1
|
Singh A, Singh B, Verma S. Manganese-Based Metal-Organic Frameworks and Their Derivatives for Electrochemical Water Splitting: Recent Advances and Future Outlook. Chem Asian J 2025; 20:e202401522. [PMID: 40019323 DOI: 10.1002/asia.202401522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/01/2025]
Abstract
Metal-organic frameworks (MOFs) and their derivatives have recently attracted significant interest as promising candidates in water splitting due to their well-defined structural and electronic features, three-dimensional architecture, high surface area, abundance of active sites, remarkable stability, and improved capabilities for mass transport and diffusion. Mn-based MOFs and their derivatives have been extensively studied and demonstrated significant potential in water splitting, inspired largely by the natural photosystem-II. Despite the development of numerous Mn-based electrocatalysts, Mn-MOFs stand out due to their strong synergistic interactions, tunable electronic properties, efficient charge and mass transfer, and straightforward synthesis. However, recent reviews on MOFs have largely overlooked the specific advancements in Mn-MOFs and their derivatives for water-splitting applications. By providing an overview of the uses of Mn-MOFs and their materials, this article seeks to close that gap. It looks at their stability, porosity, and structure as well as how they are used in water splitting. This study offers a deeper knowledge of the properties and uses of Mn-MOFs and their related materials by drawing on groundbreaking research. The link between structure, property, and performance is examined, current advancements in the subject are discussed, difficulties faced are addressed, and potential future developments are taken into account.
Collapse
Affiliation(s)
- Amrendra Singh
- Department of Chemistry, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, 123031, India
| | - Baghendra Singh
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Smriti Verma
- Department of Chemistry, Kisan Post-Graduate College, Bahraich, Uttar Pradesh, 271801, India
| |
Collapse
|
2
|
Rajput A, Nayak PK, Ghosh D, Chakraborty B. Structural and Electronic Factors behind the Electrochemical Stability of 3D-Metal Tungstates under Oxygen Evolution Reaction Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28756-28770. [PMID: 38785123 DOI: 10.1021/acsami.4c07301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Transition metal tungstates (TMTs) possess a wolframite-like lattice structure and preferably form via an electrostatic interaction between a divalent transition metal cation (MII) and an oxyanion of tungsten ([WO4]2-). A unit cell of a TMT is primarily composed of two repeating units, [MO6]oh and [WO6]oh, which are held together via several M-μ2-O-W bridging links. The bond character (ionic or covalent) of this bridging unit determines the stability of the lattice and influences the electronic structure of the bulk TMT materials. Recently, TMTs have been successfully employed as an electrode material for various applications, including electrochemical water splitting. Despite the wide electrocatalytic applications of TMTs, the study of the structure-activity correlation and electronic factors responsible for in situ structural evolution to electroactive species during electrochemical reactions is still in its infancy. Herein, a series of TMTs, MIIWVIO4 (M = Mn/Fe/Co/Ni), have been prepared and employed as electrocatalysts to study the oxygen evolution reaction (OER) under alkaline conditions and to scrutinize the role of transition metals in controlling the energetics of the formation of electroactive species. Since the [WO6]oh unit is common in the TMTs considered, the variation of the central atom of the corresponding [MO6]oh unit plays an intriguing role in controlling the electronic structure and stability of the lattice under anodic potential. Under the OER conditions, a potential-dependent structural transformation of MWO4 is noticed, where MnWO4 appears to be the most labile, whereas NiWO4 is stable up to a high anodic potential of ∼1.68 V (vs RHE). Potential-dependent hydrolytic [WO4]2- dissolution to form MOx active species, traced by in situ Raman and various spectro-/microscopic analyses, can directly be related to the electronic factors of the lattice, viz., crystal field splitting energy (CFSE) of MII in [MO6]oh, formation enthalpy (ΔHf), decomposition enthalpy (ΔHd), and Madelung factor associated with the MWO4 ionic lattice. Additionally, the magnitude of the Löwdin and Bader charges on M of the M-μ2-O-W bond is directly related to the degree of ionicity or covalency in the MWO4 lattice, which indirectly influences the electronic structure and activity. The experimental results substantiated by the computational study explain the electrochemical activity of the TMTs with the help of various structural and electronic factors and bonding interactions in the lattice, which has never been realized. Therefore, the study presented here can be taken as a general guideline to correlate the reactivity to the structure of the inorganic materials.
Collapse
Affiliation(s)
- Anubha Rajput
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Pabitra Kumar Nayak
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Dibyajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| |
Collapse
|
3
|
Sa YJ, Kim S, Lee Y, Kim JM, Joo SH. Mesoporous Manganese Oxides with High-Valent Mn Species and Disordered Local Structures for Efficient Oxygen Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37339373 DOI: 10.1021/acsami.3c03358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Active and nonprecious-metal bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are vital components of clean energy conversion devices such as regenerative fuel cells and rechargeable metal-air batteries. Porous manganese oxides (MnOx) are promising electrocatalyst candidates because of their high surface area and the abundance of Mn. MnOx catalysts exhibit various oxidation states and crystal structures, which critically affect their electrocatalytic activity. These effects remain elusive mainly because the synthesis of oxidation-state-controlled porous MnOx with similar structural properties is challenging. In this work, four different mesoporous manganese oxides (m-MnOx) were synthesized and used as model catalysts to investigate the effects of local structures and Mn valence states on the activity toward oxygen electrocatalysis. The following activity trends were observed: m-Mn2O3 > m-MnO2 > m-MnO > m-Mn3O4 for the ORR and m-MnO2 > m-Mn2O3 > m-MnO ≈ m-Mn3O4 for the OER. These activity trends suggest that high-valent Mn species (Mn(III) and Mn(IV)) with disordered atomic arrangements induced by nanostructuring significantly influence electrocatalysis. In situ X-ray absorption spectroscopy was used to analyze the changes in the oxidation states under the ORR and OER conditions, which showed the surface phase transformation and generation of active species during electrocatalysis.
Collapse
Affiliation(s)
- Young Jin Sa
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sohee Kim
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yesol Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Ji Man Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Walter C, Beltrán-Suito R, Schwarze M, Gupta NK, Menezes PW, Driess M. Elemental chalcogens acting as metal-free electrocatalysts for effective alkaline and acidic hydrogen evolution reaction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Effect of Potassium Promoter on the Performance of Nickel-Based Catalysts Supported on MnOx in Steam Reforming of Ethanol. Catalysts 2022. [DOI: 10.3390/catal12060600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The effect of a potassium promoter on the stability of and resistance to a carbon deposit formation on the Ni/MnOx catalyst under SRE conditions was studied at 420 °C for different H2O/EtOH molar ratios in the range from 4/1 to 12/1. The catalysts were prepared by the impregnation method and characterized using several techniques to study their textural, structural, and redox properties before being tested in a SRE reaction. The catalytic tests indicated that the addition of a low amount of potassium (1.6 wt.%) allows a catalyst with high stability to be obtained, which was ascribed to high resistance to carbon formation. The restriction of the amount of carbon deposits originates from the potassium presence on the Ni surface, which leads to (i) a decrease in the number of active sites available for methane decomposition and (ii) an increase in the rate of the steam gasification of carbon formed during SRE reactions.
Collapse
|
6
|
Tavar D, Kamlesh K, Prakash S, Kumar P, Raizada P, Srivastava AK, Singh A, Sharma RK. Investigation of Li-excess Manganese Oxide Spinel Structure for Electrochemical Water Oxidation Catalysis. Dalton Trans 2022; 51:12558-12568. [DOI: 10.1039/d2dt01964g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid development of efficient and cost-effective catalysts is essential for oxygen evolution reaction. Herein, nanostructured spinels LiMn2O4, delithiated λ-MnO2, and Li4Mn5O12 have been synthesized at low temperature and are...
Collapse
|
7
|
Singh B, Singh A, Yadav A, Indra A. Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Menezes PW, Walter C, Chakraborty B, Hausmann JN, Zaharieva I, Frick A, von Hauff E, Dau H, Driess M. Combination of Highly Efficient Electrocatalytic Water Oxidation with Selective Oxygenation of Organic Substrates using Manganese Borophosphates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004098. [PMID: 33491823 PMCID: PMC11468780 DOI: 10.1002/adma.202004098] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/09/2020] [Indexed: 06/12/2023]
Abstract
One of the key catalytic reactions for life on earth, the oxidation of water to molecular oxygen, occurs in the oxygen-evolving complex of the photosystem II (PSII) mediated by a manganese-containing cluster. Considerable efforts in this research area embrace the development of efficient artificial manganese-based catalysts for the oxygen evolution reaction (OER). Using artificial OER catalysts for selective oxygenation of organic substrates to produce value-added chemicals is a worthwhile objective. However, unsatisfying catalytic performance and poor stability have been a fundamental bottleneck in the field of artificial PSII analogs. Herein, for the first time, a manganese-based anode material is developed and paired up for combining electrocatalytic water oxidation and selective oxygenations of organics delivering the highest efficiency reported to date. This can be achieved by employing helical manganese borophosphates, representing a new class of materials. The uniquely high catalytic activity and durability (over 5 months) of the latter precursors in alkaline media are attributed to its unexpected surface transformation into an amorphous MnOx phase with a birnessite-like short-range order and surface-stabilized MnIII sites under extended electrical bias, as unequivocally demonstrated by a combination of in situ Raman and quasi in situ X-ray absorption spectroscopy as well as ex situ methods.
Collapse
Affiliation(s)
- Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C2Berlin10623Germany
| | - Carsten Walter
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C2Berlin10623Germany
| | - Biswarup Chakraborty
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C2Berlin10623Germany
| | - Jan Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C2Berlin10623Germany
| | - Ivelina Zaharieva
- Fachbereich PhysikFreie Universität BerlinArnimallee 14Berlin14195Germany
| | - Achidi Frick
- Department of Physics and AstronomyVrije Universiteit AmsterdamDe Boelelaan 1081Amsterdam1081 HVThe Netherlands
| | - Elizabeth von Hauff
- Department of Physics and AstronomyVrije Universiteit AmsterdamDe Boelelaan 1081Amsterdam1081 HVThe Netherlands
| | - Holger Dau
- Fachbereich PhysikFreie Universität BerlinArnimallee 14Berlin14195Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C2Berlin10623Germany
| |
Collapse
|
9
|
Ou H, Xie Q, Yang Q, Zhou J, Zeb A, Lin X, Chen X, Reddy RCK, Ma G. Cobalt-based metal–organic frameworks as functional materials for battery applications. CrystEngComm 2021. [DOI: 10.1039/d1ce00638j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Research progress on cobalt-based metal–organic frameworks as functional materials for battery applications has been presented.
Collapse
Affiliation(s)
- Hong Ou
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Qiongyi Xie
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Qingyun Yang
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Jianen Zhou
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Akif Zeb
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Xiaoming Lin
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Xinli Chen
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - R. Chenna Krishna Reddy
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Guozheng Ma
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| |
Collapse
|
10
|
Singh B, Indra A. Role of redox active and redox non-innocent ligands in water splitting. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Singh B, Indra A. Designing Self‐Supported Metal‐Organic Framework Derived Catalysts for Electrochemical Water Splitting. Chem Asian J 2020; 15:607-623. [DOI: 10.1002/asia.201901810] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Baghendra Singh
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi Uttar Pradesh 221005 India
| | - Arindam Indra
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
12
|
Menezes PW, Walter C, Hausmann JN, Beltrán‐Suito R, Schlesiger C, Praetz S, Yu. Verchenko V, Shevelkov AV, Driess M. Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach. Angew Chem Int Ed Engl 2019; 58:16569-16574. [PMID: 31483557 PMCID: PMC6899514 DOI: 10.1002/anie.201909904] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 11/30/2022]
Abstract
For the first time, the manganese gallide (MnGa4 ) served as an intermetallic precursor, which upon in situ electroconversion in alkaline media produced high-performance and long-term-stable MnOx -based electrocatalysts for water oxidation. Unexpectedly, its electrocorrosion (with the concomitant loss of Ga) leads simultaneously to three crystalline types of MnOx minerals with distinct structures and induced defects: birnessite δ-MnO2 , feitknechtite β-MnOOH, and hausmannite α-Mn3 O4 . The abundance and intrinsic stabilization of MnIII /MnIV active sites in the three MnOx phases explains the superior efficiency and durability of the system for electrocatalytic water oxidation. After electrophoretic deposition of the MnGa4 precursor on conductive nickel foam (NF), a low overpotential of 291 mV, comparable to that of precious-metal-based catalysts, could be achieved at a current density of 10 mA cm-2 with a durability of more than five days.
Collapse
Affiliation(s)
- Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Carsten Walter
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Jan Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Rodrigo Beltrán‐Suito
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Christopher Schlesiger
- Institute of Optics and Atomic PhysicsTechnische Universität BerlinHardenbergstraße 3610623BerlinGermany
| | - Sebastian Praetz
- Institute of Optics and Atomic PhysicsTechnische Universität BerlinHardenbergstraße 3610623BerlinGermany
| | | | | | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| |
Collapse
|
13
|
Menezes PW, Walter C, Hausmann JN, Beltrán‐Suito R, Schlesiger C, Praetz S, Yu. Verchenko V, Shevelkov AV, Driess M. Steigerung der Wasseroxidation durch In‐situ‐Elektrokonversion eines Mangangallids: Ein intermetallischer Vorläuferansatz. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Prashanth W. Menezes
- Institut für Chemie: Metallorganische Chemie und Anorganische MaterialienTechnische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Deutschland
| | - Carsten Walter
- Institut für Chemie: Metallorganische Chemie und Anorganische MaterialienTechnische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Deutschland
| | - Jan Niklas Hausmann
- Institut für Chemie: Metallorganische Chemie und Anorganische MaterialienTechnische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Deutschland
| | - Rodrigo Beltrán‐Suito
- Institut für Chemie: Metallorganische Chemie und Anorganische MaterialienTechnische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Deutschland
| | - Christopher Schlesiger
- Institut für Optik und Atomare PhysikTechnische Universität Berlin Hardenbergstraße 36 10623 Berlin Deutschland
| | - Sebastian Praetz
- Institut für Optik und Atomare PhysikTechnische Universität Berlin Hardenbergstraße 36 10623 Berlin Deutschland
| | | | | | - Matthias Driess
- Institut für Chemie: Metallorganische Chemie und Anorganische MaterialienTechnische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Deutschland
| |
Collapse
|
14
|
Dutta S, Liu Z, Han H, Indra A, Song T. Electrochemical Energy Conversion and Storage with Zeolitic Imidazolate Framework Derived Materials: A Perspective. ChemElectroChem 2018. [DOI: 10.1002/celc.201801144] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Soumen Dutta
- Department of Energy Engineering; Hanyang University; Seoul 133-791 Republic of Korea
- The Research Institute of Industrial Science; Hanyang University; Seoul 133-791 Republic of Korea
| | - Zhiming Liu
- Department of Energy Engineering; Hanyang University; Seoul 133-791 Republic of Korea
| | - HyukSu Han
- Korea Institute of Industrial Technology, 137-41 Gwahakdanji-ro, Gangneung-si; Gangwon 25440 Republic of Korea
| | - Arindam Indra
- Department of Chemistry; Indian Institute of Technology (Banaras Hindu University) Varanasi; Uttar Pradesh- 221005 India
| | - Taeseup Song
- Department of Energy Engineering; Hanyang University; Seoul 133-791 Republic of Korea
| |
Collapse
|
15
|
Indra A, Menezes PW, Driess M. Photocatalytic and photosensitized water splitting: A plea for well-defined and commonly accepted protocol. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Indra A, Song T, Paik U. Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705146. [PMID: 29984451 DOI: 10.1002/adma.201705146] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/30/2017] [Indexed: 06/08/2023]
Abstract
Exploring new materials with high efficiency and durability is the major requirement in the field of sustainable energy conversion and storage systems. Numerous techniques have been developed in last three decades to enhance the efficiency of the catalyst systems, control over the composition, structure, surface area, pore size, and moreover morphology of the particles. In this respect, metal organic framework (MOF) derived catalysts are emerged as the finest materials with tunable properties and activities for the energy conversion and storage. Recently, several nano- or microstructures of metal oxides, chalcogenides, phosphides, nitrides, carbides, alloys, carbon materials, or their hybrids are explored for the electrochemical energy conversion like oxygen evolution, hydrogen evolution, oxygen reduction, or battery materials. Interest on the efficient energy storage system is also growing looking at the practical applications. Though, several reviews are available on the synthesis and application of MOF and MOF derived materials, their applications for the electrochemical energy conversion and storage is totally a new field of research and developed recently. This review focuses on the systematic design of the materials from MOF and control over their inherent properties to enhance the electrochemical performances.
Collapse
Affiliation(s)
- Arindam Indra
- Department of Energy Engineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Taeseup Song
- Department of Energy Engineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Ungyu Paik
- Department of Energy Engineering, Hanyang University, Seoul, 133-791, Republic of Korea
| |
Collapse
|
17
|
Indra A, Paik U, Song T. Boosting Electrochemical Water Oxidation with Metal Hydroxide Carbonate Templated Prussian Blue Analogues. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710809] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arindam Indra
- Department of Energy Engineering; Hanyang University; Seoul 133-791 Republic of Korea
| | - Ungyu Paik
- Department of Energy Engineering; Hanyang University; Seoul 133-791 Republic of Korea
| | - Taeseup Song
- Department of Energy Engineering; Hanyang University; Seoul 133-791 Republic of Korea
| |
Collapse
|
18
|
Indra A, Paik U, Song T. Boosting Electrochemical Water Oxidation with Metal Hydroxide Carbonate Templated Prussian Blue Analogues. Angew Chem Int Ed Engl 2017; 57:1241-1245. [DOI: 10.1002/anie.201710809] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/23/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Arindam Indra
- Department of Energy Engineering; Hanyang University; Seoul 133-791 Republic of Korea
| | - Ungyu Paik
- Department of Energy Engineering; Hanyang University; Seoul 133-791 Republic of Korea
| | - Taeseup Song
- Department of Energy Engineering; Hanyang University; Seoul 133-791 Republic of Korea
| |
Collapse
|
19
|
Panda C, Menezes PW, Walter C, Yao S, Miehlich ME, Gutkin V, Meyer K, Driess M. From a Molecular 2Fe-2Se Precursor to a Highly Efficient Iron Diselenide Electrocatalyst for Overall Water Splitting. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706196] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chakadola Panda
- Department of Chemistry; Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Prashanth W. Menezes
- Department of Chemistry; Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Carsten Walter
- Department of Chemistry; Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Shenglai Yao
- Department of Chemistry; Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Matthias E. Miehlich
- Department of Chemistry and Pharmacy, Inorganic Chemistry; Friedrich-Alexander University Erlangen-Nürnberg (FAU); Egerlandstr. 1 91058 Erlangen Germany
| | - Vitaly Gutkin
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology; The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry; Friedrich-Alexander University Erlangen-Nürnberg (FAU); Egerlandstr. 1 91058 Erlangen Germany
| | - Matthias Driess
- Department of Chemistry; Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
20
|
Panda C, Menezes PW, Walter C, Yao S, Miehlich ME, Gutkin V, Meyer K, Driess M. From a Molecular 2Fe-2Se Precursor to a Highly Efficient Iron Diselenide Electrocatalyst for Overall Water Splitting. Angew Chem Int Ed Engl 2017; 56:10506-10510. [DOI: 10.1002/anie.201706196] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Chakadola Panda
- Department of Chemistry; Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Prashanth W. Menezes
- Department of Chemistry; Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Carsten Walter
- Department of Chemistry; Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Shenglai Yao
- Department of Chemistry; Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Matthias E. Miehlich
- Department of Chemistry and Pharmacy, Inorganic Chemistry; Friedrich-Alexander University Erlangen-Nürnberg (FAU); Egerlandstr. 1 91058 Erlangen Germany
| | - Vitaly Gutkin
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology; The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry; Friedrich-Alexander University Erlangen-Nürnberg (FAU); Egerlandstr. 1 91058 Erlangen Germany
| | - Matthias Driess
- Department of Chemistry; Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
21
|
Indra A, Menezes PW, Das C, Schmeißer D, Driess M. Alkaline electrochemical water oxidation with multi-shelled cobalt manganese oxide hollow spheres. Chem Commun (Camb) 2017; 53:8641-8644. [PMID: 28678263 DOI: 10.1039/c7cc03566g] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-shelled hollow spheres of cobalt manganese oxides (CMOs) deposited on Ni foam exhibited superior alkaline electrochemical water oxidation activity and surpassed those of bulk CMO and commercial noble metal-based catalysts. A higher amount of cobalt in the spinel structure resulted in the transformation of the tetragonal to the cubic phase with a decrease in the overpotential of oxygen evolution.
Collapse
Affiliation(s)
- Arindam Indra
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17 Juni 135, D-10623 Berlin, Germany.
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17 Juni 135, D-10623 Berlin, Germany.
| | - Chittaranjan Das
- Applied Physics and Sensors, Brandenburg University of Technology Cottbus, Konrad Wachsmann Allee 17, 03046 Cottbus, Germany
| | - Dieter Schmeißer
- Applied Physics and Sensors, Brandenburg University of Technology Cottbus, Konrad Wachsmann Allee 17, 03046 Cottbus, Germany
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17 Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
22
|
Menezes PW, Indra A, Das C, Walter C, Göbel C, Gutkin V, Schmeiβer D, Driess M. Uncovering the Nature of Active Species of Nickel Phosphide Catalysts in High-Performance Electrochemical Overall Water Splitting. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02666] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Prashanth W. Menezes
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr.
C2, 10623 Berlin, Germany
| | - Arindam Indra
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr.
C2, 10623 Berlin, Germany
| | - Chittaranjan Das
- Applied
physics and sensors, Brandenburg University of Technology Cottbus, Konrad Wachsmann Allee 17, 03046 Cottbus, Germany
| | - Carsten Walter
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr.
C2, 10623 Berlin, Germany
| | - Caren Göbel
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr.
C2, 10623 Berlin, Germany
| | - Vitaly Gutkin
- The
Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Dieter Schmeiβer
- Applied
physics and sensors, Brandenburg University of Technology Cottbus, Konrad Wachsmann Allee 17, 03046 Cottbus, Germany
| | - Matthias Driess
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr.
C2, 10623 Berlin, Germany
| |
Collapse
|
23
|
Mahdi Najafpour M, Jafarian Sedigh D, Maedeh Hosseini S, Zaharieva I. Treated Nanolayered Mn Oxide by Oxidizable Compounds: A Strategy To Improve the Catalytic Activity toward Water Oxidation. Inorg Chem 2016; 55:8827-32. [DOI: 10.1021/acs.inorgchem.6b01334] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, and Center of
Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Davood Jafarian Sedigh
- Department of Chemistry, and Center of
Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Seyedeh Maedeh Hosseini
- Department of Chemistry, and Center of
Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Ivelina Zaharieva
- Freie Universität Berlin, Fachbereich Physik, Arnimallee
14, D-14195 Berlin, Germany
| |
Collapse
|
24
|
Shrestha S, Dutta PK. Photochemical Water Oxidation by Manganese Oxides Supported on Zeolite Surfaces. ChemistrySelect 2016. [DOI: 10.1002/slct.201600208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sweta Shrestha
- Department of Chemistry and Biochemistry; The Ohio State University; 120 W. 18th Avenue, Columbus Ohio 43210 United States
| | - Prabir K. Dutta
- Department of Chemistry and Biochemistry; The Ohio State University; 120 W. 18th Avenue, Columbus Ohio 43210 United States
| |
Collapse
|
25
|
Menezes PW, Indra A, Littlewood P, Göbel C, Schomäcker R, Driess M. A Single-Source Precursor Approach to Self-Supported Nickel-Manganese-Based Catalysts with Improved Stability for Effective Low-Temperature Dry Reforming of Methane. Chempluschem 2016; 81:370-377. [PMID: 31968753 DOI: 10.1002/cplu.201600064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/20/2022]
Abstract
Self-supported nickel-manganese-based catalysts were synthesized from heterobimetallic nickel manganese oxalate precursors via a versatile reverse micelle approach. The precursors were subjected to thermal degradation (400 °C) in the presence of synthetic air to form respective metal oxides, which were treated under hydrogen (500 °C) to form Ni2 MnO4 -O2 -H2 , Ni6 MnO8 -O2 -H2 and NiO-O2 -H2 . Similarly, the precursors were also treated directly under hydrogen at the same temperature to form Ni2 MnO4 -H2 and Ni6 MnO8 -H2 . The catalysts were extensively investigated by PXRD, SEM, TEM, XPS and BET analyses. The resulting catalysts were applied for dry reforming of methane (DRM) and exhibit better stability and resistance to coking than coprecipitated catalysts. Further, we show that addition of manganese, which is not an active catalyst for DRM alone, to nickel has a significant promotion effect on both the activity and stability of DRM catalysts, and a Ni/Mn ratio lower than 6:1 enables optimized activity for this system.
Collapse
Affiliation(s)
- Prashanth W Menezes
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Arindam Indra
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Patrick Littlewood
- Reaction Engineering, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, Sekr. TC8, 10623, Berlin, Germany
| | - Caren Göbel
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Reinhard Schomäcker
- Reaction Engineering, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, Sekr. TC8, 10623, Berlin, Germany
| | - Matthias Driess
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
26
|
Thenuwara AC, Shumlas SL, Attanayake NH, Cerkez EB, McKendry IG, Frazer L, Borguet E, Kang Q, Zdilla MJ, Sun J, Strongin DR. Copper-Intercalated Birnessite as a Water Oxidation Catalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12807-13. [PMID: 26477450 DOI: 10.1021/acs.langmuir.5b02936] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report a synthetic method to increase the catalytic activity of birnessite toward water oxidation by intercalating copper in the interlayer region of the layered manganese oxide. Intercalation of copper, verified by XRD, XPS, ICP, and Raman spectroscopy, was accomplished by exposing a suspension of birnessite to a Cu(+)-bearing precursor molecule that underwent disproportionation in solution to yield Cu(0) and Cu(2+). Electrocatalytic studies showed that the Cu-modified birnessite exhibited an overpotential for water oxidation of ∼490 mV (at 10 mA/cm(2)) and a Tafel slope of 126 mV/decade compared to ∼700 mV (at 10 mA/cm(2)) and 240 mV/decade, respectively, for birnessite without copper. Impedance spectroscopy results suggested that the charge transfer resistivity of the Cu-modified sample was significantly lower than Cu-free birnessite, suggesting that Cu in the interlayer increased the conductivity of birnessite leading to an enhancement of water oxidation kinetics. Density functional theory calculations show that the intercalation of Cu(0) into a layered MnO2 model structure led to a change of the electronic properties of the material from a semiconductor to a metallic-like structure. This conclusion from computation is in general agreement with the aforementioned impedance spectroscopy results. X-ray photoelectron spectroscopy (XPS) showed that Cu(0) coexisted with Cu(2+) in the prepared Cu-modified birnessite. Control experiments using birnessite that was decorated with only Cu(2+) showed a reduction in water oxidation kinetics, further emphasizing the importance of Cu(0) for the increased activity of birnessite. The introduction of Cu(0) into the birnessite structure also increased the stability of the electrocatalyst. At a working current of 2 mA, the Cu-modified birnessite took ∼3 times longer for the overpotential for water oxdiation to increase by 100 mV compared to when Cu was not present in the birnessite.
Collapse
Affiliation(s)
- Akila C Thenuwara
- Department of Chemistry, Temple University , Beury Hall, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Computational Design of Functional Layered Materials (CCDM), Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Samantha L Shumlas
- Department of Chemistry, Temple University , Beury Hall, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Computational Design of Functional Layered Materials (CCDM), Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Nuwan H Attanayake
- Department of Chemistry, Temple University , Beury Hall, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Computational Design of Functional Layered Materials (CCDM), Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Elizabeth B Cerkez
- Department of Chemistry, Temple University , Beury Hall, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Ian G McKendry
- Department of Chemistry, Temple University , Beury Hall, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Computational Design of Functional Layered Materials (CCDM), Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Laszlo Frazer
- Department of Chemistry, Temple University , Beury Hall, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Computational Design of Functional Layered Materials (CCDM), Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Eric Borguet
- Department of Chemistry, Temple University , Beury Hall, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Computational Design of Functional Layered Materials (CCDM), Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Qing Kang
- Department of Chemistry, Temple University , Beury Hall, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Computational Design of Functional Layered Materials (CCDM), Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Michael J Zdilla
- Department of Chemistry, Temple University , Beury Hall, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Computational Design of Functional Layered Materials (CCDM), Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Jianwei Sun
- Department of Physics, Temple University , 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Computational Design of Functional Layered Materials (CCDM), Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Daniel R Strongin
- Department of Chemistry, Temple University , Beury Hall, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Computational Design of Functional Layered Materials (CCDM), Temple University , Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
27
|
Najafpour MM, Mostafalu R, Kaboudin B. Nano-sized Mn3O4 and β-MnOOH from the decomposition of β-cyclodextrin–Mn: 1. Synthesis and characterization. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:106-11. [DOI: 10.1016/j.jphotobiol.2015.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/18/2014] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
|