1
|
Deng F, Yang R, Yang Y, Li X, Hou J, Liu Y, Lu J, Huangfu S, Meng Y, Wu S, Zhang L. Visible light accelerates skin wound healing and alleviates scar formation in mice by adjusting STAT3 signaling. Commun Biol 2024; 7:1266. [PMID: 39367154 PMCID: PMC11452386 DOI: 10.1038/s42003-024-06973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
During the wound healing process, the activation of signal transducer and activator of transcription 3 (STAT3) is considered crucial for the migration and proliferation of epithelial cells, as well as for establishing the inflammatory environment. However, an excessive STAT3 activation aggravates scar formation. Here we show that 450 nm blue light and 630 nm red light can differentially regulate the phosphorylation of STAT3 (p-STAT3) and its downstream cytokines in keratinocytes. Further mechanistic studies reveal that red light promotes wound healing by activating the PI3 kinase p110 beta (PI3Kβ)/STAT3 signaling axis, while blue light inhibits p-STAT3 at the wound site by modulating cytochrome c-P450 (CYT-P450) activity and reactive oxygen species (ROS) generation. In a mouse scar model, skin wound healing can be significantly accelerated with red light followed by blue light to reduce scar formation. In summary, our study presents a potential strategy for regulating epithelial cell p-STAT3 through visible light to address skin scarring issues and elucidates the underlying mechanisms.
Collapse
Affiliation(s)
- Fangqing Deng
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Rong Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yingchun Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Xu Li
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jing Hou
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yanyan Liu
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jueru Lu
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shuaiqi Huangfu
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuqi Meng
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Si Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, China
| | - Lianbing Zhang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
2
|
Marinho MAG, da Silva Marques M, de Oliveira Vian C, de Moraes Vaz Batista Filgueira D, Horn AP. Photodynamic therapy with curcumin and near-infrared radiation as an antitumor strategy to glioblastoma cells. Toxicol In Vitro 2024; 100:105917. [PMID: 39142446 DOI: 10.1016/j.tiv.2024.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Glioblastoma is a malignant neoplasm that develops in the central nervous system and is characterized by high rates of cell proliferation and invasion, presenting resistance to treatments and a poor prognosis. Photodynamic therapy (PDT) is a therapeutic modality that can be applied in oncological cases and stands out for being less invasive. Photosensitizers (PS) of natural origin gained prominence in PDT. Curcumin (CUR) is a natural compound that has been used in PDT, considered a promising PS. In this work, we evaluated the effects of PDT-mediated CUR and near-infrared radiation (NIR) in glioblastoma cells. Through trypan blue exclusion analysis, we chose the concentration of 5 μM of CUR and the dose of 2 J/cm2 of NIR that showed better responses in reducing the viable cell number in the C6 cell line and did not show cytotoxic/cytostatic effects in the HaCat cell line. Our results show that there is a positive interaction between CUR and NIR as a PDT model since there was an increase in ROS levels, a decrease in cell proliferation, increase in cytotoxicity with cell death by autophagy and necrosis, in addition to the presence of oxidative damage to proteins. These results suggest that the use of CUR and NIR is a promising strategy for the antitumor application of PDT.
Collapse
Affiliation(s)
- Marcelo Augusto Germani Marinho
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil.
| | - Magno da Silva Marques
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil
| | - Camila de Oliveira Vian
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil
| | - Daza de Moraes Vaz Batista Filgueira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil
| | - Ana Paula Horn
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil
| |
Collapse
|
3
|
Horton L, Brady J, Kincaid CM, Torres AE, Lim HW. The effects of infrared radiation on the human skin. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:549-555. [PMID: 37431693 DOI: 10.1111/phpp.12899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Infrared radiation (IR) is the portion of the electromagnetic spectrum between visible light (VL) and microwaves, with wavelengths between 700 nm and 1 mm. Humans are mainly exposed to ultraviolet (UV) radiation (UVR) and IR through the sun. Unlike UVR which is well known for its carcinogenic properties, the relationship between IR and skin health has not been as extensively studied; as such, we gather the available published evidence here to better elucidate this relationship. METHODS Several databases including Pubmed, Google Scholar, and Embase were searched for articles relating to infrared radiation and the skin. Articles were selected for their relevance and novelty. RESULTS Detrimental effects such as thermal burns, photocarcinogenesis, and photoaging have been reported, though evidence suggests that these may be due to the thermal effects produced secondary to IR exposure rather than the isolated effect of IR. There are currently no chemical or physical filters specifically available for protection against IR, and existing compounds are not known to have IR-filtering capacity. Interestingly, IR may have some photoprotective properties against the carcinogenic effects of UVR. Furthermore, IR has been used with encouraging results in skin rejuvenation, wound healing, and hair restoration when given at an appropriate therapeutic dose. CONCLUSION A better understanding of the current landscape of research surrounding IR can help illuminate its effects on the skin and highlight areas for further research. Here, we review relevant data on IR to assess its deleterious and beneficial effects on human skin, along with possible means for IR photoprotection.
Collapse
Affiliation(s)
- Luke Horton
- Department of Dermatology, University of California Irvine, Irvine, California, USA
| | - Joshua Brady
- Department of Dermatology, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Colin M Kincaid
- Department of Dermatology, University of California Irvine, Irvine, California, USA
| | - Angeli Eloise Torres
- Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| | - Henry W Lim
- Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| |
Collapse
|
4
|
Sawicki K, Matysiak-Kucharek M, Kruszewski M, Wojtyła-Buciora P, Kapka-Skrzypczak L. Influence of chlorpyrifos exposure on UVB irradiation induced toxicity in human skin cells. J Occup Med Toxicol 2023; 18:23. [PMID: 37803377 PMCID: PMC10559529 DOI: 10.1186/s12995-023-00391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Although chlorpyrifos (CPS) has been banned in many developed countries, it still remains one of the best-selling pesticides in the world. Widespread environmental and occupational exposure to CPS pose a serious risk to human health. Another environmental factor that can adversely affect human health is ultraviolet radiation B (UVB, 280-315 nm wave length). Here we attempt determine if exposure to CPS can modify toxic effects of UVB. Such situation might be a common phenomenon in agriculture workers, where exposure to both factors takes place. METHODS Two skin cell lines; namely human immortalized keratinocytes HaCaT and BJ human fibroblasts were used in this study. Cytotoxicity was investigated using a cell membrane damage detection assay (LDH Cytotoxicity Assay), a DNA damage detection assay (Comet Assay), an apoptosis induction detection assay (Apo-ONE Homogeneous Caspase-3/7 Assay) and a cell reactive oxygen species detection assay (ROS-Glo H2O2 assay). Cytokine IL-6 production was also measured in cells using an ELISA IL-6 Assay. RESULTS Pre-incubation of skin cells with CPS significantly increased UVB-induced toxicity at the highest UVB doses (15 and 20 mJ/cm2). Also pre-exposure of BJ cells to CPS significantly increased the level of DNA damage, except for 20 mJ/cm2 UVB. In contrast, pre-exposure of HaCaT cells, to CPS prior to UVB radiation did not cause any significant changes. A decrease in caspase 3/7 activity was observed in HaCaT cells pre-exposed to 250 µM CPS and 5 mJ/cm2 UVB. Meanwhile, no statistically significant changes were observed in fibroblasts. In HaCaT cells, pre-exposure to CPS resulted in a statistically significant increase in ROS production. Also, in BJ cells, similar results were obtained except for 20 mJ/cm2. Interestingly, CPS seems to inhibited IL-6 production in HaCaT and BJ cells exposed to UVB (in the case of HaCaT cells for all UVB doses, while for BJ cells only at 15 and 20 mJ/cm2). CONCLUSIONS In conclusion, the present study indicates that CPS may contribute to the increased UVB-induced toxicity in skin cells, which was likely due to the induction of ROS formation along with the generation of DNA damage. However, further studies are required to gain better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | | | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
- World Institute for Family Health, Calisia University, Kalisz, Poland.
| |
Collapse
|
5
|
Plitta-Michalak B, Stricker N, Pavez Loriè E, Chen I, Pollet M, Krutmann J, Volkmer B, Greinert R, Boukamp P, Rapp A. Development and characterisation of an irradiation device for biomedical studies covering the solar spectrum with individual regulated spectral bands. Photochem Photobiol Sci 2022; 21:1701-1717. [PMID: 35749054 DOI: 10.1007/s43630-022-00252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
To understand the importance of terrestrial solar exposure on human skin, not only individual spectral components need to be considered in biomedical studies, but also the relevance of the combined action profile of the complete solar spectrum (cSS) must be established. We therefore developed a novel irradiation device that combines the emission of four individual lamps (UVB, UVA, VIS and nIR) to achieve exposure from 280 to 1400 nm with individual controllable lamps. The integrated irradiance of each spectral band is similar to the solar spectrum. The lamps can be utilised individually or in any desired combination. Here we present the design, realisation, and validation of this irradiation device as well as biological results on cellular metabolism (MTT assay), cell cycle alterations, and clonogenic growth in HaCaT cells after exposures to the individual spectral bands as well as their simultaneous combinations. Thereby, we demonstrate that UVB combined with UVA is the main determinant for the metabolic activity within cSS. Also, UVB-dependent effects dominate cell cycle regulation in cSS, whilst UVA and nIR have little influence. Lastly, also clonogenic growth is dominated by the UVB action profile in cSS, despite nIR showing modulatory activity when applied in combination with UVB. Together, this highlights the regulatory influence of the different spectral bands on the three biological endpoints and demonstrates their modulation when being part of the complete solar spectrum.
Collapse
Affiliation(s)
- B Plitta-Michalak
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany.,Department of Chemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - N Stricker
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - E Pavez Loriè
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.,Ludwig Boltzmann Institute for Traumatology, the Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria
| | - I Chen
- Centre of Dermatology, Elbe Clinics, Am Krankenhaus 1, 21614, Buxtehude, Germany
| | - M Pollet
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - J Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - B Volkmer
- Centre of Dermatology, Elbe Clinics, Am Krankenhaus 1, 21614, Buxtehude, Germany
| | - R Greinert
- Centre of Dermatology, Elbe Clinics, Am Krankenhaus 1, 21614, Buxtehude, Germany
| | - P Boukamp
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - A Rapp
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany.
| |
Collapse
|
6
|
Marinho MAG, da Silva Marques M, Lettnin AP, de Souza Votto AP, de Moraes Vaz Batista Filgueira D, Horn AP. Interaction Between Near-Infrared Radiation and Temozolomide in a Glioblastoma Multiform Cell Line: A Treatment Strategy? Cell Mol Neurobiol 2021; 41:91-104. [PMID: 32236902 PMCID: PMC11448574 DOI: 10.1007/s10571-020-00835-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Abstract
Photodynamic therapy (PDT) is a potential therapeutic modality against cancer, resulting from the interaction of a photosensitizer (PS) and radiation that generates damage to tumor cells. The use of near-infrared radiation (IR-A) is relevant because presents recognized biological effects, such as antioxidant, neuroprotective and antitumor effects. Glioblastoma is the most aggressive central nervous system (CNS) neoplasm with high proliferation and tissue invasion capacity and is resistant to radio and chemotherapy. Here, we evaluated in vitro the possible interaction of temozolomide (TMZ) with IR-A in a glioblastoma cell line (C6) and in a human keratinocyte cell line (HaCat) how non-tumor cell model, in an attempt to search for a new treatment strategy. The effects of TMZ, IR-A and the interaction between TMZ and IR-A was evaluated by viability exclusion with trypan blue. To perform the interaction experiments, we have chosen 10 μM TMZ and 4.5 J/cm2 of IR-A. From this, we evaluated cytotoxicity, cell proliferation, intracellular reactive oxygen species levels (ROS), as well as the process of cell migration and the P-gp and MRP-1 activity. Cell death mainly due to apoptosis, followed by necrosis, decreased cell proliferation, increased ROS levels, decreased cell migration and decreased P-gp and MRP1 activity were observed only when there was interaction between TMZ and IR-A in the C6 cell line. The interaction between TMZ and IR-A was not able to affect cell proliferation in the HaCat non-tumor cell line. Our results suggest that this interaction could be a promising approach and that in the future may serve as an antitumor strategy for PDT application.
Collapse
Affiliation(s)
- Marcelo Augusto Germani Marinho
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Av. Itália, Km 8, Rio Grande, RS, CEP 96210-900, Brazil.
- Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Rio Grande, RS, Brazil.
| | - Magno da Silva Marques
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Av. Itália, Km 8, Rio Grande, RS, CEP 96210-900, Brazil
- Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Rio Grande, RS, Brazil
| | - Aline Portantiolo Lettnin
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Av. Itália, Km 8, Rio Grande, RS, CEP 96210-900, Brazil
- Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Rio Grande, RS, Brazil
| | - Ana Paula de Souza Votto
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Av. Itália, Km 8, Rio Grande, RS, CEP 96210-900, Brazil
- Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Rio Grande, RS, Brazil
| | - Daza de Moraes Vaz Batista Filgueira
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Av. Itália, Km 8, Rio Grande, RS, CEP 96210-900, Brazil
- Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Rio Grande, RS, Brazil
| | - Ana Paula Horn
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Av. Itália, Km 8, Rio Grande, RS, CEP 96210-900, Brazil
- Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Rio Grande, RS, Brazil
| |
Collapse
|
7
|
Li W, Hu X, Lu X, Liu J, Chen Z, Zhou X, Liu M, Liu S. RNA-Seq analysis revealed the molecular mechanisms of photobiomodulation effect on human fibroblasts. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 36:299-307. [PMID: 32187726 DOI: 10.1111/phpp.12554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND The photobiomodulation (PBM) effect has been applied to various clinical therapy for a long time. However, the mechanism related to the PBM effect in terms of wavelengths has been lack of in-depth study, except that ultraviolet radiation has attracted much attention due to its strong cell-killing effect. PURPOSE To clarify the principle behind PBM and the main mechanism of improvement. METHODS To carry on this study, we created light equipment using three LED chips, which emit 390 nm ultraviolet radiation, 415 nm blue light and 660 nm red light, respectively. We choose human fibroblasts (HF) to be irradiated by three different wavelengths for PBM test. In this study, we used cell counting kit (CCK-8) test to show the cell proliferation roughly and reported on a systematic RNA sequencing (RNA-seq) analysis at transcriptional expression levels from HF, which accepted PBM of different wavelengths of light. RESULTS We found that 415 nm blue light inhibited cell proliferation and 660 nm red light stimulated cell proliferation while 390 nm ultraviolet radiation has little influence on cell proliferation. Furthermore, RNA-seq results showed that CSF1R, PPP3CC, ITGAL, ITGAM, IL2RB, and several other differentially expressed genes (DEGs) are involved in the cell proliferation. Relative DEGs values for matrix metalloproteinases (MMPs) gene family have shown a great difference in blue and red light radiation especially on MMP25, MMP9, MMP21, and MMP13. CONCLUSION Taken together, the results provide a valuable resource to describe the variation of HFs under PBM of different light at gene level.
Collapse
Affiliation(s)
- Wenqi Li
- Institute for Electric Light Sources, Fudan University, Shanghai, China.,Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Shanghai, China.,Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xiaojian Hu
- Institute for Electric Light Sources, Fudan University, Shanghai, China.,Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Shanghai, China
| | - Xi Lu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Tongji University School of Medicine, Stem Cell Translational Research Center, Tongji Hospital, Shanghai, China
| | - Zeqing Chen
- Institute for Electric Light Sources, Fudan University, Shanghai, China.,Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Shanghai, China.,Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xiaoli Zhou
- Institute for Electric Light Sources, Fudan University, Shanghai, China.,Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Shanghai, China
| | - Muqing Liu
- Institute for Electric Light Sources, Fudan University, Shanghai, China.,Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Shanghai, China
| | - Shangfeng Liu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Vorobyeva OV, Samoylova TA, Yusupov VI. Effects of Photobiomodulation on Daphnia magna Straus and their Sensitivity to Toxicant. Photochem Photobiol 2020; 96:1116-1123. [PMID: 32119122 DOI: 10.1111/php.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/16/2020] [Indexed: 11/28/2022]
Abstract
This paper deals with the effect of photobiomodulation (PBM) on Daphnia magna S. and their sensitivity to cadmium sulfate, a known high toxic pollutant. In a first series of experiments, the effect of different He-Ne laser fluences irradiation (range 0.9-4300 mJ cm-2 ) on the fertility of both parent and filial generations (F1-F3) of the crustacean was studied. It was found that PBM in some cases significantly influenced the fertility of both irradiated crustaceans and their nonirradiated offspring. By selecting two fluences (9 ± 2 mJ cm-2 reducing fertility and 4.3 ± 0.9 J cm-2 increasing it), the effect of these on toxicity of cadmium sulfate was evaluated. These experiments have shown that prior irradiation with low-intensity light of a helium-neon laser with 632.8 nm wavelength can change the sensitivity of aquatic organisms to toxin cadmium sulfate. The degree and direction of changes depend on the toxicant concentration and the irradiation dose.
Collapse
Affiliation(s)
- Olga V Vorobyeva
- Lomonosov Moscow State University, Moscow, Russia.,VNIRO Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Tatyana A Samoylova
- VNIRO Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Vladimir I Yusupov
- Institute of Photon Technologies, FSRC "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Effect of physical stimuli on hair follicle deposition of clobetasol-loaded Lipid Nanocarriers. Sci Rep 2020; 10:176. [PMID: 31932640 PMCID: PMC6957495 DOI: 10.1038/s41598-019-56760-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Clobetasol propionate (CLO) is a potent glucocorticoid used to treat inflammation-based skin, scalp, and hair disorders. In such conditions, hair follicles (HF) are not only the target site but can also act as drug reservoirs when certain formulations are topically applied. Recently, we have demonstrated nanostructured lipid carriers (NLC) containing CLO presenting epidermal-targeting potential. Here, the focus was evaluating the HF uptake provided by such nanoparticles in comparison to a commercial cream and investigating the influence of different physical stimuli [i.e., infrared (IR) irradiation (with and without metallic nanoparticles-MNP), ultrasound (US) (with and without vibration) and mechanical massage] on their follicular targeting potential. Nanosystems presented sizes around 180 nm (PdI < 0.2) and negative zeta potential. The formulation did not alter skin water loss measurements and was stable for at least 30 days at 5 °C. Nanoparticles released the drug in a sustained fashion for more than 3 days and increased passively about 40 times CLO follicular uptake compared to the commercial cream. Confocal images confirmed the enhanced follicular delivery. On the one hand, NLC application followed by IR for heat generation showed no benefit in terms of HF targeting even at higher temperatures generated by metallic nanoparticle heating. On the other hand, upon US treatment, CLO retention was significantly increased in deeper skin layers. The addition of mechanical vibration to the US treatment led to higher follicular accumulation compared to passive exposure to NLC without stimuli. However, from all evaluated stimuli, manual massage presented the highest follicular targeting potential, driving more than double the amount of CLO into the HF than NLC passive application. In conclusion, NLC showed great potential for delivering CLO to HF, and a simple massage was capable of doubling follicular retention.
Collapse
|
10
|
Mussttaf RA, Jenkins DFL, Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. Int J Radiat Biol 2019; 95:120-143. [DOI: 10.1080/09553002.2019.1524944] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ruwaidah A. Mussttaf
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - David F. L. Jenkins
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|