1
|
AlAli A, Alkanad M, Alkanad K, Venkatappa A, Sirawase N, Warad I, Khanum SA. A comprehensive review on anti-inflammatory, antibacterial, anticancer and antifungal properties of several bivalent transition metal complexes. Bioorg Chem 2025; 160:108422. [PMID: 40187028 DOI: 10.1016/j.bioorg.2025.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Transition metal complexes have been recognized as possible therapeutic agents, attributed to their special biological actions, including anti-inflammatory, antibacterial, antifungal, and anticancer. The pharmacological perspective connected with Copper (Cu), Cobalt (Co), Nickel (Ni), Manganese (Mn), Palladium (Pd), Zinc (Zn), and Platinum (Pt) metal(II) complexes is comprehensively explored in-depth in this research. The complexes show unique coordination chemistry and modes of action that help interactions with biological targets, including DNA binding, enzyme inhibition, and the formation of reactive oxygen species. All the metal(II) complexes showed notable potential impact in their perspective activity. Conspicuously, Co(II) and Ni(II) complexes show better antibacterial and antifungal action, while Cu(II) and Zn(II) combinations show higher anti-inflammatory activity. While research is constantly investigating alternative metal-based anticancer drugs like Pd(II), which seem to have lowered side effects, Pt(II) complexes especially cisplatin continue to be the benchmark in cancer treatment. Although the possible pharmacological actions are motivating, problems with toxicity and biocompatibility still provide major difficulties, especially in relation to Cd(II) and Hg(II) complexes. Strategies like ligand modification, nanoparticle-based delivery, and prodrug methods are used to increase selectivity and reduce side effects related to metal complexes. This review compiles the most recent developments and continuous research, thereby shedding light on the potential revolutionary power of metal(II) complexes in medical therapy. Understanding their mechanisms and enhancing their safety profiles will help us open the path to creative ideas for addressing some of the most urgent medical issues of today.
Collapse
Affiliation(s)
- Anas AlAli
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Maged Alkanad
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Khaled Alkanad
- Department of Studies in Physics, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Annegowda Venkatappa
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Nischith Sirawase
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Ismail Warad
- Department of Chemistry, AN-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
2
|
Kaya Y, Erçağ A, Uğuz Ö, Koca A, Zorlu Y, Hacıoğlu M, Seher Birteksöz Tan A. New asymmetric bisthiocarbohydrazones and their mixed ligand nickel(II) complexes: Synthesis, characterization, crystal structure, electrochemical-spectroelectrochemical property, antimicrobial and antioxidant activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Synthesis, characterization, DNA binding, cytotoxicity, and molecular docking approaches of Pd(II) complex with N,O- donor ligands as a novel potent anticancer agent. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Kaya Y, Erçağ A, Koca A. New square-planar nickel(II)-triphenylphosphine complexes containing ONS donor ligands: Synthesis, characterization, electrochemical and antioxidant properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Li Y, Li Y, Liu X, Yang Y, Lin D, Gao Q. The synthesis, characterization, DNA/protein interaction, molecular docking and catecholase activity of two Co(II) complexes constructed from the aroylhydrazone ligand. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Li Y, Li Y, Wang N, Lin D, Liu X, Yang Y, Gao Q. Synthesis, DNA/BSA binding studies and in vitro biological assay of nickel(II) complexes incorporating tridentate aroylhydrazone and triphenylphosphine ligands. J Biomol Struct Dyn 2019; 38:4977-4996. [PMID: 31739745 DOI: 10.1080/07391102.2019.1694995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023]
Abstract
Two new nickel (II) triphenylphosphine complexes derived from tridentate aroylhydrazone ligands [H2L1 = 2-hydroxy-3-methoxybenzylidene)benzohydrazone and H2L2 = N'-(2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzoylhydrazone] and triphenylphosphine were prepared and their molecular structures were determined by single crystal X-ray diffraction analysis. Both nickel(II) complexes showed slightly distorted square planar geometry with one tridentate aroylhydrazone ligand coordinated through ONO donor atoms and one triphenylphosphine ligand coordinated to the nickel center through the phosphorus atom. DNA interaction studies indicated that both complexes possessed higher affinity to herring sperm DNA (HS-DNA) than the corresponding free aroylhydrazone ligand. Molecular docking investigations showed that both complexes could bind to DNA through intercalation of the phenyl rings between adjacent base pairs in the double helix. Meanwhile, bovine serum albumin (BSA) binding studies revealed the complexes could effectively interact with BSA and change the secondary structure of BSA. Further pharmacological evaluations of the synthesized complexes by in vitro antioxidant assays demonstrated high antioxidant activity against NO· and O2˙- radicals. The anticancer activity of each complex was assessed through in vitro cytotoxicity assays (CCK-8 kit) toward A549 and MCF-7 cancer cell and normal L-02 cell lines. Significantly, the Ni(II) complex derived from H2L1 ligand was found to be more effective cytotoxic toward MCF-7cancerous cell with the IC50 value equaled 9.7 μM, which showed potent cytotoxic activity over standard drug cisplatin.
Collapse
Affiliation(s)
- Yun Li
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Yueqin Li
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Nana Wang
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Dong Lin
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Xiaohui Liu
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Yong Yang
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Qinwei Gao
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Mathews NA, Begum PS, Kurup MP. Synthesis, characterization, biological screening and molecular docking of Zn(II) and Cu(II) complexes of 3,5‐dichlorosalicylaldehyde‐N
4
‐cyclohexylthiosemicarbazone. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nimya Ann Mathews
- Department of Applied ChemistryCochin University of Science and Technology Kochi 682 022 Kerala India
| | - P.M. Sabura Begum
- Department of Applied ChemistryCochin University of Science and Technology Kochi 682 022 Kerala India
| | - M.R. Prathapachandra Kurup
- Department of Applied ChemistryCochin University of Science and Technology Kochi 682 022 Kerala India
- Department of ChemistrySchool of Physical Sciences Central University of Kerala, Tejaswini Hills, Periye Kasaragod 671 320 India
| |
Collapse
|
8
|
Maliyappa M, Keshavayya J, Mallikarjuna N, Murali Krishna P, Shivakumara N, Sandeep T, Sailaja K, Nazrulla MA. Synthesis, characterization, pharmacological and computational studies of 4, 5, 6, 7-tetrahydro-1, 3-benzothiazole incorporated azo dyes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Hao H, Liu X, Ge X, Zhao Y, Tian X, Ren T, Wang Y, Zhao C, Liu Z. Half-sandwich iridium(III) complexes with α-picolinic acid frameworks and antitumor applications. J Inorg Biochem 2019; 192:52-61. [DOI: 10.1016/j.jinorgbio.2018.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022]
|
10
|
GÜVELİ Ş. Inhibition of DNase I Enzyme with Nickel(II) Triphenylphosphine Complexes Incorporating Tridentate Schiff Base Ligands in Vitro. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.472530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Kalaiarasi G, Dharani S, Puschmann H, Prabhakaran R. Synthesis, structural characterization, DNA/protein binding and antioxidant activities of binuclear Ni(II) complexes containing ONS chelating ligands bridged by 1,3-bis(diphenylphosphino)propane. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Li J, Guo L, Tian Z, Zhang S, Xu Z, Han Y, Li R, Li Y, Liu Z. Half-Sandwich Iridium and Ruthenium Complexes: Effective Tracking in Cells and Anticancer Studies. Inorg Chem 2018; 57:13552-13563. [DOI: 10.1021/acs.inorgchem.8b02161] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- JuanJuan Li
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Shumiao Zhang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhishan Xu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
- Department of Chemistry and Chemical Engineering, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Yali Han
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Ruixia Li
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yan Li
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
13
|
Li J, Guo L, Tian Z, Tian M, Zhang S, Xu K, Qian Y, Liu Z. Novel half-sandwich iridium(iii) imino-pyridyl complexes showing remarkable in vitro anticancer activity. Dalton Trans 2018; 46:15520-15534. [PMID: 29090698 DOI: 10.1039/c7dt03265j] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Seven novel half-sandwich IrIII cyclopentadienyl complexes, [(η5-Cpx)Ir(N^N)Cl]PF6, have been prepared and characterized, where Cpx is Cp* or the biphenyl derivative Cpxbiph (C5Me4C6H4C6H5), and the N^N-chelating ligands are imino-pyridyl Schiff-bases. The X-ray crystal structures of complexes 2A, 2B, and 3A have been determined. Excitingly, most of the complexes show potent antiproliferative activity towards A549 and HeLa cancer cells, except for Cp* complex 1A towards HeLa cells. Cpxbiph complex 2B displayed the highest potency, about 19 and 6 times more active than the clinically used drug cisplatin toward A549 and HeLa cells, respectively. These complexes undergo hydrolysis, and the kinetics data have been calculated. DNA binding has been studied by interaction with nucleobases 9-ethylguanine and 9-methyladenine, cleavage of plasmid DNA, and interaction with ctDNA. Interaction with DNA does not appear to be the major mechanism of action. Protein binding (bovine serum albumin, BSA) has been established by UV-Vis, fluorescence and synchronous spectroscopic studies. The stability of complex 2B in the presence of GSH was evaluated. The complexes catalytically convert coenzyme NADH to NAD+via hydride transfer. Cpxbiph complexes 2B and 4B induce cell apoptosis and arrest cell cycles at the S and G2/M phases towards A549 cancer cells and increase the reactive oxygen species dramatically, which appear to contribute to the remarkable anticancer activity.
Collapse
Affiliation(s)
- JuanJuan Li
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kalaiarasi G, Rex Jeya Rajkumar S, Aswini G, Dharani S, Fronczek FR, Prabhakaran R. 3-Acetyl-8-methoxy-2[H]-chromen-2-one derived Schiff bases as potent antiproliferative agents: Insight into the influence of 4(N)-substituents on the in vitro biological activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 200:246-262. [PMID: 29694929 DOI: 10.1016/j.saa.2018.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
A series of 3-acetyl-8-methoxycoumarin appended thiosemicarbazones (1-4) was prepared from the reaction of 3-acetyl-8-methoxycoumarin with 4(N)-substituted thiosemicarbazides in a view of ascertaining their biological properties with the change of N-terminal substitution in the thiosemicarbazide moiety. Comprehensive characterization was brought about by various spectral and analytical methods. The molecular structures of all the compounds were determined by single crystal X-ray diffraction analysis. Binding studies with Calf thymus DNA (CT-DNA) and proteins such as Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA) indicated an intercalative mode of binding with DNA and static quenching mechanism with proteins. The compounds cleaved plasmid DNA (pBR322) and acted well as free radical scavengers. A good spectrum of antimicrobial activity was observed against four bacterial and five fungal pathogens. The compounds exhibited profound antiproliferative activity on MCF-7 (human breast cancer) and A549 (human lung carcinoma) cell lines. Assay on human normal keratinocyte cell line HaCaT showed that the compounds were non-toxic to normal cells.
Collapse
Affiliation(s)
- G Kalaiarasi
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India
| | - S Rex Jeya Rajkumar
- Department of Biosciences and Technology, Karunya University, Coimbatore 641 114, India
| | - G Aswini
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India
| | - S Dharani
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - R Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
15
|
He X, Tian M, Liu X, Tang Y, Shao CF, Gong P, Liu J, Zhang S, Guo L, Liu Z. Triphenylamine-Appended Half-Sandwich Iridium(III) Complexes and Their Biological Applications. Chem Asian J 2018; 13:1500-1509. [DOI: 10.1002/asia.201800103] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Xiangdong He
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine; Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Meng Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine; Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine; Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Yanhua Tang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine; Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Chang Fang Shao
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine; Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Peiwei Gong
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine; Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Jinfeng Liu
- Qufu Normal University; School of Life Science; Qufu 273165 China
| | - Shumiao Zhang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine; Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine; Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine; Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| |
Collapse
|
16
|
Li J, Tian M, Tian Z, Zhang S, Yan C, Shao C, Liu Z. Half-Sandwich Iridium(III) and Ruthenium(II) Complexes Containing P^P-Chelating Ligands: A New Class of Potent Anticancer Agents with Unusual Redox Features. Inorg Chem 2018; 57:1705-1716. [DOI: 10.1021/acs.inorgchem.7b01959] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- JuanJuan Li
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Meng Tian
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shumiao Zhang
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Chao Yan
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Changfang Shao
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Institute of Anticancer Agents Development
and Theranostic Application, The Key Laboratory of Life-Organic Analysis
and Key Laboratory of Pharmaceutical Intermediates and Analysis of
Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
17
|
Ma W, Tian Z, Zhang S, He X, Li J, Xia X, Chen X, Liu Z. Lysosome targeted drugs: rhodamine B modified N^N-chelating ligands for half-sandwich iridium(iii) anticancer complexes. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00620b] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We designed and synthesized four rhodamine-modified half-sandwich iridium complexes ([(η5-Cpx)Ir(N^N)Cl]PF6).
Collapse
Affiliation(s)
- Wenli Ma
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Shumiao Zhang
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Xiangdong He
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - JuanJuan Li
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Xiaorong Xia
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Xiaobing Chen
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| |
Collapse
|