9455146 DOI: 10.3390/cells11172680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
The effects of the novel [CuL2]Br2 complex (L = bis{4H-1,3,5-triazino [2,1-b]benzothiazole-2-amine,4-(2-imidazole)}copper(II) bromide complex) on the photosystem II (PSII) activity of PSII membranes isolated from spinach were studied. The absence of photosynthetic oxygen evolution by PSII membranes without artificial electron acceptors, but in the presence of [CuL2]Br2, has shown that it is not able to act as a PSII electron acceptor. In the presence of artificial electron acceptors, [CuL2]Br2 inhibits photosynthetic oxygen evolution. [CuL2]Br2 also suppresses the photoinduced changes of the PSII chlorophyll fluorescence yield (FV) related to the photoreduction of the primary quinone electron acceptor, QA. The inhibition of both characteristic PSII reactions depends on [CuL2]Br2 concentration. At all studied concentrations of [CuL2]Br2, the decrease in the FM level occurs exclusively due to a decrease in Fv. [CuL2]Br2 causes neither changes in the F0 level nor the retardation of the photoinduced rise in FM, which characterizes the efficiency of the electron supply from the donor-side components to QA through the PSII reaction center (RC). Artificial electron donors (sodium ascorbate, DPC, Mn2+) do not cancel the inhibitory effect of [CuL2]Br2. The dependences of the inhibitory efficiency of the studied reactions of PSII on [CuL2]Br2 complex concentration practically coincide. The inhibition constant Ki is about 16 µM, and logKi is 4.8. As [CuL2]Br2 does not change the aromatic amino acids’ intrinsic fluorescence of the PSII protein components, it can be proposed that [CuL2]Br2 has no significant effect on the native state of PSII proteins. The results obtained in the present study are compared to the literature data concerning the inhibitory effects of PSII Cu(II) aqua ions and Cu(II)-organic complexes.
Collapse
Affiliation(s)
- Sergey K. Zharmukhamedov
- Institute of Basic Biological Problems, FRC PSCBR RAS, 142290 Pushchino, Russia
- Correspondence: (S.K.Z.); (S.I.A.)
| | - Mehriban S. Shabanova
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1073 Baku, Azerbaijan
| | - Margarita V. Rodionova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Irada M. Huseynova
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1073 Baku, Azerbaijan
| | - Mehmet Sayım Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | - Nurcan Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | - Kübra Begüm Aşık
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | | | - Saleh Alwasel
- College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Suleyman I. Allakhverdiev
- Institute of Basic Biological Problems, FRC PSCBR RAS, 142290 Pushchino, Russia
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1073 Baku, Azerbaijan
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119991 Moscow, Russia
- Correspondence: (S.K.Z.); (S.I.A.)
| |
Collapse
|
3
|
Yu L, Chi J, Xiao L, Li J, Tang Z, Tan S, Li P. Novel Thiochromanone Derivatives Containing a Sulfonyl Hydrazone Moiety: Design, Synthesis, and Bioactivity Evaluation. Molecules 2021; 26:molecules26102925. [PMID: 34069070 PMCID: PMC8156870 DOI: 10.3390/molecules26102925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
A series of novel thiochromanone derivatives containing a sulfonyl hydrazone moiety were designed and synthesized. Their structures were determined by 1H-NMR, 13C-NMR, and HRMS. Bioassay results showed that most of the target compounds revealed moderate to good antibacterial activities against Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicolaby, and Xanthomonas axonopodis pv. citri. Compound 4i had the best inhibitory activity against Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicolaby, and Xanthomonas axonopodis pv. citri, with the EC50 values of 8.67, 12.65, and 10.62 μg/mL, which were superior to those of Bismerthiazol and Thiodiazole-copper. Meanwhile, bioassay results showed that all of the target compounds proved to have lower antifungal activities against Sclerotinia sclerotiorum, Fusarium oxysporum, Gibberella zeae, Rhizoctonia solani, Verticillium dahlia, and Botrytis cinerea than those of Carbendazim.
Collapse
Affiliation(s)
- Lu Yu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.Y.); (J.C.); (L.X.); (J.L.); (Z.T.)
| | - Jiyan Chi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.Y.); (J.C.); (L.X.); (J.L.); (Z.T.)
| | - Lingling Xiao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.Y.); (J.C.); (L.X.); (J.L.); (Z.T.)
| | - Jie Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.Y.); (J.C.); (L.X.); (J.L.); (Z.T.)
| | - Zhangfei Tang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.Y.); (J.C.); (L.X.); (J.L.); (Z.T.)
| | - Shuming Tan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.Y.); (J.C.); (L.X.); (J.L.); (Z.T.)
- Correspondence: (S.T.); or (P.L.); Tel.: +86-(0851)8559466 (S.T. & P.L.)
| | - Pei Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.Y.); (J.C.); (L.X.); (J.L.); (Z.T.)
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili 556011, China
- Correspondence: (S.T.); or (P.L.); Tel.: +86-(0851)8559466 (S.T. & P.L.)
| |
Collapse
|
4
|
Yang K, Yang JQ, Luo SH, Mei WJ, Lin JY, Zhan JQ, Wang ZY. Synthesis of N-2(5H)-furanonyl sulfonyl hydrazone derivatives and their biological evaluation in vitro and in vivo activity against MCF-7 breast cancer cells. Bioorg Chem 2020; 107:104518. [PMID: 33303210 DOI: 10.1016/j.bioorg.2020.104518] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
A series of (E)-N-2(5H)-furanonyl sulfonyl hydrazone derivatives have been rationally designed and efficiently synthesized by one-pot reaction with good yields for the first time. This green approach with wide substrate range and good selectivity can be achieved at room temperature in a short time in the presence of metal-free catalyst. The cytotoxic activities against three human cancer cell lines of all newly obtained compounds have been evaluated by MTT assay. Among them, compound 5 k exhibits high cytotoxic activity against MCF-7 human breast cancer cells with an IC50 value of 14.35 μM. The cytotoxic mechanism may involve G2/M phase arrest pathway, which is probably caused by activating DNA damage. Comet test and immunofluorescence results show that compound 5 k can induce DNA damage in time- and dose-dependent manner. Importantly, 5 k also can effectively inhibit the proliferation of MCF-7 cells and angiogenesis in the zebrafish xenograft model. It is potential to further develop N-2(5H)-furanonyl sulfonyl hydrazone derivatives as potent drugs for breast cancer treatment with higher cytotoxic activity by modifying the structure of the compound.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China; College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jian-Qiong Yang
- Department of Clinical Research Center, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China.
| | - Wen-Jie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China.
| | - Jian-Yun Lin
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China
| | - Jia-Qi Zhan
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
5
|
Shitov AV, Terentyev VV, Zharmukhamedov SK, Rodionova MV, Karacan M, Karacan N, Klimov VV, Allakhverdiev SI. Is carbonic anhydrase activity of photosystem II required for its maximum electron transport rate? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:292-299. [PMID: 29410217 DOI: 10.1016/j.bbabio.2018.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/26/2018] [Indexed: 01/05/2023]
Abstract
It is known, that the multi-subunit complex of photosystem II (PSII) and some of its single proteins exhibit carbonic anhydrase activity. Previously, we have shown that PSII depletion of HCO3-/CO2 as well as the suppression of carbonic anhydrase activity of PSII by a known inhibitor of α‑carbonic anhydrases, acetazolamide (AZM), was accompanied by a decrease of electron transport rate on the PSII donor side. It was concluded that carbonic anhydrase activity was required for maximum photosynthetic activity of PSII but it was not excluded that AZM may have two independent mechanisms of action on PSII: specific and nonspecific. To investigate directly the specific influence of carbonic anhydrase inhibition on the photosynthetic activity in PSII we used another known inhibitor of α‑carbonic anhydrase, trifluoromethanesulfonamide (TFMSA), which molecular structure and physicochemical properties are quite different from those of AZM. In this work, we show for the first time that TFMSA inhibits PSII carbonic anhydrase activity and decreases rates of both the photo-induced changes of chlorophyll fluorescence yield and the photosynthetic oxygen evolution. The inhibitory effect of TFMSA on PSII photosynthetic activity was revealed only in the medium depleted of HCO3-/CO2. Addition of exogenous HCO3- or PSII electron donors led to disappearance of the TFMSA inhibitory effect on the electron transport in PSII, indicating that TFMSA inhibition site was located on the PSII donor side. These results show the specificity of TFMSA action on carbonic anhydrase and photosynthetic activities of PSII. In this work, we discuss the necessity of carbonic anhydrase activity for the maximum effectiveness of electron transport on the donor side of PSII.
Collapse
Affiliation(s)
- Alexandr V Shitov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia.
| | - Vasily V Terentyev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia
| | - Sergey K Zharmukhamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia; Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Margarita V Rodionova
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Mehmet Karacan
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey
| | - Nurcan Karacan
- Gazi University, Science Faculty, Department of Chemistry, 06500 Ankara, Turkey
| | - Vyacheslav V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia
| | - Suleyman I Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia; Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia; Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow Region 141700, Russia; Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, Baku 1073, Azerbaijan.
| |
Collapse
|
6
|
Allakhverdiev SI, Zharmukhamedov SK, Rodionova MV, Shuvalov VA, Dismukes C, Shen JR, Barber J, Samuelsson G. Vyacheslav (Slava) Klimov (1945-2017): A scientist par excellence, a great human being, a friend, and a Renaissance man. PHOTOSYNTHESIS RESEARCH 2018; 136:1-16. [PMID: 28921410 DOI: 10.1007/s11120-017-0440-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Vyacheslav Vasilevich (V.V.) Klimov (or Slava, as most of us called him) was born on January 12, 1945 and passed away on May 9, 2017. He began his scientific career at the Bach Institute of Biochemistry of the USSR Academy of Sciences (Akademy Nauk (AN) SSSR), Moscow, Russia, and then, he was associated with the Institute of Photosynthesis, Pushchino, Moscow Region, for about 50 years. He worked in the field of biochemistry and biophysics of photosynthesis. He is known for his studies on the molecular organization of photosystem II (PSII). He was an eminent scientist in the field of photobiology, a well-respected professor, and, above all, an outstanding researcher. Further, he was one of the founding members of the Institute of Photosynthesis in Pushchino, Russia. To most, Slava Klimov was a great human being. He was one of the pioneers of research on the understanding of the mechanism of light energy conversion and of water oxidation in photosynthesis. Slava had many collaborations all over the world, and he is (and will be) very much missed by the scientific community and friends in Russia as well as around the World. We present here a brief biography and some comments on his research in photosynthesis. We remember him as a friendly and enthusiastic person who had an unflagging curiosity and energy to conduct outstanding research in many aspects of photosynthesis, especially that related to PSII.
Collapse
Affiliation(s)
- Suleyman I Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276.
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - Sergey K Zharmukhamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276
| | - Margarita V Rodionova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276
| | - Vladimir A Shuvalov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Charles Dismukes
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 7008530, Japan
| | - James Barber
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Göran Samuelsson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90736, Umeå, Sweden
| |
Collapse
|
7
|
Rodionova MV, Zharmukhamedov SK, Karacan MS, Venedik KB, Shitov AV, Tunç T, Mamaş S, Kreslavski VD, Karacan N, Klimov VV, Allakhverdiev SI. Evaluation of new Cu(II) complexes as a novel class of inhibitors against plant carbonic anhydrase, glutathione reductase, and photosynthetic activity in photosystem II. PHOTOSYNTHESIS RESEARCH 2017; 133:139-153. [PMID: 28497193 DOI: 10.1007/s11120-017-0392-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Increasing inefficiency of production of important agricultural plants raises one of the biggest problems in the modern world. Herbicide application is still the best method of weed management. Traditional herbicides blocking only one of the plant metabolic pathways is ineffective due to the rapid growth of herbicide-resistant weeds. The synthesis of novel compounds effectively suppressing several metabolic processes, and therefore achieving the synergism effect would serve as the alternative approach to weed problem. For this reason, recently, we synthesized a series of nine novel Cu(II) complexes and four ligands, characterized them with different analyses techniques, and carried out their primary evaluation as inhibitors of photosynthetic electron transfer in spinach thylakoids (design, synthesis, and evaluation of a series of Cu(II) based metal-organic complexes as possible inhibitors of photosynthesis, J Photochem Photobiol B, submitted). Here, we evaluated in vitro inhibitory potency of these agents against: photochemistry and carbonic anhydrase activity of photosystem II (PSII); α-carbonic anhydrase from bovine erythrocytes; as well as glutathione reductase from chloroplast and baker's yeast. Our results show that all Cu(II) complexes excellently inhibit glutathione reductase and PSII carbonic anhydrase activity. Some of them also decently inhibit PSII photosynthetic activity.
Collapse
Affiliation(s)
- Margarita V Rodionova
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276
| | - Sergei K Zharmukhamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, Russia, 142290
| | - Mehmet Sayım Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara, Turkey
| | - Kubra Begum Venedik
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara, Turkey
| | - Alexandr V Shitov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, Russia, 142290
| | - Turgay Tunç
- Department of Chemistry and Process Engineering, Faculty of Engineering-Architecture, Ahi Evran University, Kirsehir, Turkey
| | - Serhat Mamaş
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara, Turkey
| | - Vladimir D Kreslavski
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, Russia, 142290
| | - Nurcan Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara, Turkey.
| | - Vyacheslav V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, Russia, 142290
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276.
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, Russia, 142290.
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, Russia, 119991.
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.
| |
Collapse
|
8
|
Karacan MS, Rodionova MV, Tunç T, Venedik KB, Mamaş S, Shitov AV, Zharmukhamedov SK, Klimov VV, Karacan N, Allakhverdiev SI. Characterization of nineteen antimony(III) complexes as potent inhibitors of photosystem II, carbonic anhydrase, and glutathione reductase. PHOTOSYNTHESIS RESEARCH 2016; 130:167-182. [PMID: 26932934 DOI: 10.1007/s11120-016-0236-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/12/2016] [Indexed: 05/16/2023]
Abstract
Nineteen antimony(III) complexes were obtained and examined as possible herbicides. Six of these were synthesized for the first time, and their structures were identified using elemental analyses, 1H-NMR, 13C-NMR, FTIR, LCMS, magnetic susceptibility, and conductivity measurement techniques. For the nineteen examined antimony(III) complexes their most-stable forms were determined by DFT/B3LYP/LanL2DZ calculation method. These compounds were examined for effects on photosynthetic electron transfer and carbonic anhydrase activity of photosystem II, and glutathione reductase from chloroplast as well were investigated. Our results indicated that all antimony(III) complexes inhibited glutathione reductase activity of chloroplast. A number of these also exhibited good inhibitory efficiency of the photosynthetic and carbonic anhydrase activity of Photosystem II.
Collapse
Affiliation(s)
- Mehmet Sayım Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara, Turkey.
| | - Margarita V Rodionova
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276
| | - Turgay Tunç
- Department of Chemistry and Process Engineering, Engineering and Architecture Faculty, Ahi Evran University, Kırşehir, Turkey
| | - Kübra Begüm Venedik
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara, Turkey
| | - Serhat Mamaş
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara, Turkey
| | - Alexandr V Shitov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, Russia, 142290
| | - Sergei K Zharmukhamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, Russia, 142290
| | - Vyacheslav V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, Russia, 142290
| | - Nurcan Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara, Turkey.
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276.
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, Russia, 142290.
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, Russia, 119991.
| |
Collapse
|
9
|
New photosensitizers containing the dipyridoquinoxaline moiety and their use in dye-sensitized solar cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:14-25. [DOI: 10.1016/j.jphotobiol.2014.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 11/20/2022]
|
10
|
Shahroosvand H, Najafi L, Khanmirzaei L, Tarighi S. Artificial photosynthesis based on ruthenium(II) tetrazole-dye-sensitized nanocrystalline TiO2 solar cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:4-13. [DOI: 10.1016/j.jphotobiol.2015.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 12/28/2022]
|