1
|
Kaňa R, Šedivá B, Prášil O. Microdomains heterogeneity in the thylakoid membrane proteins visualized by super-resolution microscopy. PHOTOSYNTHETICA 2023; 61:483-491. [PMID: 39649485 PMCID: PMC11586846 DOI: 10.32615/ps.2023.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 12/10/2024]
Abstract
The investigation of spatial heterogeneity within the thylakoid membrane (TM) proteins has gained increasing attention in photosynthetic research. The recent advances in live-cell imaging have allowed the identification of heterogeneous organisation of photosystems in small cyanobacterial cells. These sub-micrometre TM regions, termed microdomains in cyanobacteria, exhibit functional similarities with granal (Photosystem II dominant) and stromal (Photosystem I dominant) regions observed in TM of higher plants. This study delves into microdomain heterogeneity using super-resolution Airyscan-based microscopy enhancing resolution to approximately ~125 nm in x-y dimension. The new data reveal membrane areas rich in Photosystem I within the inner TM rings. Moreover, we identified analogous dynamics in the mobility of Photosystem II and phycobilisomes; countering earlier models that postulated differing mobility of these complexes. These novel findings thus hold significance for our understanding of photosynthesis regulation, particularly during state transitions.
Collapse
Affiliation(s)
- R. Kaňa
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - B. Šedivá
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - O. Prášil
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| |
Collapse
|
2
|
Canonico M, Konert G, Crepin A, Šedivá B, Kaňa R. Gradual Response of Cyanobacterial Thylakoids to Acute High-Light Stress-Importance of Carotenoid Accumulation. Cells 2021; 10:cells10081916. [PMID: 34440685 PMCID: PMC8393233 DOI: 10.3390/cells10081916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 02/02/2023] Open
Abstract
Light plays an essential role in photosynthesis; however, its excess can cause damage to cellular components. Photosynthetic organisms thus developed a set of photoprotective mechanisms (e.g., non-photochemical quenching, photoinhibition) that can be studied by a classic biochemical and biophysical methods in cell suspension. Here, we combined these bulk methods with single-cell identification of microdomains in thylakoid membrane during high-light (HL) stress. We used Synechocystis sp. PCC 6803 cells with YFP tagged photosystem I. The single-cell data pointed to a three-phase response of cells to acute HL stress. We defined: (1) fast response phase (0–30 min), (2) intermediate phase (30–120 min), and (3) slow acclimation phase (120–360 min). During the first phase, cyanobacterial cells activated photoprotective mechanisms such as photoinhibition and non-photochemical quenching. Later on (during the second phase), we temporarily observed functional decoupling of phycobilisomes and sustained monomerization of photosystem II dimer. Simultaneously, cells also initiated accumulation of carotenoids, especially ɣ–carotene, the main precursor of all carotenoids. In the last phase, in addition to ɣ-carotene, we also observed accumulation of myxoxanthophyll and more even spatial distribution of photosystems and phycobilisomes between microdomains. We suggest that the overall carotenoid increase during HL stress could be involved either in the direct photoprotection (e.g., in ROS scavenging) and/or could play an additional role in maintaining optimal distribution of photosystems in thylakoid membrane to attain efficient photoprotection.
Collapse
Affiliation(s)
- Myriam Canonico
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - Grzegorz Konert
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
| | - Aurélie Crepin
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
| | - Barbora Šedivá
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
| | - Radek Kaňa
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (M.C.); (G.K.); (A.C.); (B.Š.)
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31a, 370 05 České Budějovice, Czech Republic
- Correspondence:
| |
Collapse
|
3
|
Kaňa R, Steinbach G, Sobotka R, Vámosi G, Komenda J. Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane. Life (Basel) 2020; 11:life11010015. [PMID: 33383642 PMCID: PMC7823997 DOI: 10.3390/life11010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 01/08/2023] Open
Abstract
Biological membranes were originally described as a fluid mosaic with uniform distribution of proteins and lipids. Later, heterogeneous membrane areas were found in many membrane systems including cyanobacterial thylakoids. In fact, cyanobacterial pigment-protein complexes (photosystems, phycobilisomes) form a heterogeneous mosaic of thylakoid membrane microdomains (MDs) restricting protein mobility. The trafficking of membrane proteins is one of the key factors for long-term survival under stress conditions, for instance during exposure to photoinhibitory light conditions. However, the mobility of unbound 'free' proteins in thylakoid membrane is poorly characterized. In this work, we assessed the maximal diffusional ability of a small, unbound thylakoid membrane protein by semi-single molecule FCS (fluorescence correlation spectroscopy) method in the cyanobacterium Synechocystis sp. PCC6803. We utilized a GFP-tagged variant of the cytochrome b6f subunit PetC1 (PetC1-GFP), which was not assembled in the b6f complex due to the presence of the tag. Subsequent FCS measurements have identified a very fast diffusion of the PetC1-GFP protein in the thylakoid membrane (D = 0.14 - 2.95 µm2s-1). This means that the mobility of PetC1-GFP was comparable with that of free lipids and was 50-500 times higher in comparison to the mobility of proteins (e.g., IsiA, LHCII-light-harvesting complexes of PSII) naturally associated with larger thylakoid membrane complexes like photosystems. Our results thus demonstrate the ability of free thylakoid-membrane proteins to move very fast, revealing the crucial role of protein-protein interactions in the mobility restrictions for large thylakoid protein complexes.
Collapse
Affiliation(s)
- Radek Kaňa
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
- Correspondence:
| | - Gábor Steinbach
- Institute of Biophysics, Biological Research Center, 6726 Szeged, Hungary;
| | - Roman Sobotka
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Josef Komenda
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
| |
Collapse
|
4
|
Calzadilla PI, Kirilovsky D. Revisiting cyanobacterial state transitions. Photochem Photobiol Sci 2020; 19:585-603. [DOI: 10.1039/c9pp00451c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Critical evaluation of “new” and “old” models of cyanobacterial state transitions. Phycobilisome and membrane contributions to this mechanism are addressed. The signaling transduction pathway is discussed.
Collapse
Affiliation(s)
- Pablo I. Calzadilla
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| | - Diana Kirilovsky
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| |
Collapse
|
5
|
Kirilovsky D. Modulating Energy Transfer from Phycobilisomes to Photosystems: State Transitions and OCP-Related Non-Photochemical Quenching. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
On the interface of light-harvesting antenna complexes and reaction centers in oxygenic photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148079. [PMID: 31518567 DOI: 10.1016/j.bbabio.2019.148079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
Abstract
Photosynthetic pigment-protein complexes (PPCs) accomplish light-energy capture and photochemistry in natural photosynthesis. In this review, we examine three pigment protein complexes in oxygenic photosynthesis: light-harvesting antenna complexes and two reaction centers: Photosystem II (PSII), and Photosystem I (PSI). Recent technological developments promise unprecedented insights into how these multi-component protein complexes are assembled into higher order structures and thereby execute their function. Furthermore, the interfacial domain between light-harvesting antenna complexes and PSII, especially the potential roles of the structural loops from CP29 and the PB-loop of ApcE in higher plant and cyanobacteria, respectively, are discussed. It is emphasized that the structural nuances are required for the structural dynamics and consequently for functional regulation in response to an ever-changing and challenging environment.
Collapse
|
7
|
Strašková A, Steinbach G, Konert G, Kotabová E, Komenda J, Tichý M, Kaňa R. Pigment-protein complexes are organized into stable microdomains in cyanobacterial thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148053. [PMID: 31344362 DOI: 10.1016/j.bbabio.2019.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 02/03/2023]
Abstract
Thylakoids are the place of the light-photosynthetic reactions. To gain maximal efficiency, these reactions are conditional to proper pigment-pigment and protein-protein interactions. In higher plants thylakoids, the interactions lead to a lateral asymmetry in localization of protein complexes (i.e. granal/stromal thylakoids) that have been defined as a domain-like structures characteristic by different biochemical composition and function (Albertsson P-Å. 2001,Trends Plant Science 6: 349-354). We explored this complex organization of thylakoid pigment-proteins at single cell level in the cyanobacterium Synechocystis sp. PCC 6803. Our 3D confocal images captured heterogeneous distribution of all main photosynthetic pigment-protein complexes (PPCs), Photosystem I (fluorescently tagged by YFP), Photosystem II and Phycobilisomes. The acquired images depicted cyanobacterial thylakoid membrane as a stable, mosaic-like structure formed by microdomains (MDs). These microcompartments are of sub-micrometer in sizes (~0.5-1.5 μm), typical by particular PPCs ratios and importantly without full segregation of observed complexes. The most prevailing MD is represented by MD with high Photosystem I content which allows also partial separation of Photosystems like in higher plants thylakoids. We assume that MDs stability (in minutes) provides optimal conditions for efficient excitation/electron transfer. The cyanobacterial MDs thus define thylakoid membrane organization as a system controlled by co-localization of three main PPCs leading to formation of thylakoid membrane mosaic. This organization might represent evolutional and functional precursor for the granal/stromal spatial heterogeneity in photosystems that is typical for higher plant thylakoids.
Collapse
Affiliation(s)
- A Strašková
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - G Steinbach
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - G Konert
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - E Kotabová
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - J Komenda
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - M Tichý
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - R Kaňa
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
8
|
Konert G, Steinbach G, Canonico M, Kaňa R. Protein arrangement factor: a new photosynthetic parameter characterizing the organization of thylakoid membrane proteins. PHYSIOLOGIA PLANTARUM 2019; 166:264-277. [PMID: 30817002 DOI: 10.1111/ppl.12952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 05/18/2023]
Abstract
A proper spatial distribution of photosynthetic pigment-protein complexes - PPCs (photosystems, light-harvesting antennas) is crucial for photosynthesis. In plants, photosystems I and II (PSI and PSII) are heterogeneously distributed between granal and stromal thylakoids. Here we have described similar heterogeneity in the PSI, PSII and phycobilisomes (PBSs) distribution in cyanobacteria thylakoids into microdomains by applying a new image processing method suitable for the Synechocystis sp. PCC6803 strain with yellow fluorescent protein-tagged PSI. The new image processing method is able to analyze the fluorescence ratios of PPCs on a single-cell level, pixel per pixel. Each cell pixel is plotted in CIE1931 color space by forming a pixel-color distribution of the cell. The most common position in CIE1931 is then defined as protein arrangement (PA) factor with xy coordinates. The PA-factor represents the most abundant fluorescence ratio of PSI/PSII/PBS, the 'mode color' of studied cell. We proved that a shift of the PA-factor from the center of the cell-pixel distribution (the 'median' cell color) is an indicator of the presence of special subcellular microdomain(s) with a unique PSI/PSII/PBS fluorescence ratio in comparison to other parts of the cell. Furthermore, during a 6-h high-light (HL) treatment, 'median' and 'mode' color (PA-factor) of the cell changed similarly on the population level, indicating that such microdomains with unique PSI/PSII/PBS fluorescence were not formed during HL (i.e. fluorescence changed equally in the whole cell). However, the PA-factor was very sensitive in characterizing the fluorescence ratios of PSI/PSII/PBS in cyanobacterial cells during HL by depicting a 4-phase acclimation to HL, and their physiological interpretation has been discussed.
Collapse
Affiliation(s)
- Grzegorz Konert
- Institute of Microbiology, CAS, Centrum Algatech, Třeboň, Czech Republic
| | - Gabor Steinbach
- Institute of Microbiology, CAS, Centrum Algatech, Třeboň, Czech Republic
| | - Myriam Canonico
- Institute of Microbiology, CAS, Centrum Algatech, Třeboň, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology, CAS, Centrum Algatech, Třeboň, Czech Republic
| |
Collapse
|
9
|
Nozue S, Katayama M, Terazima M, Kumazaki S. Comparative study of thylakoid membranes in terminal heterocysts and vegetative cells from two cyanobacteria, Rivularia M-261 and Anabaena variabilis, by fluorescence and absorption spectral microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:742-749. [DOI: 10.1016/j.bbabio.2017.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/15/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|
10
|
Acuña AM, Kaňa R, Gwizdala M, Snellenburg JJ, van Alphen P, van Oort B, Kirilovsky D, van Grondelle R, van Stokkum IHM. A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions. PHOTOSYNTHESIS RESEARCH 2016; 130:237-249. [PMID: 27016082 PMCID: PMC5054063 DOI: 10.1007/s11120-016-0248-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/15/2016] [Indexed: 05/28/2023]
Abstract
Cyanobacteria have developed responses to maintain the balance between the energy absorbed and the energy used in different pigment-protein complexes. One of the relatively rapid (a few minutes) responses is activated when the cells are exposed to high light intensities. This mechanism thermally dissipates excitation energy at the level of the phycobilisome (PB) antenna before it reaches the reaction center. When exposed to low intensities of light that modify the redox state of the plastoquinone pool, the so-called state transitions redistribute energy between photosystem I and II. Experimental techniques to investigate the underlying mechanisms of these responses, such as pulse-amplitude modulated fluorometry, are based on spectrally integrated signals. Previously, a spectrally resolved fluorometry method has been introduced to preserve spectral information. The analysis method introduced in this work allows to interpret SRF data in terms of species-associated spectra of open/closed reaction centers (RCs), (un)quenched PB and state 1 versus state 2. Thus, spectral differences in the time-dependent fluorescence signature of photosynthetic organisms under varying light conditions can be traced and assigned to functional emitting species leading to a number of interpretations of their molecular origins. In particular, we present evidence that state 1 and state 2 correspond to different states of the PB-PSII-PSI megacomplex.
Collapse
Affiliation(s)
- Alonso M Acuña
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Radek Kaňa
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Opatovický Mlýn, 379 81, Třeboň, Czech Republic
| | - Michal Gwizdala
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Joris J Snellenburg
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Pascal van Alphen
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
| | - Bart van Oort
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Rienk van Grondelle
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Stirbet A. The slow phase of chlorophyll a fluorescence induction in silico: Origin of the S-M fluorescence rise. PHOTOSYNTHESIS RESEARCH 2016; 130:193-213. [PMID: 26995191 DOI: 10.1007/s11120-016-0243-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
In higher plants, algae, and cyanobacteria, chlorophyll (Chl) a fluorescence induction (ChlFI) has a fast (under a second) increasing OJIP phase and a slow (few minutes) PS(M)T phase, where O is for origin, the minimum fluorescence, J and I for intermediate levels, P for peak, S for a semi-steady state, M for a maximum (which is sometimes missing), and T for the terminal steady-state level. We have used a photosynthesis model of Ebenhöh et al. (Philos Trans R Soc B, 2014, doi: 10.1098/rstb.2013.0223 ) in an attempt to simulate the slow PS(M)T phase and to determine the origin of the S-M rise in Chlamydomonas (C.) reinhardtii cells. Our experiments in silico show that a slow fluorescence S-M rise (as that observed, e.g., by Kodru et al. (Photosynth Res 125:219-231, 2015) can be simulated only if the photosynthetic samples are initially in a so-called "state 2," when the absorption cross section (CS) of Photosystem II (PSII) is lower than that of PSI, and Chl a fluorescence is low (see, e.g., a review by Papageorgiou and Govindjee (J Photochem Photobiol B 104:258-270, 2011). In this case, simulations show that illumination induces a state 2 (s2) to state 1 (s1) transition (qT21), and a slow S-M rise in the simulated ChlFI curve, since the fluorescence yield is known to be higher in s1, when CS of PSII is larger than that of PSI. Additionally, we have analyzed how light intensity and several photosynthetic processes influence the degree of this qT21, and thus the relative amplitude of the simulated S-M phase. A refinement of the photosynthesis model is, however, necessary in order to obtain a better fit of the simulation data with the measured ChlFI curves.
Collapse
|
12
|
Steinbach G, Kaňa R. Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:258-63. [PMID: 27050040 DOI: 10.1017/s1431927616000556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (through Time Controller offered by Olympus or Experiment Designer offered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with the Cell⊕Finder software was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) the Cell⊕Finder software with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser. Cell⊕Finder can be downloaded from http://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity in Synechocystis sp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.
Collapse
Affiliation(s)
- Gábor Steinbach
- Institute of Microbiology,Academy of Sciences,Centrum Algatech,Novohradska 237 - Opatovicky mlýn,CZ 379 01 Třeboň,Czech Republic
| | - Radek Kaňa
- Institute of Microbiology,Academy of Sciences,Centrum Algatech,Novohradska 237 - Opatovicky mlýn,CZ 379 01 Třeboň,Czech Republic
| |
Collapse
|
13
|
Zhang H, Liu H, Lu Y, Wolf NR, Gross ML, Blankenship RE. Native mass spectrometry and ion mobility characterize the orange carotenoid protein functional domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:734-9. [PMID: 26921809 DOI: 10.1016/j.bbabio.2016.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/10/2016] [Accepted: 02/23/2016] [Indexed: 01/05/2023]
Abstract
Orange Carotenoid Protein (OCP) plays a unique role in protecting many cyanobacteria from light-induced damage. The active form of OCP is directly involved in energy dissipation by binding to the phycobilisome (PBS), the major light-harvesting complex in cyanobacteria. There are two structural modules in OCP, an N-terminal domain (NTD), and a C-terminal domain (CTD), which play different functional roles during the OCP-PBS quenching cycle. Because of the quasi-stable nature of active OCP, structural analysis of active OCP has been lacking compared to its inactive form. In this report, partial proteolysis was used to generate two structural domains, NTD and CTD, from active OCP. We used multiple native mass spectrometry (MS) based approaches to interrogate the structural features of the NTD and the CTD. Collisional activation and ion mobility analysis indicated that the NTD releases its bound carotenoid without forming any intermediates and the CTD is resistant to unfolding upon collisional energy ramping. The unfolding intermediates observed in inactive intact OCP suggest that it is the N-terminal extension and the NTD-CTD loop that lead to the observed unfolding intermediates. These combined approaches extend the knowledge of OCP photo-activation and structural features of OCP functional domains. Combining native MS, ion mobility, and collisional activation promises to be a sensitive new approach for studies of photosynthetic protein-pigment complexes.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haijun Liu
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yue Lu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nathan R Wolf
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|