1
|
Ertuğrul T, Tütüncü Ş, Delice N, Özdemir B. Histochemical and immunohistochemical investigation of the number and localization of mast cells in the feline tongue. Anat Histol Embryol 2024; 53:e13069. [PMID: 38831730 DOI: 10.1111/ahe.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
This is the first study to describe the subtypes, number and distribution of mast cells (MC) in cat tongue by histochemical and immunohistochemical methods. Six male adult felines' tongue tissue samples consist of the study's material. Samples were fixed in 10% formaldehyde. MC number and distribution in the feline tongue were assessed using toluidine blue. Also, sections taken from blocks were stained in alcian blue/safranin O (AB/SO) combined dyes to determine the MC subtypes. The Streptavidin biotin complex method using anti-chymase and anti-tryptase primary antibodies was used for immunohistochemistry. Metachromatic MCs were mainly observed in the lamina propria close to the multilayered keratinized stratified squamous epithelium. The high number of MCs in this region may be because the dorsal surface of the tongue plays an essential role in the defence system of tongue tissue and, thus, of the body as a whole. Additionally, the number of MCs stained with AB (+) (1.7 ± 0.08) in the feline tongue was statistically higher than those with SO (+) (0.18 ± 0.02). This might be interpreted as an indication that MC heterogeneity may be due not only to their staining properties but also to their localization. It is also conceivable that the high histamine content may be a factor in this. Tryptase-positive MCs were found in the loose connective tissue around blood vessels, between the glands, as solitary cells, or in groups of several cells. Chymase-positive MCs were observed more individually rather than in groups. Moreover, chymase-positive MCs were detected to be located in the filiform papillae subepithelial and in the blood vessels' immediate vicinity. Animals often lick themselves to clean themselves and promote healing. For this reason, it is very important to protect the tongue, which is in direct contact with the external environment, against foreign agents. Considering both the functional and protective properties of the tongue, we concluded that MCs may play a role in oral cavity immunity and protective effect.
Collapse
Affiliation(s)
- Tuğrul Ertuğrul
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Şerife Tütüncü
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Nurcan Delice
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Bengül Özdemir
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
2
|
Zhou X, Ying X, Wu L, Liu L, Wang Y, He Y, Han M. Research Progress of Natural Product Photosensitizers in Photodynamic Therapy. PLANTA MEDICA 2024; 90:368-379. [PMID: 38423033 DOI: 10.1055/a-2257-9194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Photodynamic therapy is a noninvasive cancer treatment that utilizes photosensitizers to generate reactive oxygen species upon light exposure, leading to tumor cell apoptosis. Although photosensitizers have shown efficacy in clinical practice, they are associated with certain disadvantages, such as a certain degree of toxicity and limited availability. Recent studies have shown that natural product photosensitizers offer promising options due to their low toxicity and potential therapeutic effects. In this review, we provide a summary and evaluation of the current clinical photosensitizers that are commonly used and delve into the anticancer potential of natural product photosensitizers like psoralens, quinonoids, chlorophyll derivatives, curcumin, chrysophanol, doxorubicin, tetracyclines, Leguminosae extracts, and Lonicera japonica extract. The emphasis is on their phototoxicity, pharmacological benefits, and effectiveness against different types of diseases. Novel and more effective natural product photosensitizers for future clinical application are yet to be explored in further research. In conclusion, natural product photosensitizers have potential in photodynamic therapy and represent a promising area of research for cancer treatment.
Collapse
Affiliation(s)
- Xiaoxia Zhou
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Xufang Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Liqin Liu
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Ying Wang
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Ying He
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Cerro PA, Mascaraque M, Gallego-Rentero M, Almenara-Blasco M, Nicolás-Morala J, Santiago JL, González S, Gracia-Cazaña T, Juarranz Á, Gilaberte Y. Tumor microenvironment in non-melanoma skin cancer resistance to photodynamic therapy. Front Oncol 2022; 12:970279. [PMID: 36338755 PMCID: PMC9634550 DOI: 10.3389/fonc.2022.970279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Non-melanoma skin cancer has recently seen an increase in prevalence, and it is estimated that this grow will continue in the coming years. In this sense, the importance of therapy effectiveness has increased, especially photodynamic therapy. Photodynamic therapy has attracted much attention as a minimally invasive, selective and repeatable approach for skin cancer treatment and prevention. Although its high efficiency, this strategy has also faced problems related to tumor resistance, where the tumor microenvironment has gained a well-deserved role in recent years. Tumor microenvironment denotes a wide variety of elements, such as cancer-associated fibroblasts, immune cells, endothelial cells or the extracellular matrix, where their interaction and the secretion of a wide diversity of cytokines. Therefore, the need of designing new strategies targeting elements of the tumor microenvironment to overcome the observed resistance has become evident. To this end, in this review we focus on the role of cancer-associated fibroblasts and tumor-associated macrophages in the resistance to photodynamic therapy. We are also exploring new approaches consisting in the combination of new and old drugs targeting these cells with photodynamic therapy to enhance treatment outcomes of non-melanoma skin cancer.
Collapse
Affiliation(s)
- Paulina A. Cerro
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Marta Mascaraque
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - María Gallego-Rentero
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Manuel Almenara-Blasco
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Jimena Nicolás-Morala
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Juan Luis Santiago
- Servicio de Dermatología, Hospital General de Ciudad Real, Ciudad Real, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Universidad de Alcalá, Madrid, Spain
| | - Tamara Gracia-Cazaña
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Ángeles Juarranz
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| | - Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| |
Collapse
|
4
|
Zigmundo GCDO, Schuch LF, Schmidt TR, Silveira FM, Martins MAT, Carrard VC, Martins MD, Wagner VP. 4-nitroquinoline-1-oxide (4NQO) induced oral carcinogenesis: A systematic literature review. Pathol Res Pract 2022; 236:153970. [PMID: 35709549 DOI: 10.1016/j.prp.2022.153970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Based on a critical review of published studies, we aimed to develop a good practice guide for using 4-nitroquinoline-1-oxide (4NQO) as an inducer of oral carcinogenesis in Wistar rats. DESIGN A systematic search was performed on Medline Ovid, PubMed, Embase, Web of Science, and Scopus databases. The SYRCLE's risk of bias tool was used to assess the quality of the studies. RESULTS Thirty-five articles met the selection criteria; 22 (62.9%) of them administered 4NQO systemically in drinking water, with a mean concentration of 30.2 ppm (SD±15.9) and during a mean period of 20.8 (SD±7.8) weeks. The other 13 (37.1%) studies performed topical applications of 4NQO painting the oral mucosa of the animals three times a week (100%) with a mean period of administration of 16.8 (SD±7.0) weeks. Different 4NQO concentrations used for other periods achieved significant tumor development. Most studies didn't perform quantitative clinical analysis, and the histopathological diagnosis/grading criteria varied considerably. CONCLUSIONS A poor description of solution care, adverse effects, and the number of losses were observed, and the reporting of these features needs to be improved. Suggestions to guide the development of future research are provided.
Collapse
Affiliation(s)
| | - Lauren Frenzel Schuch
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Tuany Rafaeli Schmidt
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Martins Silveira
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Molecular Pathology Area, School of Dentistry, Universidad de la República, Montevideo, Uruguay
| | | | - Vinicius Coelho Carrard
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Vivian Petersen Wagner
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK.
| |
Collapse
|
5
|
Olek M, Machorowska-Pieniążek A, Olek K, Cieślar G, Kawczyk-Krupka A. Photodynamic therapy in the treatment of oral squamous cell carcinoma - The state of the art in preclinical research on the animal model. Photodiagnosis Photodyn Ther 2021; 34:102236. [PMID: 33639322 DOI: 10.1016/j.pdpdt.2021.102236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Oral cavity squamous cell carcinoma is a common cancer of the head and neck region. Due to the frequency of diagnoses, high rate of mortality, mutilating nature of classic therapy and numerous complications, new methods of treatment are being sought. One promising solution for treatment that is utilized in many fields of oncology is photodynamic therapy. The purpose of this article is to present a general overview of the use of photodynamic therapy in preclinical in vivo studies on the animal model. MATERIAL AND METHODS A literature search for articles corresponding to the topic of this review was performed using the PubMed and MEDLINE databases using the following keywords: 'oral cavity squamous cell carcinoma,' 'photodynamic therapy,' 'photosensitizer(s),' 'in vivo', and 'animal model'. RESULTS Based on the literature review, the two most used animal models can be distinguished in research on the use of photodynamic therapy for oral squamous cell carcinoma. Studies mainly focus on the evaluation of tumor growth inhibition after using therapies with various photosensitizers on the murine or hamster cheek pouch models. CONCLUDING REMARKS The animal model is a part of preclinical research. Unfortunately, each of the models has its limitations, so it is difficult to extrapolate the results to clinical trials.
Collapse
Affiliation(s)
- Marcin Olek
- Department of Orthodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | | | - Katarzyna Olek
- Department of Dental Propedeutics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland.
| |
Collapse
|
6
|
Majerník M, Jendželovský R, Fedoročko P. Potentiality, Limitations, and Consequences of Different Experimental Models to Improve Photodynamic Therapy for Cancer Treatment in Relation to Antiangiogenic Mechanism. Cancers (Basel) 2020; 12:cancers12082118. [PMID: 32751731 PMCID: PMC7463805 DOI: 10.3390/cancers12082118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
The relevance of experimentally gained information represents a long-term debating issue in the field of molecular biology research. The loss of original conditions in the in vitro environment affects various biological mechanisms and cellular interactions. Consequently, some biochemical mechanisms are lost or critically altered. Analyses in these modified conditions could, therefore, distort the relevancy of experimentally gained information. In some cases, the similarities with original conditions are so small that utilization of simpler in vitro models seems impossible, or could occur in a very limited way. To conclude, the study of more complex phenomena places higher demands on the complexity of the experimental model. The latest information highlights the fact that the tumor angiogenesis mechanism has very complex features. This complexity can be associated with a wide range of angiogenic factors expressed by a variety of malignant and non-malignant cells. Our article summarizes the results from various experimental models that were utilized to analyze a photodynamic therapy effect on tumor angiogenic mechanisms. Additionally, based on the latest information, we present the most important attributes and limitations of utilized experimental models. We also evaluate the essential problems associated with angiogenic mechanism induction after photodynamic therapy application.
Collapse
|
7
|
Shen D, Wei J, Chen L, Shen X, Wang L. Besides Photothermal Effects, Low-Level CO 2 Laser Irradiation Can Potentiate Skin Microcirculation Through Photobiomodulation Mechanisms. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 37:151-158. [PMID: 31050951 DOI: 10.1089/photob.2018.4570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Improvement of microcirculation is one of the important mechanisms of low-level laser therapy (LLLT) to treat some diseases such as wound healing. Most previous studies have been carried out with multiple lasers other than the 10,600-nm CO2 laser. Recently, the CO2 laser has been used not only as a tool for excision of soft tissues but also for therapeutic applications. Objective: To study whether low-level CO2 laser irradiation can influence microcirculation and further explore the underlying mechanisms. Methods: Seventy-milliwatt (70-mW) CO2 lasers irradiated the forearms of 12 participants and skin blood perfusion (SkBP) was measured with a laser speckle imager. The thermal effect of irradiation was evaluated by measuring the irradiated skin in vivo and the exposed cell suspensions in vitro. Extracellular adenosine triphosphate (eATP) of the human mast cell line (HMC-1) is assessed by luciferin-luciferase assay to explore the potential mechanisms. Results: Irradiation caused dose-dependent increase in SkBP. At a medium dose of 262 J/cm2, SkBP reached its maximum value at 195.8% ± 18.6% of the baseline (n = 12, p < 0.01). Such laser irradiation had a mild thermal effect, heating local skin temperature (SkT) by 6.1°C ± 0.3°C (n = 10) and warming cell suspensions by 4.5°C ± 0.8°C (n = 6). Irradiation dose-dependently lowered eATP levels of HMC-1 cells in vitro. At a medium dose of 262 J/cm2, eATP levels declined to the minimum at 74.8% ± 5.5% of the baseline (n = 12, p < 0.01). This downregulation effect could be significantly inhibited by 100-μM ARL67156, a nonspecific ecto-ATPase inhibitor. On the contrary, heating itself slightly raised the level of eATP. Conclusions: Low-level CO2 laser irradiation can improve microcirculation. Besides the thermal effect, regulation of extravascular eATP by the photobiomodulation mechanism may be involved. This implies that CO2 lasers might be used in LLLT.
Collapse
Affiliation(s)
- Dan Shen
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianzi Wei
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianjing Chen
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueyong Shen
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,2 Shanghai Research Center for Acupuncture and Meridians, Shanghai, China.,3 Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, Shanghai, China
| | - Lina Wang
- 1 School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,2 Shanghai Research Center for Acupuncture and Meridians, Shanghai, China.,3 Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, Shanghai, China
| |
Collapse
|
8
|
Vascular alterations after photodynamic therapy mediated by 5-aminolevulinic acid in oral leukoplakia. Lasers Med Sci 2016; 32:379-387. [DOI: 10.1007/s10103-016-2127-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
|