1
|
Wu M, Liu Y, Zhu X, Zhang X, Kong Q, Lu W, Yuan X, Liu Y, Lu K, Dai Y, Zhang B. Advances in i-motif structures: Stability, gene expression, and therapeutic applications. Int J Biol Macromol 2025:143555. [PMID: 40294675 DOI: 10.1016/j.ijbiomac.2025.143555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/12/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
The i-motif, a cytosine-rich DNA structure formed under acidic conditions, plays a pivotal role in regulating gene expression and holds significant therapeutic potential across various diseases. Found in the promoter regions of oncogenes such as Bcl-2, C-MYC, and KRAS, i-motifs dynamically interact with transcription factors and ligands to modulate oncogene activity. Their pH-sensitive nature enables innovative applications, including cellular pH sensors like the "i-switch" and drug delivery platforms such as DNA hydrogels that release therapeutics in acidic tumor microenvironments. However, challenges remain in developing specific ligands and detection methods. Advances in nanotechnology and multi-target therapies highlight the transformative potential of i-motifs in precision medicine. This review underscores the importance of i-motifs as therapeutic targets and tools, bridging fundamental research with clinical applications in oncology, metabolic disorders, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengqing Wu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yang Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China; School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiao Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiaoke Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Qinghong Kong
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Wei Lu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiao Yuan
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yunlai Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Keyu Lu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| | - Yangxue Dai
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| | - Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| |
Collapse
|
2
|
Deep A, Bhat A, Perumal V, Kumar S. i-Motifs as regulatory switches: Mechanisms and implications for gene expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102474. [PMID: 40034208 PMCID: PMC11875178 DOI: 10.1016/j.omtn.2025.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
i-Motifs, cytosine-tetrads, or C-quadruplexes are intercalated structures formed by base pairing between cytosine and protonated cytosine. These structures demonstrate increased stability in acidic environments due to the presence of the latter cytosinium group (i.e., the protonated cytosine). Research has shown that i-motifs are typically disrupted or destabilized at physiological pH levels (7.0-7.4), which makes their potential formation in the nucleus and their biological relevance uncertain. However, in 2018, it was demonstrated that i-motifs exist within the nucleus under physiological conditions, with various intracellular factors contributing to their stability. Identification of i-motifs in the nucleus and their association with gene promoters-particularly with those of proto-oncogenes-has generated significant interest in their potential regulatory functions. Additionally, recent studies suggest that i-motifs may function as switches for gene expression, influencing gene regulation through their folding and stabilization or unfolding and destabilization. This review aims to delve into these mechanisms to improve our understanding of the physiological significance of i-motifs.
Collapse
Affiliation(s)
- Auroni Deep
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | - Anjali Bhat
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | - Vivekanandan Perumal
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| |
Collapse
|
3
|
Roxo C, Pasternak A. Switching off cancer - An overview of G-quadruplex and i-motif functional role in oncogene expression. Bioorg Med Chem Lett 2025; 116:130038. [PMID: 39577601 DOI: 10.1016/j.bmcl.2024.130038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
DNA can self-assemble into G-quadruplexes and i-motifs non-canonical secondary structures that are formed by guanine-rich sequences and the cytosine-rich sequences, respectively. G-quadruplexes and i-motifs have been closely linked to cancer development since they can regulate genes expression in various promoter regions. Moreover, these structures have gained attention as viable targets for anticancer treatments because of their physicochemical properties and gene-regulatory functions. As a result, they are attractive molecular targets for innovative cancer therapies. Herein, we review the G-quadruplex and i-motif structures, their dynamic relationship in biological systems, as well as their significance in cancer biology and the potential therapeutic approaches. Furthermore, we also address the simultaneous and mutually exclusive formation of G-quadruplex and i-motif structures in cellular environment.
Collapse
Affiliation(s)
- Carolina Roxo
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
4
|
Chan AM, Ebrahimi SB, Samanta D, Leshchev D, Nijhawan AK, Hsu DJ, Ho MB, Ramani N, Kosheleva I, Henning R, Mirkin CA, Kohlstedt KL, Chen LX. Early Folding Dynamics of i-Motif DNA Revealed by pH-Jump Time-Resolved X-ray Solution Scattering. J Am Chem Soc 2024; 146:33743-33752. [PMID: 39607431 DOI: 10.1021/jacs.4c11768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The i-motif is a pH-responsive cytosine-rich oligonucleotide sequence that forms, under acidic conditions, a quadruplex structure. This tunable structural switching has made the i-motif a useful platform for designing pH-responsive nanomaterials. Despite the widespread application of i-motif DNA constructs as biomolecular switches, the mechanism of i-motif folding on the atomic scale has yet to be established. We investigate the early folding structural dynamics of i-motif oligonucleotides with laser-pulse-induced pH-jump time-resolved X-ray solution scattering. Following the pH-jump, we observe that the initial random coil ensemble converts into a contracted intermediate state within 113 ns followed by further folding on the 10 ms time scale. We reveal the representative structures of these transient species, hitherto unknown, with molecular dynamics simulations and ensemble fitting. These results pave the way for understanding metastable conformations of i-motif folding and for benchmarking emerging theoretical models for simulating noncanonical nucleic acid structures.
Collapse
Affiliation(s)
- Arnold M Chan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Sasha B Ebrahimi
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biomolecular Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Devleena Samanta
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam K Nijhawan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Darren J Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Madeline B Ho
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Namrata Ramani
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biomolecular Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne 60439, Illinois, United States
| |
Collapse
|
5
|
Peña Martinez CD, Zeraati M, Rouet R, Mazigi O, Henry JY, Gloss B, Kretzmann JA, Evans CW, Ruggiero E, Zanin I, Marušič M, Plavec J, Richter SN, Bryan TM, Smith NM, Dinger ME, Kummerfeld S, Christ D. Human genomic DNA is widely interspersed with i-motif structures. EMBO J 2024; 43:4786-4804. [PMID: 39210146 PMCID: PMC11480443 DOI: 10.1038/s44318-024-00210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
DNA i-motif structures are formed in the nuclei of human cells and are believed to provide critical genomic regulation. While the existence, abundance, and distribution of i-motif structures in human cells has been demonstrated and studied by immunofluorescent staining, and more recently NMR and CUT&Tag, the abundance and distribution of such structures in human genomic DNA have remained unclear. Here we utilise high-affinity i-motif immunoprecipitation followed by sequencing to map i-motifs in the purified genomic DNA of human MCF7, U2OS and HEK293T cells. Validated by biolayer interferometry and circular dichroism spectroscopy, our approach aimed to identify DNA sequences capable of i-motif formation on a genome-wide scale, revealing that such sequences are widely distributed throughout the human genome and are common in genes upregulated in G0/G1 cell cycle phases. Our findings provide experimental evidence for the widespread formation of i-motif structures in human genomic DNA and a foundational resource for future studies of their genomic, structural, and molecular roles.
Collapse
Affiliation(s)
- Cristian David Peña Martinez
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Mahdi Zeraati
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Romain Rouet
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Ohan Mazigi
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Jake Y Henry
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Brian Gloss
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Jessica A Kretzmann
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Cameron W Evans
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Irene Zanin
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Maja Marušič
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2145, Australia
| | - Nicole M Smith
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
- Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Sarah Kummerfeld
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia.
| |
Collapse
|
6
|
Asa TA, Seo YJ. I-motif sensor for the fluorometric detection of Monkeypox. Analyst 2024; 149:4514-4524. [PMID: 39058361 DOI: 10.1039/d4an00947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In this study, we developed an isothermal fluorometric diagnostic method for DNA virus-generating disorders such as Mpox. Our results showed that the release of a large number of protons during multiplex-LAMP markedly lowered the pH level, which transformed the retinoblastoma (Rb) linear ssDNA into i-motifs. Consequently, thiazole orange (TO; a fluorometric probe sensitive to the i-motif) boosted the signal-on fluorescence because of its ability to bind selectively to i-motifs. This multiplex-LAMP/i-motif-TO system enabled simultaneous detection aimed at numerous potential targets with remarkable sensitivity (1.47 pg per mL) and efficiency (30 minutes). Our method is expected to enable DNA-virus-related diseases to be efficiently and accurately assessed.
Collapse
Affiliation(s)
- Tasnima Alam Asa
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
7
|
Bose D, Banerjee N, Roy A, Sengupta P, Chatterjee S. Switchable tetraplex elements in the heterogeneous nuclear ribonucleoprotein K promoter: micro-environment dictated structural transitions of G/C rich elements. J Biomol Struct Dyn 2024:1-18. [PMID: 38235706 DOI: 10.1080/07391102.2024.2303378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
We have elucidated the hnRNP K promoter as a hotspot for tetraplex-based molecular switches receptive to micro-environmental stimuli. We have characterised the structural features of four tetraplex-forming loci and identified them as binding sites of transcription factors. These segments form either G-quadruplex or i-motif structures, the structural dynamicity of which has been studied in depth via several biophysical techniques. The tetraplexes display high dynamicity and are influenced by both pH and KCl concentrations in vitro. The loci complementary to these sequences form additional non-canonical secondary structures. In the cellular context, the most eminent observation of this study is the binding of hnRNP K to the i-motif forming sequences in its own promoter. We are the first to report a probable transcriptional autoregulatory function of hnRNP K in coordination with higher-order DNA structures. Herein, we also report the positive interaction of the endogenous tetraplexes with Sp1, a well-known transcriptional regulator. Treatment with tetraplex-specific small molecule ligands further uncovered G-quadruplexes' functioning as repressors and i-motifs as activators in this context. Together, our findings strongly indicate the critical regulatory role of the identified tetraplex elements in the hnRNP K promoter.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debopriya Bose
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Ananya Roy
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Pallabi Sengupta
- Department of Medical Biochemistry and Biophysics, Kemihuset (K), Campus, Umeå, Umeå universitet, Umeå, Sweden
| | | |
Collapse
|
8
|
Lemma RB, Fuglerud BM, Frampton J, Gabrielsen OS. MYB: A Key Transcription Factor in the Hematopoietic System Subject to Many Levels of Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:3-29. [PMID: 39017837 DOI: 10.1007/978-3-031-62731-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
9
|
Luo X, Zhang J, Gao Y, Pan W, Yang Y, Li X, Chen L, Wang C, Wang Y. Emerging roles of i-motif in gene expression and disease treatment. Front Pharmacol 2023; 14:1136251. [PMID: 37021044 PMCID: PMC10067743 DOI: 10.3389/fphar.2023.1136251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
As non-canonical nucleic acid secondary structures consisting of cytosine-rich nucleic acids, i-motifs can form under certain conditions. Several i-motif sequences have been identified in the human genome and play important roles in biological regulatory functions. Due to their physicochemical properties, these i-motif structures have attracted attention and are new targets for drug development. Herein, we reviewed the characteristics and mechanisms of i-motifs located in gene promoters (including c-myc, Bcl-2, VEGF, and telomeres), summarized various small molecule ligands that interact with them, and the possible binding modes between ligands and i-motifs, and described their effects on gene expression. Furthermore, we discussed diseases closely associated with i-motifs. Among these, cancer is closely associated with i-motifs since i-motifs can form in some regions of most oncogenes. Finally, we introduced recent advances in the applications of i-motifs in multiple areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chang Wang
- *Correspondence: Chang Wang, ; Yuqing Wang,
| | | |
Collapse
|
10
|
Mustafa G, Gyawali P, Taylor JA, Maleki P, Nunez MV, Guntrum MC, Shiekh S, Balci H. A single molecule investigation of i-motif stability, folding intermediates, and potential as in-situ pH sensor. Front Mol Biosci 2022; 9:977113. [PMID: 36072435 PMCID: PMC9441956 DOI: 10.3389/fmolb.2022.977113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
We present a collection of single molecule work on the i-motif structure formed by the human telomeric sequence. Even though it was largely ignored in earlier years of its discovery due to its modest stability and requirement for low pH levels (pH < 6.5), the i-motif has been attracting more attention recently as both a physiologically relevant structure and as a potent pH sensor. In this manuscript, we establish single molecule Förster resonance energy transfer (smFRET) as a tool to study the i-motif over a broad pH and ionic conditions. We demonstrate pH and salt dependence of i-motif formation under steady state conditions and illustrate the intermediate states visited during i-motif folding in real time at the single molecule level. We also show the prominence of intermediate folding states and reversible folding/unfolding transitions. We present an example of using the i-motif as an in-situ pH sensor and use this sensor to establish the time scale for the pH drop in a commonly used oxygen scavenging system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH, United States
| |
Collapse
|
11
|
Yang N, Wang Y, Wang X, Zhang F, Xiao Y, Yan B, Zhang T, Liu X, Li Y. Label-Free Detection of DNA Supramolecular Structure Formation by Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett 2022; 13:6208-6214. [PMID: 35770782 DOI: 10.1021/acs.jpclett.2c01461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The precise self-assembly of DNA molecules can be used to create nanoprecision supramolecular materials. However, the lack of methods to characterize such supramolecular materials limits their development. Surface-enhanced Raman spectroscopy (SERS) is widely used to detect the secondary structure of simple DNA molecules, but its application in the revealing of complex DNA supramolecular information remains challenging. Herein, we proposed a modified SERS-based platform able to provide structural information on DNA supramolecular materials. The silver nanoparticle-enhanced substrate uses acetonitrile as an internal standard and modifier, and calcium ions are used as an aggregating agent to induce the formation of stable "hotspots" of silver nanoparticles, where the base planes in DNA supramolecules are perpendicular to the surface of the substrate, obtaining enhanced Raman signals of base ring in both single-stranded DNA and DNA supramolecules for the first time. The structure of DNA supramolecules was efficiently characterized using this technique, showing the great application potential of this technique in the structural analysis of nucleic acids and their ligands.
Collapse
Affiliation(s)
- Ni Yang
- School of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City 550025, Guizhou Province, P. R. China
| | - Yunpeng Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang Province, P. R. China
| | - Xiaotong Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang Province, P. R. China
| | - Fenghai Zhang
- School of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City 550025, Guizhou Province, P. R. China
| | - Yanlong Xiao
- The Second Hospital of Jilin University, Jilin University, Changchun 130041, P. R. China
| | - Bingdi Yan
- The Second Hospital of Jilin University, Jilin University, Changchun 130041, P. R. China
| | - Ting Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang Province, P. R. China
| | - Xin Liu
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang Province, P. R. China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City 550025, Guizhou Province, P. R. China
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang Province, P. R. China
| |
Collapse
|
12
|
Ma X, Feng Y, Yang Y, Li X, Shi Y, Tao S, Cheng X, Huang J, Wang XE, Chen C, Monchaud D, Zhang W. Genome-wide characterization of i-motifs and their potential roles in the stability and evolution of transposable elements in rice. Nucleic Acids Res 2022; 50:3226-3238. [PMID: 35188565 PMCID: PMC8989525 DOI: 10.1093/nar/gkac121] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
I-motifs (iMs) are non-canonical DNA secondary structures that fold from cytosine (C)-rich genomic DNA regions termed putative i-motif forming sequences (PiMFSs). The structure of iMs is stabilized by hemiprotonated C-C base pairs, and their functions are now suspected in key cellular processes in human cells such as genome stability and regulation of gene transcription. In plants, their biological relevance is still largely unknown. Here, we characterized PiMFSs with high potential for i-motif formation in the rice genome by developing and applying a protocol hinging on an iMab antibody-based immunoprecipitation (IP) coupled with high-throughput sequencing (seq), consequently termed iM-IP-seq. We found that PiMFSs had intrinsic subgenomic distributions, cis-regulatory functions and an intricate relationship with DNA methylation. We indeed found that the coordination of PiMFSs with DNA methylation may affect dynamics of transposable elements (TEs) among different cultivated Oryza subpopulations or during evolution of wild rice species. Collectively, our study provides first and unique insights into the biology of iMs in plants, with potential applications in plant biotechnology for improving important agronomic rice traits.
Collapse
Affiliation(s)
- Xing Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Ying Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Xin Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan410125, P.R. China
| | - Yining Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Shentong Tao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Jian Huang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiu-e Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Caiyan Chen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan410125, P.R. China
| | - David Monchaud
- Institut de Chimie Moleculaire, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
13
|
Brown SL, Kendrick S. The i-Motif as a Molecular Target: More Than a Complementary DNA Secondary Structure. Pharmaceuticals (Basel) 2021; 14:ph14020096. [PMID: 33513764 PMCID: PMC7911047 DOI: 10.3390/ph14020096] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/25/2022] Open
Abstract
Stretches of cytosine-rich DNA are capable of adopting a dynamic secondary structure, the i-motif. When within promoter regions, the i-motif has the potential to act as a molecular switch for controlling gene expression. However, i-motif structures in genomic areas of repetitive nucleotide sequences may play a role in facilitating or hindering expansion of these DNA elements. Despite research on the i-motif trailing behind the complementary G-quadruplex structure, recent discoveries including the identification of a specific i-motif antibody are pushing this field forward. This perspective reviews initial and current work characterizing the i-motif and providing insight into the biological function of this DNA structure, with a focus on how the i-motif can serve as a molecular target for developing new therapeutic approaches to modulate gene expression and extension of repetitive DNA.
Collapse
|
14
|
Kuang G, Zhang M, Kang S, Hu D, Li X, Wei Z, Gong X, An LK, Huang ZS, Shu B, Li D. Syntheses and Evaluation of New Bisacridine Derivatives for Dual Binding of G-Quadruplex and i-Motif in Regulating Oncogene c-myc Expression. J Med Chem 2020; 63:9136-9153. [PMID: 32787078 DOI: 10.1021/acs.jmedchem.9b01917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The c-myc oncogene is an important regulator for cell growth and differentiation, and its aberrant overexpression is closely related to the occurrence and development of various cancers. Thus, the suppression of c-myc transcription and expression has been investigated for cancer treatment. In this study, various new bisacridine derivatives were synthesized and evaluated for their binding with c-myc promoter G-quadruplex and i-motif. We found that a9 could bind to and stabilize both G-quadruplex and i-motif, resulting in the downregulation of c-myc gene transcription. a9 could inhibit cancer cell proliferation and induce SiHa cell apoptosis and cycle arrest. a9 exhibited tumor growth inhibition activity in a SiHa xenograft tumor model, which might be related to its binding with c-myc promoter G-quadruplex and i-motif. Our results suggested that a9 as a dual G-quadruplex/i-motif binder could be effective in both oncogene replication and transcription and become a promising lead compound for further development with improved potency and selectivity.
Collapse
Affiliation(s)
- Guotao Kuang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Shuangshuang Kang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Dexuan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Xiaoya Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Zuzhuang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, P. R. China
| |
Collapse
|
15
|
Characterization of interaction between Bcl-2 oncogene promoter I-Motif DNA and flavonoids using electrospray ionization mass spectrometry and pressure-assisted capillary electrophoresis frontal analysis. Talanta 2020; 215:120885. [DOI: 10.1016/j.talanta.2020.120885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 11/22/2022]
|
16
|
Paul S, Hossain SS, Samanta A. Insights into the Folding Pathway of a c-MYC-Promoter-Based i-Motif DNA in Crowded Environments at the Single-Molecule Level. J Phys Chem B 2020; 124:763-770. [DOI: 10.1021/acs.jpcb.9b10633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sneha Paul
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Sk Saddam Hossain
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
17
|
Pages BJ, Gurung SP, McQuaid K, Hall JP, Cardin CJ, Brazier JA. Stabilization of Long-Looped i-Motif DNA by Polypyridyl Ruthenium Complexes. Front Chem 2019; 7:744. [PMID: 31750292 PMCID: PMC6848161 DOI: 10.3389/fchem.2019.00744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022] Open
Abstract
A spectroscopic study of the interactions of Λ- and Δ-[Ru(phen)2(dppz)]2+ with i-motif DNA containing thymine loops of various lengths. In the presence of i-motifs, the luminescence of the Λ enantiomer was enhanced much more than the Δ. Despite this, the effect of each enantiomer on i-motif thermal stability was comparable. The sequences most affected by [Ru(phen)2(dppz)]2+ were those with long thymine loops; this suggests that long-looped i-motifs are attractive targets for potential transition metal complex drugs and should be explored further in drug design.
Collapse
Affiliation(s)
- Benjamin J Pages
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Sarah P Gurung
- Department of Chemistry, University of Reading, Reading, United Kingdom.,Diamond Light Source, Didcot, United Kingdom
| | - Kane McQuaid
- Department of Chemistry, University of Reading, Reading, United Kingdom.,Diamond Light Source, Didcot, United Kingdom
| | - James P Hall
- School of Pharmacy, University of Reading, Reading, United Kingdom.,Diamond Light Source, Didcot, United Kingdom
| | | | - John A Brazier
- School of Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
18
|
Mondal M, Bhattacharyya D, Gao YQ. Structural properties and influence of solvent on the stability of telomeric four-stranded i-motif DNA. Phys Chem Chem Phys 2019; 21:21549-21560. [PMID: 31536074 DOI: 10.1039/c9cp03253c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repetitive cytosine rich i-motif forming sequences are abundant in the telomere, centromere and promoters of several oncogenes and in some instances are known to regulate transcription and gene expression. The in vivo existence of i-motif structures demands further insight into the factors affecting their formation and stability and development of better understanding of their gene regulatory functions. Most prior studies characterizing the conformational dynamics of i-motifs are based on i-motif forming synthetic constructs. Here, we present a systematic study on the stability and structural properties of biologically relevant i-motifs of telomeric and centromeric repeat fragments. Our results based on molecular dynamics simulations and quantum chemical calculations indicate that along with base pairing interactions within the i-motif core the overall folded conformation is associated with the stable C-HO sugar "zippers" in the narrow grooves and structured water molecules along the wide grooves. The stacked geometry of the hemi-protonated cytosine pairs within the i-motif core is mainly governed by the repulsive base stacking interaction. The loop sequence can affect the structural dynamics of the i-motif by altering the loop motion and backbone conformation. Overall this study provides microscopic insight into the i-motif structure that will be helpful to understand the structural aspect of mechanisms of gene regulation by i-motif DNA.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
19
|
Yang P, Wang X, Gu Z, Li H, Chen DDY, Yang X. Evaluation of the binding of natural products with thrombin binding aptamer G-quadruplex using electrospray ionization mass spectrometry and spectroscopic methods. Talanta 2019; 200:424-431. [PMID: 31036205 DOI: 10.1016/j.talanta.2019.03.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 01/02/2023]
Abstract
A 15-mer thrombin-binding aptamer (TBA) was discovered with specificity for thrombin. It forms a unique G-quadruplex (G4), which is postulated to be the molecular basis for its binding specificity. Many analytical methods make use of affinity binding between the thrombin and TBA as they form a very stable complex. We develop a strategy to stabilize TBA/G4's structure by introducing G4-interactive molecules, which may enhance its ability to recognize the target. Herein, a fast screening ESI-MS assay was employed to determine potential binding of natural products molecules with the TBA/G4 complex. The experimental results showed that four investigated natural alkaloids had apparent binding affinities. One of them, jatrorrhizine (L1), has been shown to bind strongly to the TBA/G4 mainly in 1:2 M ratio. Once the working conditions were established, the interaction of the jatrorrhizine with the TBA/G4 was explored using a combination of ESI-MS and spectroscopic techniques. Ligand-induced effects on TBA/G4 structure and its stability were examined by means of circular dichroism (CD). Jatrorrhizine inducing the G4 formation seems also to be the more effective in terms of thermal stabilization under the experimental conditions used. Both results of UV and fluorescence experiments undoubtedly showed a good binding affinity with the binding constant around 105 L mol-1. The stacking interactions of jatrorrhizine with the G-tetrads in TBA/G4 were further confirmed by competition experiment. ESI-MS was carried out to determine the coexistence of 1:1 and 1:2 complexes in TBA/G4-L1 system, and showed a dynamical shift from 1:1 to 1:2 complex in minutes.
Collapse
Affiliation(s)
- Pengfei Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xinyi Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhenggui Gu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Huihui Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - David D Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1.
| | - Xiaodi Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
20
|
Ma C, Chan RCT, Chan CTL, Wong AKW, Chung BPY, Kwok WM. Fluorescence and Ultrafast Fluorescence Unveil the Formation, Folding Molecularity, and Excitation Dynamics of Homo-Oligomeric and Human Telomeric i-Motifs at Acidic and Neutral pH. Chem Asian J 2018; 13:3706-3717. [PMID: 30230251 DOI: 10.1002/asia.201801117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/28/2018] [Indexed: 01/07/2023]
Abstract
i-Motifs are tetraplex DNAs known to be stable at acidic pH. The structure of i-motifs is important in DNA nanotechnology; i-motif-forming sequences with consecutive cytosine (C) molecules are abundant throughout the human genome. There is, however, little information on the structure of C-rich DNAs under physiologically relevant neutral conditions. The electron dynamics of i-motifs, crucial to both biology and materials applications, also remains largely unexplored. In this work, we report a combined femtosecond and nanosecond broadband time-resolved fluorescence (TRF) and steady-state fluorescence investigation on homo-oligomer dC20 , a human telomeric sequence (HTS) 5'-dC3 (TA2 C3 )3 , and its analogue performed with different excitation at both acidic and neutral pH. Our study provides direct observation of intrinsic fluorescence and the first full probe of the real-time dynamics of the intrinsic fluorescence from i-motifs formed from varied sequences and pH conditions. The results obtained demonstrate concrete evidence for the existence at neutral pH of i-motifs from both dC20 and the HTS. It also identifies that, under neutral conditions, the i-motif from dC20 adopting the bimolecular folding structure is significantly more stable than the HTS i-motif featuring the unimolecular topology. Our femtosecond and nanosecond TRF study unveils excitation dynamics distinctive of the interdigitated architecture of i-motifs with the excited states involved exhibiting deactivation over a remarkably broad timescale through multiple channels involving proton-coupled electron transfer lasting tens of picoseconds, as signified by the solvent kinetic isotope effect, and structure-dependent charge recombination in the hundreds of picoseconds to tens of nanoseconds time regime.
Collapse
Affiliation(s)
- Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China
| | - Ruth Chau-Ting Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Chris Tsz-Leung Chan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China
| | - Allen Ka-Wa Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Bowie Po-Yee Chung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
21
|
Fu H, Yang P, Hai J, Li H. Utilization of circular dichroism and electrospray ionization mass spectrometry to understand the formation and conversion of G-quadruplex DNA at the human c-myb proto-oncogene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:70-76. [PMID: 29860170 DOI: 10.1016/j.saa.2018.05.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
G-quadruplex DNAs are involved in a number of key biological processes, including gene expression, transcription, and apoptosis. The c-myb oncogene contains a number of GGA repeats in its promoter which forms G-quadruplex, thus it could be used as a target in cancer therapeutics. Several in-vitro studies have used Circular Dichroism (CD) spectroscopy or electrospray ionization mass spectrometry (ESI-MS) to demonstrate formation and stability of G-quadruplex DNA structure in the promoter region of human c-myb oncogene. The factors affecting the c-myb G-quadruplex structures were investigated, such as cations (i.e. K+, NH4+ and Na+) and co-solutes (methanol and polyethylene glycol). The results indicated that the presence of cations and co-solutes could change the G-quadruplex structural population and promote its thermodynamic stabilization as indicated by CD melting curves. It indicated that the co-solutes preferentially stabilize the c-myb G-quadruplex structure containing both homo- and hetero-stacking. In addition, protopine was demonstrated as a binder of c-myb G-quadruplex as screened from a library of natural alkaloids using ESI-MS method. CD spectra showed that it could selectively stabilize the c-myb G-quadruplex structure compared to other six G-quadruplexes from tumor-related G-rich sequences and the duplex DNAs (both long and short-chain ones). The binding of protopine could induce the change in the G-quadruplex structural populations. Therefore, protopine with its high binding specificity could be considered as a precursor for the design of drugs to target and regulate c-myb oncogene transcription.
Collapse
Affiliation(s)
- Hengqing Fu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Pengfei Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinhui Hai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Huihui Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
22
|
I-motif DNA structures are formed in the nuclei of human cells. Nat Chem 2018; 10:631-637. [PMID: 29686376 DOI: 10.1038/s41557-018-0046-3] [Citation(s) in RCA: 374] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
Abstract
Human genome function is underpinned by the primary storage of genetic information in canonical B-form DNA, with a second layer of DNA structure providing regulatory control. I-motif structures are thought to form in cytosine-rich regions of the genome and to have regulatory functions; however, in vivo evidence for the existence of such structures has so far remained elusive. Here we report the generation and characterization of an antibody fragment (iMab) that recognizes i-motif structures with high selectivity and affinity, enabling the detection of i-motifs in the nuclei of human cells. We demonstrate that the in vivo formation of such structures is cell-cycle and pH dependent. Furthermore, we provide evidence that i-motif structures are formed in regulatory regions of the human genome, including promoters and telomeric regions. Our results support the notion that i-motif structures provide key regulatory roles in the genome.
Collapse
|
23
|
Ishida R, Iwahashi H. Detection of protonated non-Watson-Crick base pairs using electrospray ionization mass spectrometry. J Biochem 2018; 163:215-222. [PMID: 29087477 DOI: 10.1093/jb/mvx073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Many studies have shown that protonated nucleic acid base pairs are involved in a wide variety of nucleic acid structures. However, little information is available on relative stability of hemiprotonated self- and non-self-dimers at monomer level. We used electrospray ionization mass spectrometry (ESI-MS) to evaluate the relative stability under various concentrations of hydrogen ion. These enable conjecture of the formation of protonated non-Watson-Crick base pairs based on DNA and RNA base sequence. In the present study, we observed that ESI-MS peaks corresponded to respective self-dimers for all examined nucleosides except for adenosine. Peak heights depended on the concentration of hydrogen ion. The ESI-MS peak heights of the hemiprotonated cytidine dimers and the hemiprotonated thymidine dimer sharply increased with increased concentration of hydrogen ion, suggesting direct participation of hydrogen ion in dimer formations. In ESI-MS measurements of the solutions containing adenosine, cytidine, thymidine and guanosine, we observed protonated cytidine-guanosine dimer (CH+-G) and protonated cytidine-thymidine dimer (CH+-T) in addition to hemiprotonated cytidine-cytidine dimer (CH+-C) with following relative peak height, (CH+-C) > (CH+-G) ≈ (CH+-T) > (CH+-A). Additionally, in the ESI-MS measurements of solutions containing adenosine, thymidine and guanosine, we observed a considerable amount of protonated adenosine-guanosine (AH+-G) and protonated adenosine-thymidine (AH+-T).
Collapse
Affiliation(s)
- Riyoko Ishida
- Analytical Biochemistry, Wakayama Medical University, 580 Mikazura, Wakayama, Wakayama 641-0011, Japan
| | - Hideo Iwahashi
- Analytical Biochemistry, Wakayama Medical University, 580 Mikazura, Wakayama, Wakayama 641-0011, Japan
| |
Collapse
|