1
|
Karumannil S, Khan TA, Kappachery S, Gururani MA. Impact of Exogenous Melatonin Application on Photosynthetic Machinery under Abiotic Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2948. [PMID: 37631160 PMCID: PMC10458501 DOI: 10.3390/plants12162948] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
Inhospitable conditions that hinder plant growth and development encompass a range of abiotic stresses, such as drought, extreme temperatures (both low and high), salinity, exposure to heavy metals, and irradiation. The cumulative impact of these stresses leads to a considerable reduction in agricultural productivity worldwide. The generation of reactive oxygen species (ROS) is a shared mechanism of toxicity induced by all these abiotic stimuli in plants, resulting in oxidative damage and membrane instability. Extensive research has shed light on the dual role of melatonin in plants, where it serves as both a growth regulator, fostering growth and development, and a potent protector against abiotic stresses. The inherent potential of melatonin to function as a natural antioxidant positions it as a promising biostimulant for agricultural use, bolstering plants' abilities to withstand a wide array of environmental challenges. Beyond its antioxidant properties, melatonin has demonstrated its capacity to regulate the expression of genes associated with the photosynthetic process. This additional characteristic enhances its appeal as a versatile chemical agent that can be exogenously applied to plants, particularly in adverse conditions, to improve their resilience and optimize photosynthetic efficiency in every phase of the plant life cycle. An examination of the molecular mechanisms underlying the stress-protective effects of exogenous melatonin on the photosynthetic machinery of plants under various abiotic stresses is presented in this paper. In addition, future prospects are discussed for developing stress-tolerant crops for sustainable agriculture in challenging environments.
Collapse
Affiliation(s)
| | | | | | - Mayank Anand Gururani
- Biology Department, College of Science, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Dlouhý O, Karlický V, Arshad R, Zsiros O, Domonkos I, Kurasová I, Wacha AF, Morosinotto T, Bóta A, Kouřil R, Špunda V, Garab G. Lipid Polymorphism of the Subchloroplast-Granum and Stroma Thylakoid Membrane-Particles. II. Structure and Functions. Cells 2021; 10:2363. [PMID: 34572012 PMCID: PMC8472583 DOI: 10.3390/cells10092363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 12/22/2022] Open
Abstract
In Part I, by using 31P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (HII) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments-in line with the low susceptibility of the bilayer against the same treatment, as reflected by our 31P-NMR spectroscopy. Signatures of HII-phase could not be discerned with small-angle X-ray scattering-but traces of HII structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts.
Collapse
Affiliation(s)
- Ondřej Dlouhý
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
| | - Václav Karlický
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Rameez Arshad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic; (R.A.); (R.K.)
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Ottó Zsiros
- Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; (O.Z.); (I.D.)
| | - Ildikó Domonkos
- Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; (O.Z.); (I.D.)
| | - Irena Kurasová
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - András F. Wacha
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, 1117 Budapest, Hungary; (A.F.W.); (A.B.)
| | | | - Attila Bóta
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, 1117 Budapest, Hungary; (A.F.W.); (A.B.)
| | - Roman Kouřil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic; (R.A.); (R.K.)
| | - Vladimír Špunda
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Győző Garab
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; (O.Z.); (I.D.)
| |
Collapse
|
3
|
Zeng C, Jia T, Gu T, Su J, Hu X. Progress in Research on the Mechanisms Underlying Chloroplast-Involved Heat Tolerance in Plants. Genes (Basel) 2021; 12:genes12091343. [PMID: 34573325 PMCID: PMC8471720 DOI: 10.3390/genes12091343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
Global warming is a serious challenge plant production has to face. Heat stress not only affects plant growth and development but also reduces crop yield and quality. Studying the response mechanisms of plants to heat stress will help humans use these mechanisms to improve the heat tolerance of plants, thereby reducing the harm of global warming to plant production. Research on plant heat tolerance has gradually become a hotspot in plant molecular biology research in recent years. In view of the special role of chloroplasts in the response to heat stress in plants, this review is focusing on three perspectives related to chloroplasts and their function in the response of heat stress in plants: the role of chloroplasts in sensing high temperatures, the transmission of heat signals, and the improvement of heat tolerance in plants. We also present our views on the future direction of research on chloroplast related heat tolerance in plants.
Collapse
Affiliation(s)
- Chu Zeng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (T.G.); (J.S.)
| | - Ting Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Tongyu Gu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (T.G.); (J.S.)
| | - Jinling Su
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (T.G.); (J.S.)
| | - Xueyun Hu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (T.G.); (J.S.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
4
|
Karlický V, Kmecová Materová Z, Kurasová I, Nezval J, Štroch M, Garab G, Špunda V. Accumulation of geranylgeranylated chlorophylls in the pigment-protein complexes of Arabidopsis thaliana acclimated to green light: effects on the organization of light-harvesting complex II and photosystem II functions. PHOTOSYNTHESIS RESEARCH 2021; 149:233-252. [PMID: 33948813 PMCID: PMC8382614 DOI: 10.1007/s11120-021-00827-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Light quality significantly influences plant metabolism, growth and development. Recently, we have demonstrated that leaves of barley and other plant species grown under monochromatic green light (500-590 nm) accumulated a large pool of chlorophyll a (Chl a) intermediates with incomplete hydrogenation of their phytyl chains. In this work, we studied accumulation of these geranylgeranylated Chls a and b in pigment-protein complexes (PPCs) of Arabidopsis plants acclimated to green light and their structural-functional consequences on the photosynthetic apparatus. We found that geranylgeranylated Chls are present in all major PPCs, although their presence was more pronounced in light-harvesting complex II (LHCII) and less prominent in supercomplexes of photosystem II (PSII). Accumulation of geranylgeranylated Chls hampered the formation of PSII and PSI super- and megacomplexes in the thylakoid membranes as well as their assembly into chiral macrodomains; it also lowered the temperature stability of the PPCs, especially that of LHCII trimers, which led to their monomerization and an anomaly in the photoprotective mechanism of non-photochemical quenching. Role of geranylgeranylated Chls in adverse effects on photosynthetic apparatus of plants acclimated to green light is discussed.
Collapse
Affiliation(s)
- Václav Karlický
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| | - Zuzana Kmecová Materová
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Irena Kurasová
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Michal Štroch
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Győző Garab
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Biological Research Center, Institute of Plant Biology, Temesvári körút 62, 6726, Szeged, Hungary.
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Wang J, Yu LJ, Wang W, Yan Q, Kuang T, Qin X, Shen JR. Structure of plant photosystem I-light harvesting complex I supercomplex at 2.4 Å resolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1367-1381. [PMID: 33788400 DOI: 10.1111/jipb.13095] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/14/2021] [Indexed: 05/19/2023]
Abstract
Photosystem I (PSI) is one of the two photosystems in photosynthesis, and performs a series of electron transfer reactions leading to the reduction of ferredoxin. In higher plants, PSI is surrounded by four light-harvesting complex I (LHCI) subunits, which harvest and transfer energy efficiently to the PSI core. The crystal structure of PSI-LHCI supercomplex has been analyzed up to 2.6 Å resolution, providing much information on the arrangement of proteins and cofactors in this complicated supercomplex. Here we have optimized crystallization conditions, and analyzed the crystal structure of PSI-LHCI at 2.4 Å resolution. Our structure showed some shift of the LHCI, especially the Lhca4 subunit, away from the PSI core, suggesting the indirect connection and inefficiency of energy transfer from this Lhca subunit to the PSI core. We identified five new lipids in the structure, most of them are located in the gap region between the Lhca subunits and the PSI core. These lipid molecules may play important roles in binding of the Lhca subunits to the core, as well as in the assembly of the supercomplex. The present results thus provide novel information for the elucidation of the mechanisms for the light-energy harvesting, transfer and assembly of this supercomplex.
Collapse
Affiliation(s)
- Jie Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiujing Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
6
|
Crepin A, Kučerová Z, Kosta A, Durand E, Caffarri S. Isolation and characterization of a large photosystem I-light-harvesting complex II supercomplex with an additional Lhca1-a4 dimer in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:398-409. [PMID: 31811681 DOI: 10.1111/tpj.14634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 05/24/2023]
Abstract
The biological conversion of light energy into chemical energy is performed by a flexible photosynthetic machinery located in the thylakoid membranes. Photosystems I and II (PSI and PSII) are the two complexes able to harvest light. PSI is the last complex of the electron transport chain and is composed of multiple subunits: the proteins building the catalytic core complex that are well conserved between oxygenic photosynthetic organisms, and, in green organisms, the membrane light-harvesting complexes (Lhc) necessary to increase light absorption. In plants, four Lhca proteins (Lhca1-4) make up the antenna system of PSI, which can be further extended to optimize photosynthesis by reversible binding of LHCII, the main antenna complex of photosystem II. Here, we used biochemistry and electron microscopy in Arabidopsis to reveal a previously unknown supercomplex of PSI with LHCII that contains an additional Lhca1-a4 dimer bound on the PsaB-PsaI-PsaH side of the complex. This finding contradicts recent structural studies suggesting that the presence of an Lhca dimer at this position is an exclusive feature of algal PSI. We discuss the features of the additional Lhca dimer in the large plant PSI-LHCII supercomplex and the differences with the algal PSI. Our work provides further insights into the intricate structural plasticity of photosystems.
Collapse
Affiliation(s)
- Aurélie Crepin
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - Zuzana Kučerová
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Artemis Kosta
- Microscopy Core Facility, Institut de Microbiologie de la Méditerranée (IMM), FR3479, CNRS, Aix-Marseille University, Marseille, France
| | - Eric Durand
- Aix-Marseille Université, CNRS, Institut de Microbiologie de la Méditerranée (IMM), Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), UMR 7255, 13402, Marseille cedex 09, France
| | - Stefano Caffarri
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France
| |
Collapse
|
7
|
Yu D, Lan J, Khan NU, Li Q, Xu F, Huang G, Xu H, Huang F. The in vitro synergistic denaturation effect of heat and surfactant on photosystem I isolated from Arthrospira Platensis. PHOTOSYNTHESIS RESEARCH 2019; 141:229-243. [PMID: 30725234 DOI: 10.1007/s11120-019-00623-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Photosystem I (PSI) generates the most negative redox potential found in nature, and the performance of solar energy conversion into alternative energy sources in artificial systems highly depends on the thermal stability of PSI. Thus, understanding thermal denaturation is an important prerequisite for the use of PSI at elevated temperatures. To assess the thermal stability of surfactant-solubilized PSI from cyanobacteria Arthrospira Platensis, the synergistic denaturation effect of heat and surfactant was studied. At room temperature, surfactant n-dodecyl-β-D-maltoside solubilized PSI trimer gradually disassembles into PSI monomers and free pigments over long time. In the solubilizing process of PSI particles, surfactant can uncouple pigments of PSI, and the high concentration of surfactant causes the pigment to uncouple more; after the surfactant-solubilizing process, the uncoupling is relatively slow. During the heating process, changes were monitored by transmittance T800nm, ellipticity θ686nm and θ222nm, upon slow heating (1.5 °C per minute) of samples in Tris buffer (20 mM, pH 7.8) from 20 to 95 °C. The thermal denaturation of surfactant-solubilized PSI is a much more complicated process, which includes the uncoupling of pigments by surfactants, the disappearance of surrounding surfactants, and the unfolding of PSI α-helices. During the heating process, the uncoupling chlorophyll a (Chla) and converted pheophytin (Pheo) can form excitons of Chla-Pheo. The secondary structure α-helix of PSI proteins is stable up to 87-92 °C in the low-concentration surfactant solubilized PSI, and high-concentration surfactant and pigments uncoupling can accelerate the α-helical unfolding.
Collapse
Affiliation(s)
- Daoyong Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Jinxiao Lan
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Naseer Ullah Khan
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Quan Li
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Fengxi Xu
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Guihong Huang
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| |
Collapse
|
8
|
Madireddi SK, Nama S, Devadasu E, Subramanyam R. Thylakoid membrane dynamics and state transitions in Chlamydomonas reinhardtii under elevated temperature. PHOTOSYNTHESIS RESEARCH 2019; 139:215-226. [PMID: 30030686 DOI: 10.1007/s11120-018-0562-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Moderately elevated temperatures can induce state transitions in higher plants by phosphorylation of light-harvesting complex II (LHCII). In this study, we exposed unicellular algae Chlamydomonas reinhardtii to moderately elevated temperatures (38 °C) for short period of time in the dark to understand the thylakoid membrane dynamics and state transition mechanism. Here we report that under elevated temperatures (1) LHCII gets phosphorylated similar to higher plants and (2) there is decreased absorption cross section of photosystem II (PSII), whereas (3) there is no change in absorption cross section of photosystem I (PSI) indicating that LHCII trimers are largely disconnected with both photosystems under moderately elevated temperatures and (4) on return to room temperature after elevated temperature treatment there is a formation of state transition complex comprising of PSII-LHCII-PSI. The temperature-induced state transition mechanism also depends on stt7 kinase-like in light-induced state transition. The protein content was stable at the moderately elevated temperature treatment of 40 °C; however, at 45 °C severe downregulation in photosynthetic performance and protein content was observed. In addition to the known changes to photosynthetic apparatus, elevated temperatures can destabilize the PSII-LHCII complex that can result in decreased photosynthetic efficiency in C. reinhardtii. We concluded that the membrane dynamics of light-induced state transitions differs considerably from temperature-induced state transition mechanisms in C. reinhardtii.
Collapse
Affiliation(s)
- Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Srilatha Nama
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
9
|
Ivanov AG, Velitchkova MY, Allakhverdiev SI, Huner NPA. Heat stress-induced effects of photosystem I: an overview of structural and functional responses. PHOTOSYNTHESIS RESEARCH 2017; 133:17-30. [PMID: 28391379 DOI: 10.1007/s11120-017-0383-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/03/2017] [Indexed: 05/24/2023]
Abstract
Temperature is one of the main factors controlling the formation, development, and functional performance of the photosynthetic apparatus in all photoautotrophs (green plants, algae, and cyanobacteria) on Earth. The projected climate change scenarios predict increases in air temperature across Earth's biomes ranging from moderate (3-4 °C) to extreme (6-8 °C) by the year 2100 (IPCC in Climate change 2007: The physical science basis: summery for policymakers, IPCC WG1 Fourth Assessment Report 2007; Climate change 2014: Mitigation of Climate Change, IPCC WG3 Fifth Assessment Report 2014). In some areas, especially of the Northern hemisphere, even more extreme warm seasonal temperatures may occur, which possibly will cause significant negative effects on the development, growth, and yield of important agricultural crops. It is well documented that high temperatures can cause direct damages of the photosynthetic apparatus and photosystem II (PSII) is generally considered to be the primary target of heat-induced inactivation of photosynthesis. However, since photosystem I (PSI) is considered to determine the global amount of enthalpy in living systems (Nelson in Biochim Biophys Acta 1807:856-863, 2011; Photosynth Res 116:145-151, 2013), the effects of elevated temperatures on PSI might be of vital importance for regulating the photosynthetic response of all photoautotrophs in the changing environment. In this review, we summarize the experimental data that demonstrate the critical impact of heat-induced alterations on the structure, composition, and functional performance of PSI and their significant implications on photosynthesis under future climate change scenarios.
Collapse
Affiliation(s)
- Alexander G Ivanov
- Department of Biology, University of Western Ontario, 1151 Richmond Street N., London, ON, N6A 5B7, Canada.
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bl. 21, 1113, Sofia, Bulgaria.
| | - Maya Y Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bl. 21, 1113, Sofia, Bulgaria
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow, 142290, Russia
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, 1073, Baku, Azerbaijan
| | - Norman P A Huner
- Department of Biology, University of Western Ontario, 1151 Richmond Street N., London, ON, N6A 5B7, Canada
| |
Collapse
|
10
|
Garab G. Self-assembly and structural-functional flexibility of oxygenic photosynthetic machineries: personal perspectives. PHOTOSYNTHESIS RESEARCH 2016; 127:131-50. [PMID: 26494196 DOI: 10.1007/s11120-015-0192-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 05/24/2023]
Abstract
This short review, with a bit of historical aspect and a strong personal bias and emphases on open questions, is focusing on the (macro-)organization and structural-functional flexibilities of the photosynthetic apparatus of oxygenic photosynthetic organisms at different levels of the structural complexity-selected problems that have attracted most my attention in the past years and decades. These include (i) the anisotropic organization of the pigment-protein complexes and photosynthetic membranes-a basic organizing principle of living matter, which can, and probably should be adopted to intelligent materials; (ii) the organization of protein complexes into chiral macrodomains, large self-assembling highly organized but structurally flexible entities with unique spectroscopic fingerprints-structures, where, important, high-level regulatory functions appear to 'reside'; (iii) a novel, dissipation-assisted mechanism of structural changes, based on a thermo-optic effect: ultrafast thermal transients in the close vicinity of dissipation of unused excitation energy, which is capable of inducing elementary structural changes; it makes plants capable of responding to excess excitation with reaction rates proportional to the overexcitation above the light-saturation of photosynthesis; (iv) the 3D ultrastructure of the granum-stroma thylakoid membrane assembly and other multilamellar membrane systems, and their remodelings-associated with regulatory mechanisms; (v) the molecular organization and structural-functional plasticity of the main light-harvesting complex of plants, in relation to their crystal structure and different in vivo and in vitro states; and (vi) the enigmatic role of non-bilayer lipids and lipid phases in the bilayer thylakoid membrane-warranting its high protein content and contributing to its structural flexibility.
Collapse
|
11
|
Gururani MA, Venkatesh J, Tran LSP. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition. MOLECULAR PLANT 2015; 8:1304-20. [PMID: 25997389 DOI: 10.1016/j.molp.2015.05.005] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 05/18/2023]
Abstract
Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress.
Collapse
Affiliation(s)
| | - Jelli Venkatesh
- Department of Bioresource and Food Science, Konkuk University, Seoul 143-701, Korea
| | - Lam Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
12
|
Hasni I, Msilini N, Hamdani S, Tajmir-Riahi HA, Carpentier R. Characterization of the structural changes and photochemical activity of photosystem I under Al(3+) effect. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 149:292-9. [PMID: 26123191 DOI: 10.1016/j.jphotobiol.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/08/2015] [Accepted: 06/14/2015] [Indexed: 11/27/2022]
Abstract
The photochemical activity of photosystem I (PSI) as affected by Al(3+) was investigated in thylakoid membranes and PSI submembrane fractions isolated from spinach. Biophysical and biochemical techniques such as oxygen uptake, light induced absorbance changes at 820nm, chlorophyll fluorescence emission, SDS-polyacrylamide gel electrophoresis, and FTIR spectroscopy have been used to analyze the sites and action modes of this cation on the PSI complex. Our results showed that Al(3+) above 3mM induces changes in the redox state of P700 reflected by an increase of P700 photooxidation phase and a delay of the slower rate of P700 re-reduction which reveals that Al(3+) exerted an inhibitory action at the donor side of PSI especially at plastocyanin (PC). Furthermore, results of P700 photooxidation monitored in the presence of DCMU with or without MV suggested that the same range of Al(3+) concentrations impairs the photochemical reaction centers (RC) of PSI, as shown by the decline in the amount of active population of P700, and disrupts the charge separation between P700 and the primary electron acceptor A0 leading to the inhibition of electron transfer at the acceptor side of PSI. These inhibitory actions were also accompanied by an impairment of the energy transfer from light harvesting complex (LHCI) to RC of PSI, following the disconnection of LHCI antenna as illustrated by an enhancement of chlorophyll fluorescence emission spectra at low temperature (77K). The above results coincided with FTIR measurements that indicated a conformational change of the protein secondary structures in PSI complex where 25% of α-helix was converted into β-sheet, β-antiparallel and turn structures. These structural changes in PSI complex proteins are closely related with the alteration photochemical activity of PSI including the inhibition of the electron transport through both acceptor and donor sides of PSI.
Collapse
Affiliation(s)
- Imed Hasni
- Groupe de Recherche en Biologie Végétale, Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Qc G9A 5H7, Canada
| | - Najoua Msilini
- Laboratory of Physiology and Biochemistry of Salt Tolerance in Plants, Faculty of Sciences of Tunis, Campus University, 1060, Tunisia
| | - Saber Hamdani
- Plant Systems Biology Group, Partner Institute of Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heidar-Ali Tajmir-Riahi
- Groupe de Recherche en Biologie Végétale, Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Qc G9A 5H7, Canada
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale, Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Qc G9A 5H7, Canada.
| |
Collapse
|