1
|
Yano J, Kern J, Yachandra VK. Structure Function Studies of Photosystem II Using X-Ray Free Electron Lasers. Annu Rev Biophys 2024; 53:343-365. [PMID: 39013027 PMCID: PMC11321711 DOI: 10.1146/annurev-biophys-071723-102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The structure and mechanism of the water-oxidation chemistry that occurs in photosystem II have been subjects of great interest. The advent of X-ray free electron lasers allowed the determination of structures of the stable intermediate states and of steps in the transitions between these intermediate states, bringing a new perspective to this field. The room-temperature structures collected as the photosynthetic water oxidation reaction proceeds in real time have provided important novel insights into the structural changes and the mechanism of the water oxidation reaction. The time-resolved measurements have also given us a view of how this reaction-which involves multielectron, multiproton processes-is facilitated by the interaction of the ligands and the protein residues in the oxygen-evolving complex. These structures have also provided a picture of the dynamics occurring in the channels within photosystem II that are involved in the transport of the substrate water to the catalytic center and protons to the bulk.
Collapse
Affiliation(s)
- Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| |
Collapse
|
2
|
Kale RS, Seep JL, Sallans L, Frankel LK, Bricker TM. Oxidative modification of LHC II associated with photosystem II and PS I-LHC I-LHC II membranes. PHOTOSYNTHESIS RESEARCH 2022; 152:261-274. [PMID: 35179681 DOI: 10.1007/s11120-022-00902-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 05/22/2023]
Abstract
Under aerobic conditions the production of Reactive Oxygen Species (ROS) by electron transport chains is unavoidable, and occurs in both autotrophic and heterotrophic organisms. In photosynthetic organisms both Photosystem II (PS II) and Photosystem I (PS I), in addition to the cytochrome b6/f complex, are demonstrated sources of ROS. All of these membrane protein complexes exhibit oxidative damage when isolated from field-grown plant material. An additional possible source of ROS in PS I and PS II is the distal, chlorophyll-containing light-harvesting array LHC II, which is present in both photosystems. These serve as possible sources of 1O2 produced by the interaction of 3O2 with 3chl* produced by intersystem crossing. We have hypothesized that amino acid residues close to the sites of ROS generation will be more susceptible to oxidative modification than distant residues. In this study, we have identified oxidized amino acid residues in a subset of the spinach LHC II proteins (Lhcb1 and Lhcb2) that were associated with either PS II membranes (i.e. BBYs) or PS I-LHC I-LHC II membranes, both of which were isolated from field-grown spinach. We identified oxidatively modified residues by high-resolution tandem mass spectrometry. Interestingly, two different patterns of oxidative modification were evident for the Lhcb1 and Lhcb2 proteins from these different sources. In the LHC II associated with PS II membranes, oxidized residues were identified to be located on the stromal surface of Lhcb1 and, to a much lesser extent, Lhcb2. Relatively few oxidized residues were identified as buried in the hydrophobic core of these proteins. The LHC II associated with PS I-LHC I-LHC II membranes, however, exhibited fewer surface-oxidized residues but, rather a large number of oxidative modifications buried in the hydrophobic core regions of both Lhcb1 and Lhcb2, adjacent to the chlorophyll prosthetic groups. These results appear to indicate that ROS, specifically 1O2, can modify the Lhcb proteins associated with both photosystems and that the LHC II associated with PS II membranes represent a different population from the LHC II associated with PS I-LHC I-LHC II membranes.
Collapse
Affiliation(s)
- Ravindra S Kale
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jacob L Seep
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Larry Sallans
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Laurie K Frankel
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Terry M Bricker
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
3
|
Yi L, Liu B, Nixon PJ, Yu J, Chen F. Recent Advances in Understanding the Structural and Functional Evolution of FtsH Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:837528. [PMID: 35463435 PMCID: PMC9020784 DOI: 10.3389/fpls.2022.837528] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/24/2022] [Indexed: 05/18/2023]
Abstract
The FtsH family of proteases are membrane-anchored, ATP-dependent, zinc metalloproteases. They are universally present in prokaryotes and the mitochondria and chloroplasts of eukaryotic cells. Most bacteria bear a single ftsH gene that produces hexameric homocomplexes with diverse house-keeping roles. However, in mitochondria, chloroplasts and cyanobacteria, multiple FtsH homologs form homo- and heterocomplexes with specialized functions in maintaining photosynthesis and respiration. The diversification of FtsH homologs combined with selective pairing of FtsH isomers is a versatile strategy to enable functional adaptation. In this article we summarize recent progress in understanding the evolution, structure and function of FtsH proteases with a focus on the role of FtsH in photosynthesis and respiration.
Collapse
Affiliation(s)
- Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Peter J. Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- *Correspondence: Peter J. Nixon, ; orcid.org/0000-0003-1952-6937
| | - Jianfeng Yu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- Jianfeng Yu, ; orcid.org/0000-0001-7174-3803
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Feng Chen, ; orcid.org/0000-0002-9054-943X
| |
Collapse
|
4
|
Kale R, Sallans L, Frankel LK, Bricker TM. Natively oxidized amino acid residues in the spinach PS I-LHC I supercomplex. PHOTOSYNTHESIS RESEARCH 2020; 143:263-273. [PMID: 31894498 DOI: 10.1007/s11120-019-00698-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Reactive oxygen species (ROS) production is an unavoidable byproduct of electron transport under aerobic conditions. Photosystem II (PS II), the cytochrome b6/f complex and Photosystem I (PS I) are all demonstrated sources of ROS. It has been proposed that PS I produces substantial levels of a variety of ROS including O2.-, 1O2, H2O2 and, possibly, •OH; however, the site(s) of ROS production within PS I has been the subject of significant debate. We hypothesize that amino acid residues close to the sites of ROS generation will be more susceptible to oxidative modification than distant residues. In this study, we have identified oxidized amino acid residues in spinach PS I which was isolated from field-grown spinach. The modified residues were identified by high-resolution tandem mass spectrometry. As expected, many of the modified residues lie on the surface of the complex. However, a well-defined group of oxidized residues, both buried and surface-exposed, lead from the chl a' of P700 to the surface of PS I. These residues (PsaB: 609F, 611E, 617M, 619W, 620L, and PsaF: 139L, 142A,143D) may identify a preferred route for ROS, probably 1O2, to egress the complex from the vicinity of P700. Additionally, two buried residues located in close proximity to A1B (PsaB:712H and 714S) were modified, which appears consistent with A1B being a source of O2.-. Surprisingly, no oxidatively modified residues were identified in close proximity to the 4Fe-FS clusters FX, FA or FB. These cofactors had been identified as principal targets for ROS damage in the photosystem. Finally, a large number of residues located in the hydrophobic cores of Lhca1-Lhca4 are oxidatively modified. These appear to be the result of 1O2 production by the distal antennae for the photosystem.
Collapse
Affiliation(s)
- Ravindra Kale
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Larry Sallans
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Laurie K Frankel
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Terry M Bricker
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
5
|
Abstract
Photosystem II (PSII) uses water as the terminal electron donor, producing oxygen in the Mn4CaO5 oxygen evolving complex (OEC), while cytochrome c oxidase (CcO) reduces O2 to water in its heme–Cu binuclear center (BNC). Each protein is oriented in the membrane to add to the proton gradient. The OEC, which releases protons, is located near the P-side (positive, at low-pH) of the membrane. In contrast, the BNC is in the middle of CcO, so the protons needed for O2 reduction must be transferred from the N-side (negative, at high pH). In addition, CcO pumps protons from N- to P-side, coupled to the O2 reduction chemistry, to store additional energy. Thus, proton transfers are directly coupled to the OEC and BNC redox chemistry, as well as needed for CcO proton pumping. The simulations that study the changes in proton affinity of the redox active sites and the surrounding protein at different states of the reaction cycle, as well as the changes in hydration that modulate proton transfer paths, are described.
Collapse
|
6
|
Morris JN, Kovács S, Vass I, Summerfield TC, Eaton-Rye JJ. Environmental pH and a Glu364 to Gln mutation in the chlorophyll-binding CP47 protein affect redox-active TyrD and charge recombination in Photosystem II. FEBS Lett 2018; 593:163-174. [PMID: 30485416 DOI: 10.1002/1873-3468.13307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
In Photosystem II, loop E of the chlorophyll-binding CP47 protein is located near a redox-active tyrosine, YD , forming a symmetrical analog to loop E in CP43, which provides a ligand to the oxygen-evolving complex (OEC). A Glu364 to Gln substitution in CP47, near YD , does not affect growth in the cyanobacterium Synechocystis sp. PCC 6803; however, deletion of the extrinsic protein PsbV in this mutant leads to a strain displaying a pH-sensitive phenotype. Using thermoluminescence, chlorophyll fluorescence, and flash-induced oxygen evolution analyses, we demonstrate that Glu364 influences the stability of YD and the redox state of the OEC, and highlight the effects of external pH on photosynthetic electron transfer in intact cyanobacterial cells.
Collapse
Affiliation(s)
- Jaz N Morris
- Department of Botany, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sándor Kovács
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | |
Collapse
|
7
|
Nguyen AY, Bricker WP, Zhang H, Weisz DA, Gross ML, Pakrasi HB. The proteolysis adaptor, NblA, binds to the N-terminus of β-phycocyanin: Implications for the mechanism of phycobilisome degradation. PHOTOSYNTHESIS RESEARCH 2017; 132:95-106. [PMID: 28078551 PMCID: PMC5576716 DOI: 10.1007/s11120-016-0334-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Phycobilisome (PBS) complexes are massive light-harvesting apparati in cyanobacteria that capture and funnel light energy to the photosystem. PBS complexes are dynamically degraded during nutrient deprivation, which causes severe chlorosis, and resynthesized during nutrient repletion. PBS degradation occurs rapidly after nutrient step down, and is specifically triggered by non-bleaching protein A (NblA), a small proteolysis adaptor that facilitates interactions between a Clp chaperone and phycobiliproteins. Little is known about the mode of action of NblA during PBS degradation. In this study, we used chemical cross-linking coupled with LC-MS/MS to investigate the interactions between NblA and phycobiliproteins. An isotopically coded BS3 cross-linker captured a protein interaction between NblA and β-phycocyanin (PC). LC-MS/MS analysis identified the amino acid residues participating in the binding reaction, and demonstrated that K52 in NblA is cross-linked to T2 in β-PC. These results were modeled onto the existing crystal structures of NblA and PC by protein docking simulations. Our data indicate that the C-terminus of NblA fits in an open groove of β-PC, a region located inside the central hollow cavity of a PC rod. NblA may mediate PBS degradation by disrupting the structural integrity of the PC rod from within the rod. In addition, M1-K44 and M1-K52 cross-links between the N-terminus of NblA and the C-terminus of NblA are consistent with the NblA crystal structure, confirming that the purified NblA is structurally and biologically relevant. These findings provide direct evidence that NblA physically interacts with β-PC.
Collapse
Affiliation(s)
- Amelia Y Nguyen
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA
- US Environmental Protection Agency, 1200 Pennsylvania Ave, NW (MC-7403M), Washington, DC, 20460, USA
| | - William P Bricker
- Laboratory for Computational Biology & Biophysics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Daniel A Weisz
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, Campus Box 1095, One Brookings Drive, St. Louis, MO, 63130-4899, USA.
| |
Collapse
|
8
|
Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. Proc Natl Acad Sci U S A 2017; 114:2988-2993. [PMID: 28265052 DOI: 10.1073/pnas.1618922114] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Photosystem II reaction center is vulnerable to photoinhibition. The D1 and D2 proteins, lying at the core of the photosystem, are susceptible to oxidative modification by reactive oxygen species that are formed by the photosystem during illumination. Using spin probes and EPR spectroscopy, we have determined that both O2•- and HO• are involved in the photoinhibitory process. Using tandem mass spectroscopy, we have identified a number of oxidatively modified D1 and D2 residues. Our analysis indicates that these oxidative modifications are associated with formation of HO• at both the Mn4O5Ca cluster and the nonheme iron. Additionally, O2•- appears to be formed by the reduction of O2 at either PheoD1 or QA Early oxidation of D1:332H, which is coordinated with the Mn1 of the Mn4O5Ca cluster, appears to initiate a cascade of oxidative events that lead to the oxidative modification of numerous residues in the C termini of the D1 and D2 proteins on the donor side of the photosystem. Oxidation of D2:244Y, which is a bicarbonate ligand for the nonheme iron, induces the propagation of oxidative reactions in residues of the D-de loop of the D2 protein on the electron acceptor side of the photosystem. Finally, D1:130E and D2:246M are oxidatively modified by O2•- formed by the reduction of O2 either by PheoD1•- or QA•- The identification of specific amino acid residues oxidized by reactive oxygen species provides insights into the mechanism of damage to the D1 and D2 proteins under light stress.
Collapse
|
9
|
Weisz DA, Liu H, Zhang H, Thangapandian S, Tajkhorshid E, Gross ML, Pakrasi HB. Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome b559 in Photosystem II. Proc Natl Acad Sci U S A 2017; 114:2224-2229. [PMID: 28193857 PMCID: PMC5338524 DOI: 10.1073/pnas.1620360114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Photosystem II (PSII), a large pigment protein complex, undergoes rapid turnover under natural conditions. During assembly of PSII, oxidative damage to vulnerable assembly intermediate complexes must be prevented. Psb28, the only cytoplasmic extrinsic protein in PSII, protects the RC47 assembly intermediate of PSII and assists its efficient conversion into functional PSII. Its role is particularly important under stress conditions when PSII damage occurs frequently. Psb28 is not found, however, in any PSII crystal structure, and its structural location has remained unknown. In this study, we used chemical cross-linking combined with mass spectrometry to capture the transient interaction of Psb28 with PSII. We detected three cross-links between Psb28 and the α- and β-subunits of cytochrome b559, an essential component of the PSII reaction-center complex. These distance restraints enable us to position Psb28 on the cytosolic surface of PSII directly above cytochrome b559, in close proximity to the QB site. Protein-protein docking results also support Psb28 binding in this region. Determination of the Psb28 binding site and other biochemical evidence allow us to propose a mechanism by which Psb28 exerts its protective effect on the RC47 intermediate. This study also shows that isotope-encoded cross-linking with the "mass tags" selection criteria allows confident identification of more cross-linked peptides in PSII than has been previously reported. This approach thus holds promise to identify other transient protein-protein interactions in membrane protein complexes.
Collapse
Affiliation(s)
- Daniel A Weisz
- Department of Biology, Washington University, St. Louis, MO 63130
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Haijun Liu
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Sundarapandian Thangapandian
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO 63130;
| | | |
Collapse
|
10
|
Morris JN, Eaton-Rye JJ, Summerfield TC. Environmental pH and the Requirement for the Extrinsic Proteins of Photosystem II in the Function of Cyanobacterial Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1135. [PMID: 27555848 PMCID: PMC4977308 DOI: 10.3389/fpls.2016.01135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In one of the final stages of cyanobacterial Photosystem II (PS II) assembly, binding of up to four extrinsic proteins to PS II stabilizes the oxygen-evolving complex (OEC). Growth of cyanobacterial mutants deficient in certain combinations of these thylakoid-lumen-associated polypeptides is sensitive to changes in environmental pH, despite the physical separation of the membrane-embedded PS II complex from the external environment. In this perspective we discuss the effect of environmental pH on OEC function and photoautotrophic growth in cyanobacteria with reference to pH-sensitive PS II mutants lacking extrinsic proteins. We consider the possibilities that, compared to pH 10.0, pH 7.5 increases susceptibility to PS II-generated reactive oxygen species (ROS) causing photoinhibition and reducing PS II assembly in some mutants, and that perturbations to channels in the lumenal regions of PS II might alter the accessibility of water to the active site as well as egress of oxygen and protons to the thylakoid lumen. Reduced levels of PS II in these mutants, and reduced OEC activity arising from the disruption of substrate/product channels, could reduce the trans-thylakoid pH gradient (ΔpH), leading to the impairment of photosynthesis. Growth of some PS II mutants at pH 7.5 can be rescued by elevating CO2 levels, suggesting that the pH-sensitive phenotype might primarily be an indirect result of back-pressure in the electron transport chain that results in heightened production of ROS by the impaired photosystem.
Collapse
Affiliation(s)
- Jaz N. Morris
- Department of Botany, University of OtagoDunedin, New Zealand
| | | | | |
Collapse
|
11
|
Mummadisetti MP, Frankel LK, Bellamy HD, Sallans L, Goettert JS, Brylinski M, Bricker TM. Use of Protein Cross-Linking and Radiolytic Labeling To Elucidate the Structure of PsbO within Higher-Plant Photosystem II. Biochemistry 2016; 55:3204-13. [PMID: 27203407 DOI: 10.1021/acs.biochem.6b00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have used protein cross-linking with the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and radiolytic footprinting coupled with high-resolution tandem mass spectrometry, to examine the structure of higher-plant PsbO when it is bound to Photosystem II. Twenty intramolecular cross-linked residue pairs were identified. On the basis of this cross-linking data, spinach PsbO was modeled using the Thermosynechococcus vulcanus PsbO structure as a template, with the cross-linking distance constraints incorporated using the MODELLER program. Our model of higher-plant PsbO identifies several differences between the spinach and cyanobacterial proteins. The N-terminal region is particularly interesting, as this region has been suggested to be important for oxygen evolution and for the specific binding of PsbO to Photosystem II. Additionally, using radiolytic mapping, we have identified regions on spinach PsbO that are shielded from the bulk solvent. These domains may represent regions on PsbO that interact with other components, as yet unidentified, of the photosystem.
Collapse
Affiliation(s)
- Manjula P Mummadisetti
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Laurie K Frankel
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Henry D Bellamy
- The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices, Louisiana State University , Baton Rouge, Louisiana 70806, United States
| | - Larry Sallans
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | - Jost S Goettert
- The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices, Louisiana State University , Baton Rouge, Louisiana 70806, United States
| | - Michal Brylinski
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
12
|
Weisz DA, Gross ML, Pakrasi HB. The Use of Advanced Mass Spectrometry to Dissect the Life-Cycle of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:617. [PMID: 27242823 PMCID: PMC4862242 DOI: 10.3389/fpls.2016.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/22/2016] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has been gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. We conclude with an outlook for the opportunity of future MS contributions to PSII research.
Collapse
Affiliation(s)
- Daniel A. Weisz
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Himadri B. Pakrasi
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
13
|
Roose JL, Frankel LK, Mummadisetti MP, Bricker TM. The extrinsic proteins of photosystem II: update. PLANTA 2016; 243:889-908. [PMID: 26759350 DOI: 10.1007/s00425-015-2462-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/25/2015] [Indexed: 05/24/2023]
Abstract
Recent investigations have provided important new insights into the structures and functions of the extrinsic proteins of Photosystem II. This review is an update of the last major review on the extrinsic proteins of Photosystem II (Bricker et al., Biochemistry 31:4623-4628 2012). In this report, we will examine advances in our understanding of the structure and function of these components. These proteins include PsbO, which is uniformly present in all oxygenic organisms, the PsbU, PsbV, CyanoQ, and CyanoP proteins, found in the cyanobacteria, and the PsbP, PsbQ and PsbR proteins, found in the green plant lineage. These proteins serve to stabilize the Mn4CaO5 cluster and optimize oxygen evolution at physiological calcium and chloride concentrations. The mechanisms used to perform these functions, however, remain poorly understood. Recently, important new findings have significantly advanced our understanding of the structures, locations and functions of these important subunits. We will discuss the biochemical, structural and genetic studies that have been used to elucidate the roles played by these proteins within the photosystem and their locations within the photosynthetic complex. Additionally, we will examine open questions needing to be addressed to provide a coherent picture of the role of these components within the photosystem.
Collapse
Affiliation(s)
- Johnna L Roose
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Laurie K Frankel
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Manjula P Mummadisetti
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
14
|
Liu H, Zhang H, Orf GS, Lu Y, Jiang J, King JD, Wolf NR, Gross ML, Blankenship RE. Dramatic Domain Rearrangements of the Cyanobacterial Orange Carotenoid Protein upon Photoactivation. Biochemistry 2016; 55:1003-9. [PMID: 26848988 PMCID: PMC5201194 DOI: 10.1021/acs.biochem.6b00013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photosynthetic cyanobacteria make important contributions to global carbon and nitrogen budgets. A protein known as the orange carotenoid protein (OCP) protects the photosynthetic apparatus from damage by dissipating excess energy absorbed by the phycobilisome, the major light-harvesting complex in many cyanobacteria. OCP binds one carotenoid pigment, but the color of this pigment depends on conditions. It is orange in the dark and red when exposed to light. We modified the orange and red forms of OCP by using isotopically coded cross-linking agents and then analyzed the structural features by using liquid chromatography and tandem mass spectrometry. Unequivocal cross-linking pairs uniquely detected in red OCP indicate that, upon photoactivation, the OCP N-terminal domain (NTD) and C-terminal domain (CTD) reorient relative to each other. Our data also indicate that the intrinsically unstructured loop connecting the NTD and CTD not only is involved in the interaction between the two domains in orange OCP but also, together with the N-terminal extension, provides a structural buffer system facilitating an intramolecular breathing motion of the OCP, thus helping conversion back and forth from the orange to red form during the OCP photocycle. These results have important implications for understanding the molecular mechanism of action of cyanobacterial photoprotection.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University in St. Louis, MO, 63130, United Sates
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
| | - Hao Zhang
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
- Department of Chemistry, Washington University in St. Louis, MO, 63130, United Sates
| | - Gregory S. Orf
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
- Department of Chemistry, Washington University in St. Louis, MO, 63130, United Sates
| | - Yue Lu
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
- Department of Chemistry, Washington University in St. Louis, MO, 63130, United Sates
| | - Jing Jiang
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
| | - Jeremy D. King
- Department of Biology, Washington University in St. Louis, MO, 63130, United Sates
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
| | - Nathan R. Wolf
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
- Department of Chemistry, Washington University in St. Louis, MO, 63130, United Sates
| | - Michael L. Gross
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
- Department of Chemistry, Washington University in St. Louis, MO, 63130, United Sates
| | - Robert E. Blankenship
- Department of Biology, Washington University in St. Louis, MO, 63130, United Sates
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, MO, 63130, United Sates
- Department of Chemistry, Washington University in St. Louis, MO, 63130, United Sates
| |
Collapse
|
15
|
Ifuku K, Noguchi T. Structural Coupling of Extrinsic Proteins with the Oxygen-Evolving Center in Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:84. [PMID: 26904056 PMCID: PMC4743485 DOI: 10.3389/fpls.2016.00084] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/17/2016] [Indexed: 05/24/2023]
Abstract
Photosystem II (PSII), which catalyzes photosynthetic water oxidation, is composed of more than 20 subunits, including membrane-intrinsic and -extrinsic proteins. The PSII extrinsic proteins shield the catalytic Mn4CaO5 cluster from the outside bulk solution and enhance binding of inorganic cofactors, such as Ca(2+) and Cl(-), in the oxygen-evolving center (OEC) of PSII. Among PSII extrinsic proteins, PsbO is commonly found in all oxygenic organisms, while PsbP and PsbQ are specific to higher plants and green algae, and PsbU, PsbV, CyanoQ, and CyanoP exist in cyanobacteria. In addition, red algae and diatoms have unique PSII extrinsic proteins, such as PsbQ' and Psb31, suggesting functional divergence during evolution. Recent studies with reconstitution experiments combined with Fourier transform infrared spectroscopy have revealed how the individual PSII extrinsic proteins affect the structure and function of the OEC in different organisms. In this review, we summarize our recent results and discuss changes that have occurred in the structural coupling of extrinsic proteins with the OEC during evolutionary history.
Collapse
Affiliation(s)
- Kentaro Ifuku
- Graduate School of Biostudies, Kyoto UniversityKyoto, Japan
| | - Takumi Noguchi
- Graduate School of Science, Nagoya UniversityAichi, Japan
| |
Collapse
|
16
|
Cormann KU, Möller M, Nowaczyk MM. Critical Assessment of Protein Cross-Linking and Molecular Docking: An Updated Model for the Interaction Between Photosystem II and Psb27. FRONTIERS IN PLANT SCIENCE 2016; 7:157. [PMID: 26925076 PMCID: PMC4758025 DOI: 10.3389/fpls.2016.00157] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/30/2016] [Indexed: 05/09/2023]
Abstract
Photosystem II (PSII) is a large membrane-protein complex composed of about 20 subunits and various cofactors, which mediates the light-driven oxidation of water and reduction of plastoquinone, and is part of the photosynthetic electron transfer chain that is localized in the thylakoid membrane of cyanobacteria, algae, and plants. The stepwise assembly of PSII is guided and facilitated by numerous auxiliary proteins that play specific roles in this spatiotemporal process. Psb27, a small protein localized in the thylakoid lumen, appears to associate with an intermediate PSII complex that is involved in assembly of the Mn4CaO5 cluster. Its precise binding position on the PSII intermediate remains elusive, as previous approaches to the localization of Psb27 on PSII have yielded contradictory results. This was our motivation for a critical assessment of previously used methods and the development of an improved analysis pipeline. The combination of chemical cross-linking and mass spectrometry (CX-MS) with isotope-coded cross-linkers was refined and validated with reference to the PSII crystal structure. Psb27 was localized on the PSII surface adjacent to the large lumenal domain of CP43 on the basis of a cross-link connecting Psb27-K91 to CP43-K381. Additional contacts associating Psb27 with CP47 and the C-termini of D1 and D2 were detected by surface plasmon resonance (SPR) spectroscopy. This information was used to model the binding of Psb27 to the PSII surface in a region that is occupied by PsbV in the mature complex.
Collapse
|