1
|
Islam M, Khan IM, Shakya S, Alam N. Design, synthesis, characterizing and DFT calculations of a binary CT complex co-crystal of bioactive moieties in different polar solvents to investigate its pharmacological activity. J Biomol Struct Dyn 2023; 41:10813-10829. [PMID: 36579428 DOI: 10.1080/07391102.2022.2158937] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022]
Abstract
Imidazole (IM) and salicylic acid (SA) have a significant class among the medical compound. These are widely used as topical drugs like antifungal, antibacterial, anticancer, immunosuppressive agent, etc. These two bioactive organic moieties are combined by a weak hydrogen bond formed by hydrogen transfer. The charge transfer (CT) complex of acceptor (SA) and donor (IM), has been synthesized at room temperature in methanol and confirmed by signal-crystal XRD, conductance and UV-visible spectroscopy. The X-ray crystallography provides the original structural information of CT complex and displays the existence of N+-H--O- bond between IM and SA. The physical properties such as (ECT), (RN), (ID), (f), (D) and (Δ G0) along with molar extinction coefficient (εCT) and formation constant (KCT) were estimated through UV-visible spectroscopy. Job's method and Benesi-Hildebrand equation suggested 1:1 stoichiometry of ([IM]+[SA]-). The results indicate a complete transfer of hydrogen atom and CT complex formation with 1:1 molar ratio of IM and SA. Antimicrobial activity was veiled against different bacteria like Escherichia coli, Bacillus subtilis and Staphylococcus aureus; and different fungi as Fusarium oxysporum, Candida albicans and Aspergillus niger by disc diffusion method. CT complex was also tested for cytotoxic activity against lung cancer cell lines in comparison to breast cancer cell lines. Molecular docking provides the information of binding of [(IM)+(SA)-] with the cancer marker (1M17), which has substantial application for drug designing. The investigational studies were supplemented through time-dependent density functional theory (TD-DFT) using basis set B3LYP/6-311G**. Through DFT calculations, HOMO→LUMO electronic energy gap (Δ E ) was obtained.
Collapse
Affiliation(s)
- Maidul Islam
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Ishaat M Khan
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Sonam Shakya
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Nisat Alam
- Department of Bio-chemistry, School of Chemical and Life Science, New Delhi, India
| |
Collapse
|
2
|
Basha MT, Alghanmi RM, Soliman SM, Abdel-Rahman LH, Shehata MR, Alharby WJ. Synthesis, spectroscopic characterizations, biological activity, DNA-binding investigation combined with DFT studies of new proton-transfer complexes of 2,4-diaminopyrimidine with 2,6-dichloro-4-nitrophenol and 3,5-dinitrosalicylic acid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
3
|
Basha MT, Alghanmi RM, Soliman SM, Alharby WJ. Synthesis, spectroscopic, thermal, structural characterization and DFT/TD-DFT computational studies for charge transfer complexes of 2,4-diamino pyrimidine with some benzoquinone acceptors. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113210] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Synthesis, Structural Characterization, and Antibacterial Activity of Novel Erbium(III) Complex Containing Antimony. Bioinorg Chem Appl 2018; 2018:4313197. [PMID: 29755509 PMCID: PMC5884401 DOI: 10.1155/2018/4313197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/29/2018] [Indexed: 11/17/2022] Open
Abstract
The novel 3D edta-linked heterometallic complex [Sb2Er(edta)2(H2O)4]NO3·4H2O (H4edta = ethylenediaminetetraacetic acid) was synthesized and characterized by elemental analyses, single-crystal X-ray diffraction, powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermal analysis. The complex crystallizes in the monoclinic system with space group Pm. In the complex, each erbium(III) ion is connected with antimony(III) ions bridging by four carboxylic oxygen atoms, and in each [Sb(edta)]- anion, the antimony(III) ion is hexacoordinated by two nitrogen atoms and four oxygen atoms from the edta4- ions, together with a lone electron pair at the equatorial position. The erbium(III) ion is octacoordinated by four oxygen atoms from four different edta4- ions and four oxygen atoms from the coordinated water molecules. The carboxylate bridges between antimony and erbium atoms form a planar array, parallel to the (1 0 0) plane. There is an obvious weak interaction between antimony atom and oxygen atom of the carboxyl group from the adjacent layer. The degradation of the complex proceeds in several steps and the water molecules and ligands are successively emitted, and the residues of the thermal decomposition are antimonous oxide and erbium(III) oxide. The complex was evaluated for its antimicrobial activities by agar diffusion method, and it has good activities against the test bacterial organisms.
Collapse
|
5
|
Ozturk I, Yarar S, Banti C, Kourkoumelis N, Chrysouli M, Manoli M, Tasiopoulos A, Hadjikakou S. QSAR studies on antimony(III) halide complexes with N-substituted thiourea derivatives. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Karacan MS, Rodionova MV, Tunç T, Venedik KB, Mamaş S, Shitov AV, Zharmukhamedov SK, Klimov VV, Karacan N, Allakhverdiev SI. Characterization of nineteen antimony(III) complexes as potent inhibitors of photosystem II, carbonic anhydrase, and glutathione reductase. PHOTOSYNTHESIS RESEARCH 2016; 130:167-182. [PMID: 26932934 DOI: 10.1007/s11120-016-0236-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/12/2016] [Indexed: 05/16/2023]
Abstract
Nineteen antimony(III) complexes were obtained and examined as possible herbicides. Six of these were synthesized for the first time, and their structures were identified using elemental analyses, 1H-NMR, 13C-NMR, FTIR, LCMS, magnetic susceptibility, and conductivity measurement techniques. For the nineteen examined antimony(III) complexes their most-stable forms were determined by DFT/B3LYP/LanL2DZ calculation method. These compounds were examined for effects on photosynthetic electron transfer and carbonic anhydrase activity of photosystem II, and glutathione reductase from chloroplast as well were investigated. Our results indicated that all antimony(III) complexes inhibited glutathione reductase activity of chloroplast. A number of these also exhibited good inhibitory efficiency of the photosynthetic and carbonic anhydrase activity of Photosystem II.
Collapse
Affiliation(s)
- Mehmet Sayım Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara, Turkey.
| | - Margarita V Rodionova
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276
| | - Turgay Tunç
- Department of Chemistry and Process Engineering, Engineering and Architecture Faculty, Ahi Evran University, Kırşehir, Turkey
| | - Kübra Begüm Venedik
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara, Turkey
| | - Serhat Mamaş
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara, Turkey
| | - Alexandr V Shitov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, Russia, 142290
| | - Sergei K Zharmukhamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, Russia, 142290
| | - Vyacheslav V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, Russia, 142290
| | - Nurcan Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara, Turkey.
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276.
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, Russia, 142290.
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, Russia, 119991.
| |
Collapse
|