1
|
Salisu Jibia S, Panjama K, Inkham C, Sato T, Ohtake N, Ruamrungsri S. Interactive Effects of LED Spectrum and Nitrogen Levels on Physiological Changes and Yield of Strawberry ( Fragaria × ananassa Duch.). PLANTS (BASEL, SWITZERLAND) 2024; 14:89. [PMID: 39795348 PMCID: PMC11723106 DOI: 10.3390/plants14010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Strawberries are valued globally for their nutritional, aesthetic, and economic benefits. Optimizing blue-to-red LED ratios and nitrogen levels is essential for sustainable indoor strawberry cultivation. This factorial study investigated the effects of blue and red LED combination ratios (L1; 1:3, L2; 1:4, and L3; 1:6) and nitrogen levels (N1; 100 and N2; 200 mg/L) on the physiology and performance of strawberries in a plant factory. The results revealed that the interaction of L3 coupled with N2 maximized the vegetative growth of strawberry plants, whereas L2 and N2 produced the greatest biomass, while L2 interacted with N1 to expedite flowering. Photosynthesis and transpiration were enhanced by L3, particularly with 100 mg/L of nitrogen. The highest fruit yield and total soluble solids were obtained at the interaction of L3 and N1. Leaf nutrient analysis showed the highest nitrogen concentration at L1, while potassium increased with higher red LED ratios. The 100 mg/L nitrogen treatment resulted in higher leaf potassium concentrations than the 200 mg/L. These findings emphasize that LED spectra and nitrogen levels interact to optimize the physiology, vegetative and reproductive growth, maximizing fruit yield and quality in indoor strawberry cultivation. The study also concludes that the application of blue and red LED in the ratio of 1:6 with 100 mg/L nitrogen can improve indoor 'Praratchatan 80' strawberry performance.
Collapse
Affiliation(s)
- Sirajo Salisu Jibia
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.J.); (K.P.)
- Ph.D. Horticulture Program, Department of Plant and Soil Sciences, Faculty of Agriculture Under the CMU Presidential Scholarship, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Agricultural Technology, Federal College of Agricultural Produce Technology, Kano 700223, Nigeria
| | - Kanokwan Panjama
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.J.); (K.P.)
- Economic Flower and Horticultural Crops Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand;
- H. M. The King’s Initiative Centre for Flower and Fruit Propagation, Chiang Mai 50230, Thailand
| | - Chaiartid Inkham
- Economic Flower and Horticultural Crops Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand;
- H. M. The King’s Initiative Centre for Flower and Fruit Propagation, Chiang Mai 50230, Thailand
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Takashi Sato
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan;
| | - Norikuni Ohtake
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Soraya Ruamrungsri
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.J.); (K.P.)
- Economic Flower and Horticultural Crops Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand;
- H. M. The King’s Initiative Centre for Flower and Fruit Propagation, Chiang Mai 50230, Thailand
| |
Collapse
|
2
|
Xian X, Sun W, Zhang Z, Gao Y, Li C, Ding L, Wang Y. Effects of combined application of phosphorus and zinc on growth and physiological characteristics of apple rootstock M9-T337 seedlings (Malus domestica Borkh.). BMC PLANT BIOLOGY 2024; 24:998. [PMID: 39448942 PMCID: PMC11515599 DOI: 10.1186/s12870-024-05724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Balancing nutrient application is crucial for plant growth. However, excessive fertilizer use, especially imbalanced applications of macronutrients such as phosphate (P), can hinder plant uptake of micronutrients. Balanced P and zinc (Zn) are vital for apple yield and quality, and apple trees are highly sensitive to deficiencies in these nutrients. Therefore, this study was conducted in May 2022, employed a sand culture experiment to investigate the effects of varying P and Zn levels on the growth phenotype, photosynthetic capacity, antioxidant enzyme activity, sugar composition, endogenous hormone levels, and nutrient absorption and utilization of M9-T337 seedlings. Three levels of P (low, medium, high) and three levels of Zn (low, medium, high) were combined to create a total of nine distinct treatment. RESULTS The results indicate that combined P and Zn fertilization at various levels exerts either synergistic or antagonistic effects on the growth, nutrient absorption, and utilization of M9-T337 seedlings. Compared to low and medium levels of P, a combination of high P (4 mmol·L-1) and an adequate amount of Zn significantly enhanced plant growth, root system development, and the microstructure of leaves. Notably, seedlings treated with high P and low Zn (HPLZn) reached a height 1.54 times that of the medium P and medium Zn (MPMZn, control). Physiological indicators under HP conditions revealed significant increases in antioxidant enzyme activity, leaf water retention, photosynthetic pigment concentration, osmotic adjustment substances, and the contents of glucose, sucrose, fructose, endogenous hormones, as well as P and Zn accumulation in the leaves, compared to the control. However, an increase in Zn application led to a declining trend in these parameters. Specifically, the HPLZn treatment exhibited substantial increases in Net photosynthetic rate (Pn), Total chlorophyll (Chl a + b), glucose, fructose, sucrose, and Auxin(IAA), with increments of 7.12%, 27.32%, 11.40%, 23.20%, 16.67%, and 55.11%, respectively, compared to the control. CONCLUSION Based on the comprehensive ranking from principal component analysis, the combination of HP ( 4 mmol·L-1) and LZn (0.5 µmol·L-1) was found to be the most effective in enhancing the antioxidant capacity, sugar accumulation, osmotic regulation ability, photosynthetic capacity, endogenous hormone levels, as well as P and Zn nutrient absorption and utilization in M9-T337 seedlings.
Collapse
Affiliation(s)
- Xulin Xian
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wentai Sun
- Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Cailong Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Liang Ding
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Falcioni R, Antunes WC, de Oliveira RB, Chicati ML, Demattê JAM, Nanni MR. Comparative Insights into Photosynthetic, Biochemical, and Ultrastructural Mechanisms in Hibiscus and Pelargonium Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2831. [PMID: 39409701 PMCID: PMC11478917 DOI: 10.3390/plants13192831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
Understanding photosynthetic mechanisms in different plant species is crucial for advancing agricultural productivity and ecological restoration. This study presents a detailed physiological and ultrastructural comparison of photosynthetic mechanisms between Hibiscus (Hibiscus rosa-sinensis L.) and Pelargonium (Pelargonium zonale (L.) L'Hér. Ex Aiton) plants. The data collection encompassed daily photosynthetic profiles, responses to light and CO2, leaf optical properties, fluorescence data (OJIP transients), biochemical analyses, and anatomical observations. The findings reveal distinct morphological, optical, and biochemical adaptations between the two species. These adaptations were associated with differences in photochemical (AMAX, E, Ci, iWUE, and α) and carboxylative parameters (VCMAX, ΓCO2, gs, gm, Cc, and AJMAX), along with variations in fluorescence and concentrations of chlorophylls and carotenoids. Such factors modulate the efficiency of photosynthesis. Energy dissipation mechanisms, including thermal and fluorescence pathways (ΦPSII, ETR, NPQ), and JIP test-derived metrics highlighted differences in electron transport, particularly between PSII and PSI. At the ultrastructural level, Hibiscus exhibited optimised cellular and chloroplast architecture, characterised by increased chloroplast density and robust grana structures. In contrast, Pelargonium displayed suboptimal photosynthetic parameters, possibly due to reduced thylakoid counts and a higher proportion of mitochondria. In conclusion, while Hibiscus appears primed for efficient photosynthesis and energy storage, Pelargonium may prioritise alternative cellular functions, engaging in a metabolic trade-off.
Collapse
Affiliation(s)
- Renan Falcioni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Werner Camargos Antunes
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Roney Berti de Oliveira
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Marcelo Luiz Chicati
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - José Alexandre M. Demattê
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil;
| | - Marcos Rafael Nanni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| |
Collapse
|
4
|
Shomali A, De Diego N, Zhou R, Abdelhakim L, Vrobel O, Tarkowski P, Aliniaeifard S, Kamrani YY, Ji Y, Ottosen CO. The crosstalk of far-red energy and signaling defines the regulation of photosynthesis, growth, and flowering in tomatoes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108458. [PMID: 38408395 DOI: 10.1016/j.plaphy.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
This study investigated the effect of light intensity and signaling on the regulation of far-red (FR)-induced alteration in photosynthesis. The low (LL: 440 μmol m-2 s-1) and high (HL: 1135 μmol m-2 s-1) intensity of white light with or without FR (LLFR: 545 μmol m-2 s-1 including 115 μmol m-2 s-1; HLFR: 1254 μmol m-2 s-1 + 140 μmol m-2 s-1) was applied on the tomato cultivar (Solanum Lycopersicon cv. Moneymaker) and mutants of phytochrome A (phyA) and phytochrome B (phyB1, and phyB2). Both light intensity and FR affected plant morphological traits, leaf biomass, and flowering time. Irrespective of genotype, flowering was delayed by LLFR and accelerated by HLFR compared to the corresponding light intensity without FR. In LLFR, a reduced energy flux through the electron transfer chain along with a reduced energy dissipation per reaction center improved the maximum quantum yield of PSII, irrespective of genotype. HLFR increased net photosynthesis and gas exchange properties in a genotype-dependent manner. FR-dependent regulation of hormones was affected by light signaling. It appeared that PHYB affected the levels of abscisic acid and salicylic acid while PHYA took part in the regulation of CK in FR-exposed plants. Overall, light intensity and signaling of FR influenced plants' photosynthesis and growth by altering electron transport, gas exchange, and changes in the level of endogenous hormones.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, 3391653755, Iran.
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Rong Zhou
- Department of Food Science- Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Lamis Abdelhakim
- Department of Food Science- Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Ondřej Vrobel
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371, Olomouc, Czech Republic
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, 3391653755, Iran
| | - Yousef Yari Kamrani
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, Berlin, Germany
| | - Yongran Ji
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, PO Box 16, Wageningen, 6700AA, the Netherlands
| | - Carl-Otto Ottosen
- Department of Food Science- Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| |
Collapse
|
5
|
Qiu X, Sun G, Liu F, Hu W. Functions of Plant Phytochrome Signaling Pathways in Adaptation to Diverse Stresses. Int J Mol Sci 2023; 24:13201. [PMID: 37686008 PMCID: PMC10487518 DOI: 10.3390/ijms241713201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Phytochromes are receptors for red light (R)/far-red light (FR), which are not only involved in regulating the growth and development of plants but also in mediated resistance to various stresses. Studies have revealed that phytochrome signaling pathways play a crucial role in enabling plants to cope with abiotic stresses such as high/low temperatures, drought, high-intensity light, and salinity. Phytochromes and their components in light signaling pathways can also respond to biotic stresses caused by insect pests and microbial pathogens, thereby inducing plant resistance against them. Given that, this paper reviews recent advances in understanding the mechanisms of action of phytochromes in plant resistance to adversity and discusses the importance of modulating the genes involved in phytochrome signaling pathways to coordinate plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Xue Qiu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Guanghua Sun
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| |
Collapse
|
6
|
Stimulation of Tomato Drought Tolerance by PHYTOCHROME A and B1B2 Mutations. Int J Mol Sci 2023; 24:ijms24021560. [PMID: 36675076 PMCID: PMC9864191 DOI: 10.3390/ijms24021560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/20/2022] [Accepted: 01/07/2023] [Indexed: 01/14/2023] Open
Abstract
Drought stress is a severe environmental issue that threatens agriculture at a large scale. PHYTOCHROMES (PHYs) are important photoreceptors in plants that control plant growth and development and are involved in plant stress response. The aim of this study was to identify the role of PHYs in the tomato cv. 'Moneymaker' under drought conditions. The tomato genome contains five PHYs, among which mutant lines in tomato PHYA and PHYB (B1 and B2) were used. Compared to the WT, phyA and phyB1B2 mutants exhibited drought tolerance and showed inhibition of electrolyte leakage and malondialdehyde accumulation, indicating decreased membrane damage in the leaves. Both phy mutants also inhibited oxidative damage by enhancing the expression of reactive oxygen species (ROS) scavenger genes, inhibiting hydrogen peroxide (H2O2) accumulation, and enhancing the percentage of antioxidant activities via DPPH test. Moreover, expression levels of several aquaporins were significantly higher in phyA and phyB1B2, and the relative water content (RWC) in leaves was higher than the RWC in the WT under drought stress, suggesting the enhancement of hydration status in the phy mutants. Therefore, inhibition of oxidative damage in phyA and phyB1B2 mutants may mitigate the harmful effects of drought by preventing membrane damage and conserving the plant hydrostatus.
Collapse
|
7
|
Ji W, Hong E, Chen X, Li Z, Lin B, Xia X, Li T, Song X, Jin S, Zhu X. Photosynthetic and physiological responses of different peony cultivars to high temperature. FRONTIERS IN PLANT SCIENCE 2022; 13:969718. [PMID: 36388495 PMCID: PMC9650587 DOI: 10.3389/fpls.2022.969718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
In order to investigate the causes of the differences in heat tolerance ('Lu He Hong' and 'Zhi Hong'), we studied the physiological changes, photosynthetic properties and regulatory mechanism of the two peony cultivars at high temperature. The results showed that the physiological changed of different peony cultivars varied significantly under high temperature stress. With the extension of high temperature stress time, MDA content of 'Lu He Hong' increased,while 'Zhi Hong' rised first and then decreased, SOD activity of 'Lu He Hong' rised first and then decreased, that of 'Zhi Hong' kept rising, POD activity of 'Lu He Hong' kept decreasing, while 'Zhi Hong' rised. The photosynthetic instrument records the change of peony photosynthesis parameters at high temperature; the chlorophyll A (Chla) fluorescence transient is recorded using the plant efficiency analyzer (PEA), analyzed according to the JIP test (O-J-I-P fluorescence transient analysis), and several parameters were derived to explain the photosynthetic efficiency difference between different peony cultivars. The tested cultivars responded differently to the survey conditions, and the PCA analysis showed that the 'Zhi Hong' was more well tolerated and showed better thermal stability of the PSII. The reduced efficiency of the 'Lu He Hong' PSII antenna leads to higher heat dissipation values to increase the light energy absorbed by unit reaction center (ABS/RC), the energy captured by unit reaction center (TR0/RC), and the energy dissipated by unit reaction center (DI0/RC), which significantly leads to its lower total photosynthetic performance (PItotal). The light capture complex of the variety 'Zhi Hong' has high connectivity with its reaction center, less damage to OEC activity, and better stability of the PSII system. The results show that 'Zhi Hong' improves heat resistance by stabilizing the cell membrane, a strong antioxidant system, as well as a more stable photosynthetic system. The results of this study provide a theoretical basis for the screening of heat-resistant peonies suitable for cultivation in Jiangnan area and for the selection and breeding of heat-resistant cultivars.
Collapse
Affiliation(s)
- Wen Ji
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Erman Hong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xia Chen
- College of Jiyang, Zhejiang A&F University, Zhuji, China
| | - Zhijun Li
- College of Jiyang, Zhejiang A&F University, Zhuji, China
| | - Bangyu Lin
- College of Jiyang, Zhejiang A&F University, Zhuji, China
| | - Xuanze Xia
- College of Jiyang, Zhejiang A&F University, Zhuji, China
| | - Tianyao Li
- College of Jiyang, Zhejiang A&F University, Zhuji, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Songheng Jin
- College of Jiyang, Zhejiang A&F University, Zhuji, China
| | - Xiangtao Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Jiyang, Zhejiang A&F University, Zhuji, China
| |
Collapse
|
8
|
Si C, Yang S, Lou X, Zhang G, Zhong Q. Effects of light spectrum on the morphophysiology and gene expression of lateral branching in Pepino ( Solanum muricatum). FRONTIERS IN PLANT SCIENCE 2022; 13:1012086. [PMID: 36212344 PMCID: PMC9540516 DOI: 10.3389/fpls.2022.1012086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In the present study, we determined the morphological and physiological indicators of Pepino to elucidate its lateral branching responses to different light qualities using a full-spectrum lamp (F) as the control and eight different light ratios using blue light (B) and red light (R). In addition, correlation analysis revealed that the gene expression patterns correlated with lateral branching under various light treatments. Compared with the F treatment, the R treatment increased the plant height and inhibited the elongation of lateral branches, in contrast with the B treatment. The number of lateral branches did not change significantly under different light quality treatments. Moreover, correlation analysis showed that the ratio of blue light was significantly positively correlated with the length of lateral branches and significantly negatively correlated with plant height, aboveground dry weight, and other indicators. We conducted transcriptome sequencing of the sites of lateral branching at three periods under different light quality treatments. The gene related to photodynamic response, cryptochrome (CRY), was the most highly expressed under B treatment, negatively regulated lateral branch length, and positively correlated with plant height. Branched 1, a lateral branch regulation gene, was upregulated under R treatment and inhibited branching. Overall, the red light facilitated internode elongation, leaf area expansion, plant dry weight increase, and inhibition of lateral branching. Soluble sugar content increased, and the lateral branches elongated under blue light. Different light qualities regulated lateral branching by mediating different pathways involving strigolactones and CRY. Our findings laid a foundation for further clarifying the response mechanism of Pepino seedlings to light and provided a theoretical reference for elucidating the regulation of different light qualities on the lateral branching of Pepino.
Collapse
Affiliation(s)
- Cheng Si
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
- Qinghai University, Xining, China
| | - Shipeng Yang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
- College of Life Sciences, Northwest A&F University, Xining, China
| | - Xiangyun Lou
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
| | - Guangnan Zhang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
| | - Qiwen Zhong
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Xi’an, China
| |
Collapse
|
9
|
Gao M, Guo Z, Dong Y, Song Z. Effects of di-n-butyl phthalate on photosynthetic performance and oxidative damage in different growth stages of wheat in cinnamon soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:357-365. [PMID: 31009929 DOI: 10.1016/j.envpol.2019.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Herein, we investigated the effects of di-n-butyl phthalate (DBP) on photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) content, oxidative damage, and biomass accumulation of different tissues in wheat (Triticum aestivum L) planted in cinnamon soils. The photosynthetic or fluorescence parameters (except for the intercellular carbon dioxide concentration), chlorophyll content, RuBisCO content, and biomass of roots, stems, and leaves decreased at the seedling, jointing, and booting stages under the stress of DBP. Compared with the control, the content of superoxide anions and hydrogen peroxide in the roots, stems, and leaves increased with increasing DBP concentrations at the seedling, jointing, and booting stages. The activities of superoxide dismutase (SOD) and catalase (CAT) in the roots, stems, and leaves increased under the 10 and 20 mg kg-1 DBP treatments; however, no significant changes were observed under the 40 mg kg-1 DBP treatment at the seedling stage (except for the SOD activity in roots). The increase in SOD and CAT activities in the roots, stems, and leaves with increasing DBP concentration at the jointing and booting stages suggested that an increase in the activities of these antioxidant enzymes may play an important role in defending against excess reactive oxygen species under DBP stress. The biomass of wheat roots, stems, and leaves decreased with an increase in DBP concentration, which was presumably caused by a decrease in photosynthesis and RuBisCO. The effect of DBP on wheat roots, stems, and leaves decreased with wheat growth.
Collapse
Affiliation(s)
- Minling Gao
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China; Stockbridge School of Agriculture, University of Masschusetts, Amherst, MA, 01003-9286, USA
| | - Zeyang Guo
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Youming Dong
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China
| | - Zhengguo Song
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China.
| |
Collapse
|
10
|
Yang X, Li Y, Qi M, Liu Y, Li T. Targeted Control of Chloroplast Quality to Improve Plant Acclimation: From Protein Import to Degradation. FRONTIERS IN PLANT SCIENCE 2019; 10:958. [PMID: 31402924 PMCID: PMC6670758 DOI: 10.3389/fpls.2019.00958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/09/2019] [Indexed: 05/07/2023]
Abstract
The chloroplast is an important energy-producing organelle acting as an environmental sensor for the plant cell. The normal turnover of the entire damaged chloroplast and its specific components is required for efficient photosynthesis and other metabolic reactions under stress conditions. Nuclear-encoded proteins must be imported into the chloroplast through different membrane transport complexes, and the orderly protein import plays an important role in plant adaptive regulation. Under adverse environmental conditions, the damaged chloroplast or its specific components need to be degraded efficiently to ensure normal cell function. In this review, we discuss the molecular mechanism of protein import and degradation in the chloroplast. Specifically, quality control of chloroplast from protein import to degradation and associated regulatory pathways are discussed to better understand how plants adapt to environmental stress by fine-tuning chloroplast homeostasis, which will benefit breeding approaches to improve crop yield.
Collapse
|
11
|
Mawphlang OIL, Kharshiing EV. Photoreceptor Mediated Plant Growth Responses: Implications for Photoreceptor Engineering toward Improved Performance in Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:1181. [PMID: 28744290 PMCID: PMC5504655 DOI: 10.3389/fpls.2017.01181] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 05/18/2023]
Abstract
Rising temperatures during growing seasons coupled with altered precipitation rates presents a challenging task of improving crop productivity for overcoming such altered weather patterns and cater to a growing population. Light is a critical environmental factor that exerts a powerful influence on plant growth and development ranging from seed germination to flowering and fruiting. Higher plants utilize a suite of complex photoreceptor proteins to perceive surrounding red/far-red (phytochromes), blue/UV-A (cryptochromes, phototropins, ZTL/FKF1/LKP2), and UV-B light (UVR8). While genomic studies have also shown that light induces extensive reprogramming of gene expression patterns in plants, molecular genetic studies have shown that manipulation of one or more photoreceptors can result in modification of agronomically beneficial traits. Such information can assist researchers to engineer photoreceptors via genome editing technologies to alter expression or even sensitivity thresholds of native photoreceptors for targeting aspects of plant growth that can confer superior agronomic value to the engineered crops. Here we summarize the agronomically important plant growth processes influenced by photoreceptors in crop species, alongwith the functional interactions between different photoreceptors and phytohormones in regulating these responses. We also discuss the potential utility of synthetic biology approaches in photobiology for improving agronomically beneficial traits of crop plants by engineering designer photoreceptors.
Collapse
|