1
|
Chen YF, Gong W, Sun X. Iridoid glycosides from the leaves of Paederia foetida and their antinociceptive activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-7. [PMID: 40232289 DOI: 10.1080/10286020.2025.2490108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
A chemical investigation on the leaves of Paederia Foetida resulted into the isolation of two new iridoid glycosides, paefoetines A and B (1 and 2). Structural elucidation of all the compounds was performed by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy. The two isolated iridoid glycosides were tested in vivo for their antinociceptive properties. As a result, 1 exhibited potent antinociceptive activity and its ED50 value (49.2 μmol/kg) was twofold less than those of the positive control drugs aspirin.
Collapse
Affiliation(s)
- Yu-Feng Chen
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, 110016China
| | - Wei Gong
- Department of the Food and Drug Inspection, Shenyang Joint Logistics Support Center Drug Instrument Supervision and Inspection Station, Shenyang, 110026China
| | - Xue Sun
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110016China
| |
Collapse
|
2
|
Chen YF, Gong W, Zhao QJ, Liu C. Antinociceptive iridoid glycosides from the aerial parts of Paederia foetida. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:788-794. [PMID: 38469737 DOI: 10.1080/10286020.2024.2326565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Two previously undescribed iridoid glycosides, 6'-O-trans-feruloyl-(4S,6R)-3,4-dihydro-3β-ethoxypaederoside (1) and 6'-O-trans-caffeoyl-(4S,6R)-3,4-dihydro-2'-O-3α-paederoside (2), were isolated from the 90% EtOH extract of the air dried aerial parts of Paederia Foetida. Structural elucidation of all the compounds was performed by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy. The two isolated iridoid glycosides were tested in vivo for their antinociceptive properties. As a result, 2 showed potent antinociceptive effect and its ID50 value (53.4 μmol/kg) was 2-fold less than those of the positive control drugs aspirin and acetaminophen.
Collapse
Affiliation(s)
- Yu-Feng Chen
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Wei Gong
- Department of the Food and Drug Inspection, Shenyang Joint Logistics Support Center Drug Instrument Supervision and Inspection Station, Shenyang 110026, China
| | - Qing-Jie Zhao
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chong Liu
- Department of Human Resource, General Hospital of Northern Theater Command, Shenyang 110016, China
| |
Collapse
|
3
|
Malik MA, Wani AH, Bhat MY, Siddiqui S, Alamri SAM, Alrumman SA. Fungal-mediated synthesis of silver nanoparticles: a novel strategy for plant disease management. Front Microbiol 2024; 15:1399331. [PMID: 39006753 PMCID: PMC11239364 DOI: 10.3389/fmicb.2024.1399331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Various traditional management techniques are employed to control plant diseases caused by bacteria and fungi. However, due to their drawbacks and adverse environmental effects, there is a shift toward employing more eco-friendly methods that are less harmful to the environment and human health. The main aim of the study was to biosynthesize silver Nanoparticles (AgNPs) from Rhizoctonia solani and Cladosporium cladosporioides using a green approach and to test the antimycotic activity of these biosynthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). During the study, the presence of strong plasmon absorbance bands at 420 and 450 nm confirmed the AgNPs biosynthesis by the fungi Rhizoctonia solani and Cladosporium cladosporioides. The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Assessment of the antifungal activity of the silver nanoparticles against various plant pathogenic fungi was carried out by agar well diffusion assay. Different concentration of AgNPs, 5 mg/mL 10 mg/mL and 15 mg/mL were tested to know the inhibitory effect of fungal plant pathogens viz. Aspergillus flavus, Penicillium citrinum, Fusarium oxysporum, Fusarium metavorans, and Aspergillus aflatoxiformans. However, 15 mg/mL concentration of the AgNPs showed excellent inhibitory activity against all tested fungal pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.
Collapse
Affiliation(s)
- Mansoor Ahmad Malik
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Abdul Hamid Wani
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Mohd Yaqub Bhat
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Saad A M Alamri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sulaiman A Alrumman
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Sarma MK, Saha D, Das BK, Das T, Azizov S, Kumar D. A delve into the pharmacological targets and biological mechanisms of Paederia foetida Linn.: a rather invaluable traditional medicinal plant. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2217-2240. [PMID: 37099165 DOI: 10.1007/s00210-023-02496-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 04/27/2023]
Abstract
Drug development from herbal medicines or botanical sources is believed to have a prominent role in the exploration of novel counteractive drugs that has sparked much interest in recent times. Paederia foetida is one such medicinal plant used in both traditional and folkloric medicine. Several parts of the herb are locally utilised as a natural curative agent for several ailments since time immemorial. Paederia foetida indeed possesses anti-diabetic, anti-hyperlipidaemic, antioxidant, nephro-protective, anti-inflammatory, antinociceptive, antitussive, thrombolytic, anti-diarrhoeal, sedative-anxiolytic, anti-ulcer, hepatoprotective activity, anthelmintic and anti-diarrhoeal activity. Furthermore, growing evidence shows many of its active constituents to be effective in cancer, inflammatory diseases, wound healing and spermatogenesis as well. These investigations shed light on possible pharmacological targets and attempts to establish a mechanism of action for these pharmacological effects. These findings contrast the significance of this medicinal plant for further research and for the exploration of novel counteractive drugs to establish a mechanism of action before being employed to healthcare. Pharmacological activities of Paederia foetida and their mechanism of action.
Collapse
Affiliation(s)
- Mrinal Kashyap Sarma
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Assam Science and Technology University, Guwahati, 781 017, Assam, India
| | - Dipankar Saha
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Assam Science and Technology University, Guwahati, 781 017, Assam, India.
| | - Bhrigu Kumar Das
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Assam Science and Technology University, Guwahati, 781 017, Assam, India
| | - Trishna Das
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Assam Science and Technology University, Guwahati, 781 017, Assam, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, 100125, Tashkent, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
5
|
Dutta PP, Marbaniang K, Sen S, Dey BK, Talukdar NC. A review on phytochemistry of Paederia foetida Linn. PHYTOMEDICINE PLUS 2023; 3:100411. [DOI: 10.1016/j.phyplu.2023.100411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
6
|
Soliman MI, Mohammed NS, EL-Sherbeny G, Safhi FA, ALshamrani SM, Alyamani AA, Alharthi B, Qahl SH, Al Kashgry NAT, Abd-Ellatif S, Ibrahim AA. Antibacterial, Antioxidant Activities, GC-Mass Characterization, and Cyto/Genotoxicity Effect of Green Synthesis of Silver Nanoparticles Using Latex of Cynanchum acutum L. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010172. [PMID: 36616301 PMCID: PMC9823559 DOI: 10.3390/plants12010172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/01/2023]
Abstract
Green synthesis of nanoparticles is receiving more attention these days since it is simple to use and prepare, uses fewer harsh chemicals and chemical reactions, and is environmentally benign. A novel strategy aims to recycle poisonous plant chemicals and use them as natural stabilizing capping agents for nanoparticles. In this investigation, silver nanoparticles loaded with latex from Cynanchum acutum L. (Cy-AgNPs) were examined using a transmission electron microscope, FT-IR spectroscopy, and UV-visible spectroscopy. Additionally, using Vicia faba as a model test plant, the genotoxicity and cytotoxicity effects of crude latex and various concentrations of Cy-AgNPs were studied. The majority of the particles were spherical in shape. The highest antioxidant activity using DPPH was illustrated for CAgNPs (25 mg/L) (70.26 ± 1.32%) and decreased with increased concentrations of Cy-AGNPs. Antibacterial activity for all treatments was determined showing that the highest antibacterial activity was for Cy-AgNPs (50 mg/L) with inhibition zone 24 ± 0.014 mm against Bacillus subtilis, 19 ± 0.12 mm against Escherichia coli, and 23 ± 0.015 against Staphylococcus aureus. For phytochemical analysis, the highest levels of secondary metabolites from phenolic content, flavonoids, tannins, and alkaloids, were found in Cy-AgNPs (25 mg/L). Vicia faba treated with Cy-AgNPs- (25 mg/L) displayed the highest mitotic index (MI%) value of 9.08% compared to other Cy-AgNP concentrations (50-100 mg/L) and C. acutum crude latex concentrations (3%). To detect cytotoxicity, a variety of chromosomal abnormalities were used, including micronuclei at interphase, disturbed at metaphase and anaphase, chromosomal stickiness, bridges, and laggards. The concentration of Cy-AgNPs (25 mg/L) had the lowest level of chromosomal aberrations, with a value of 23.41% versus 20.81% for the control. Proteins from seeds treated with V. faba produced sixteen bands on SDS-PAGE, comprising ten monomorphic bands and six polymorphic bands, for a total percentage of polymorphism of 37.5%. Eight ISSR primers were employed to generate a total of 79 bands, 56 of which were polymorphic and 23 of which were common. Primer ISSR 14 has the highest level of polymorphism (92.86%), according to the data. Using biochemical SDS-PAGE and ISSR molecular markers, Cy-AgNPs (25 mg/L) showed the highest percentage of genomic template stability (GTS%), with values of 80% and 51.28%, respectively. The findings of this work suggest employing CyAgNPs (25 mg/L) in pharmaceutical purposes due to its highest content of bioactive compounds and lowest concentration of chromosomal abnormalities.
Collapse
Affiliation(s)
- Magda I. Soliman
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Nada S. Mohammed
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ghada EL-Sherbeny
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | | | - Amal A. Alyamani
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Badr Alharthi
- Department of Biology, College of Al Khurmah, Taif University, P.O. Box 11099, Taif 21974, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Najla Amin T. Al Kashgry
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sawsan Abd-Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, Alexandria 21934, Egypt
| | - Amira A. Ibrahim
- Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt
| |
Collapse
|
7
|
On Recent Developments in Biosynthesis and Application of Au and Ag Nanoparticles from Biological Systems. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/5560244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. The researcher made continuous efforts for the environmental-friendly and economical methods, such as biogenic methods known as green synthesis. There are many strategies for separating and applying gold (Au) and silver (Ag) nanoparticles, of which biological routes have emerged as efficient, low-cost, and environmentally friendly techniques. This review focuses on recent developments of green synthesized AuNPs and AgNPs using biogenic sources such as algae, animals, plants, microbes, bacteria, fungi, and so on. Hence, it discusses their numerous biomedical applications and separating Au and Ag nanoparticles from plants, bacteria, fungi, and algae.
Collapse
|
8
|
Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, Baig AA, Rahman MM, Islam F, Emran TB, Cavalu S. Green Metallic Nanoparticles: Biosynthesis to Applications. Front Bioeng Biotechnol 2022; 10:874742. [PMID: 35464722 PMCID: PMC9019488 DOI: 10.3389/fbioe.2022.874742] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
9
|
Formulation of gold nanoparticles with hibiscus and curcumin extracts induced anti-cancer activity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Labeeb M, Badr A, Haroun SA, Mattar MZ, El-Kholy AS. Ultrastructural and molecular implications of ecofriendly made silver nanoparticles treatments in pea (Pisum sativum L.). JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2022; 20:5. [PMID: 34985579 PMCID: PMC8733074 DOI: 10.1186/s43141-021-00285-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Background Silver nanoparticles (AgNPs) are the most widely used nanomaterial in agricultural and environmental applications. In this study, the impact of AgNPs solutions at 20 mg/L, 40 mg/L, 80 mg/L, and 160 mg/L on cell ultrastructure have been examined in pea (Pisum sativum L) using a transmission electron microscope (TEM). The effect of AgNPs treatments on the α, β esterase (EST), and peroxidase (POX) enzymes expression as well as gain or loss of inter-simple sequence repeats (ISSRs) markers has been described. Results Different structural malformations in the cell wall and mitochondria, as well as plasmolysis and vacuolation were recorded in root cells. Damaged chloroplast and mitochondria were frequently observed in leaves and the osmiophilic plastoglobuli were more observed as AgNPs concentration increased. Starch grains increased by the treatment with 20 mg/L AgNPs. The expressions of α, β EST, and POX were slightly changed but considerable polymorphism in ISSR profiles, using 17 different primers, were scored indicating gain or loss of gene loci as a result of AgNPs treatments. This indicates considerable variations in genomic DNA and point mutations that may be induced by AgNPs as a genotoxic nanomaterial. Conclusion AgNPs may be used to induce genetic variation at low concentrations. However, considerations should be given to the uncontrolled use of nanoparticles and calls for evaluating their impact on plant growth and potential genotoxicity are justified.
Collapse
Affiliation(s)
- May Labeeb
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Soliman A Haroun
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Magdy Z Mattar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin Elkom, Egypt
| | - Aziza S El-Kholy
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh, Egypt.
| |
Collapse
|
11
|
Khan SS, Ullah I, Ullah S, An R, Xu H, Nie K, Liu C, Liu L. Recent Advances in the Surface Functionalization of Nanomaterials for Antimicrobial Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6932. [PMID: 34832332 PMCID: PMC8623114 DOI: 10.3390/ma14226932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Innovations in nanotechnology have had an immense impact on medicine, such as in drug delivery, tissue engineering, and medical devices that combat different pathogens. The pathogens that may cause biofilm-associated nosocomial diseases are multidrug-resistant (MDR) bacteria, such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), including both Gram-positive and Gram-negative bacterial species. About 65-80% of infections are caused by biofilm-associated pathogens creating a move in the international community toward developing antimicrobial therapies to eliminate such pathogenic infections. Several nanomaterials (NMs) have been discovered and significantly employed in various antipathogenic therapies. These NMs have unique properties of singlet oxygen production, high absorption of near-infrared irradiation, and reasonable conversion of light to heat. In this review, functionalized NPs that combat different pathogenic infections are introduced. This review highlights NMs that combat infections caused by multidrug-resistant (MDR) and other pathogenic microorganisms. It also highlights the biomedical application of NPs with regard to antipathogenic activities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (S.U.); (R.A.); (H.X.); (K.N.); (C.L.)
| |
Collapse
|
12
|
Li J, Li Y, Wu H, Naraginti S, Wu Y. Facile synthesis of ZnO nanoparticles by Actinidia deliciosa fruit peel extract: Bactericidal, anticancer and detoxification properties. ENVIRONMENTAL RESEARCH 2021; 200:111433. [PMID: 34090889 DOI: 10.1016/j.envres.2021.111433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Synthesis of nanoparticles by eco-friendly method pulled an extensive concern worldwide due its biocompatibility and wide range of applications as catalysts, microbicidal agents, cancer treatment, sensors etc. Though different chemical methods available for preparation of ZnO nanoparticles, synthesis by utilizing plant material is an excellent substitute and green method as well. The present study describes preparation of ZnO nanoparticles by low-cost green synthetic way using Actinidia deliciosa (kiwi) fruit peel extract and its excellent biological and catalytic properties. The synthesized nanoparticles were well characterized by UV visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Energy-dispersive X-ray spectroscopy (EDAX). The bactericidal activity of the ZnO nanoparticles was determined by using Staphylococcus aureus (S. aureus), while mechanism of cell death was studied by SEM images. Superior anticancer activity was also observed in inhibiting the colon cancer cells (HCT116) by the ZnO nanoparticles. In addition, ZnO nanoparticles showed efficient photocatalytic activity towards degradation of p-bromophenol, about 96.3% within 120 min. Furthermore, phytotoxicity of the intermediate products was analyzed using Vigna radiata (V. radiata) as a model plant. About 8.0% of germination index (GI) was observed in pure p-BP while it increased to 82.3%, and exhibited that the detoxification of p-BP was attained after 120 min of degradation. Thus, the present study demonstrates ZnO nanoparticles prepared from simple, rapid, inexpensive, eco-friendly and efficient green method gives alternative root for biomedicine and wastewater treatment technologies.
Collapse
Affiliation(s)
- Jie Li
- Ministry of Education Key Laboratory of Integrated Regulations and Resource Department on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yi Li
- Ministry of Education Key Laboratory of Integrated Regulations and Resource Department on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Haisuo Wu
- Jiangsu Academy of Environmental Industry and Technology Corp., Nanjing, 210019, China
| | - Saraschandra Naraginti
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yunbo Wu
- Jiangsu Academy of Environmental Industry and Technology Corp., Nanjing, 210019, China
| |
Collapse
|
13
|
Violet Mary J, Pragathiswaran C, Anusuya N. Photocatalytic, degradation, sensing of Pb2+ using titanium nanoparticles synthesized via plant extract of Cissusquadrangularis: In-vitroanalysis of microbial and anti-cancer activities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Potentials of phyto-fabricated nanoparticles as ecofriendly agents for photocatalytic degradation of toxic dyes and waste water treatment, risk assessment and probable mechanism. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Qiao J, Qi L. Recent progress in plant-gold nanoparticles fabrication methods and bio-applications. Talanta 2021; 223:121396. [PMID: 33298252 DOI: 10.1016/j.talanta.2020.121396] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
Abstract
The preparation of gold nanoparticles via green routes applying plant extracts as the reducing agents and stabilizers has received broad interest in the last decades. Plant-gold nanoparticles have been well-developed and applied in biochemical and medical research, but there are still challenges that must be overcome. The main challenges include the construction of chemically-robust plant-gold nanoparticles, the precise design of biomimetic surfaces to fabricate nanozymes with high catalytic activities, and the development of approaches to construct biosensors with high selectivities and sensitivities. The cores and surfaces of plant-gold nanoparticles must be considered, as well as their catalytic activities and biosensing mechanisms. This review highlights the latest achievements in plant-gold nanoparticle preparation, heterogeneous nucleation, and surface functionalization, while also focusing on their optical properties and various biological and catalytic activities. Moreover, their antioxidant and cell apoptosis mechanisms, and biological activities are described. Plant-gold nanoparticles have shown great potential in high-performance analytical assays, high-activity catalysts, effective intracellular imaging, and clinical treatment.
Collapse
Affiliation(s)
- Juan Qiao
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Qi
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B, Rokhum SL. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv 2021; 11:2804-2837. [PMID: 35424248 PMCID: PMC8694026 DOI: 10.1039/d0ra09941d] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Synthesis of metal nanoparticles using plant extracts is one of the most simple, convenient, economical, and environmentally friendly methods that mitigate the involvement of toxic chemicals. Hence, in recent years, several eco-friendly processes for the rapid synthesis of silver nanoparticles have been reported using aqueous extracts of plant parts such as the leaf, bark, roots, etc. This review summarizes and elaborates the new findings in this research domain of the green synthesis of silver nanoparticles (AgNPs) using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015. While highlighting the recently used different plants for the synthesis of highly efficient antimicrobial green AgNPs, we aim to provide a systematic in-depth discussion on the possible influence of the phytochemicals and their concentrations in the plants extracts, extraction solvent, and extraction temperature, as well as reaction temperature, pH, reaction time, and concentration of precursor on the size, shape and stability of the produced AgNPs. Exhaustive details of the plausible mechanism of the interaction of AgNPs with the cell wall of microbes, leading to cell death, and high antimicrobial activities have also been elaborated. The shape and size-dependent antimicrobial activities of the biogenic AgNPs and the enhanced antimicrobial activities by synergetic interaction of AgNPs with known commercial antibiotic drugs have also been comprehensively detailed.
Collapse
Affiliation(s)
- Chhangte Vanlalveni
- Department of Botany, Mizoram University Tanhril Aizawl Mizoram 796001 India
| | - Samuel Lallianrawna
- Department of Chemistry, Govt. Zirtiri Residential Science College Aizawl 796001 Mizoram India
| | - Ayushi Biswas
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Bishwajit Changmai
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
| | - Samuel Lalthazuala Rokhum
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
17
|
Din MI, Jabbar S, Najeeb J, Khalid R, Ghaffar T, Arshad M, Khan SA, Ali S. Green synthesis of zinc ferrite nanoparticles for photocatalysis of methylene blue. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1440-1447. [PMID: 32619359 DOI: 10.1080/15226514.2020.1781783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, zinc ferrite nanoparticles (ZF-NPs) were synthesized using aqueous seed extract of Piper nigrum as a bio-reducing and stabilizing agent. FTIR, SEM, FE-SEM, XRD, and TGA have been used for characterizing ZF-NPs. The results showed that Piper nigrum stabilized ZF-NPs have high purity and size range of 60-80 nm. The performance of the ZF-NPs has been investigated by photocatalytic reduction of methylene blue (MB) in the presence of sunlight. The factors responsible for affecting the degradation values of the reaction were also explored for developing a better understanding of the phenomenon.
Collapse
Affiliation(s)
- Muhammad Imran Din
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Lahore, Pakistan
| | - Summiya Jabbar
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Lahore, Pakistan
| | - Jawayria Najeeb
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Rida Khalid
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Lahore, Pakistan
| | - Tayabba Ghaffar
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Lahore, Pakistan
| | - Muhammad Arshad
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Lahore, Pakistan
| | - Safyan A Khan
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Shahid Ali
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
18
|
Chen Y, Feng L. Silver nanoparticles doped TiO2 catalyzed Suzuki-coupling of bromoaryl with phenylboronic acid under visible light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111807. [DOI: 10.1016/j.jphotobiol.2020.111807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/04/2020] [Accepted: 01/24/2020] [Indexed: 01/11/2023]
|
19
|
Jaffri SB, Ahmad KS. Biomimetic detoxifier Prunus cerasifera Ehrh. silver nanoparticles: innate green bullets for morbific pathogens and persistent pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9669-9685. [PMID: 31925686 DOI: 10.1007/s11356-020-07626-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles were fabricated in the presence and absence of light with silver nitrate and aqueous extract of Prunus cerasifera leaf via facile and one-pot green method. P. cerasifera leaf extract reduced and stabilized the nanoparticles with phytometabolites expunging the need for addition of external reducing agents. Optimized silver nanoparticle syntheses was done with variations in leaf extract concentration, time, temperature, and molarity for deciphering the photocatalytic, antifungal, and antibacterial potential of synthesized nanoparticles. Optical, compositional, and morphological analyses of the synthesized nanoparticles were done by UV-visible spectrometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Formation of silver nanoparticles was confirmed firstly through UV-Vis by exhibition of peaks with 400-450 nm. FTIR confirmed the presence of major organic groups responsible for reduction of nanoparticles. AFM confirmed the spherical morphology of the synthesized nanoparticles with remarkable dispersion without any agglomeration. Phytochemical analysis for P. cerasifera leaf metabolites was done by GC-MS. Spherical nanoparticles having a size range of 57-144 nm were obtained with face-centered cubic crystals. The average crystallite size obtained from XRD spectra was 2.34 nm. Enhanced photocatalytic first-order kinetics were obtained for persistent organic pollutants, i.e., crystal violet, methylene blue, and malachite green (R2 = 0.99, 0.99, 0.98) in less than 15 min. Biomedical and agricultural significance as an antibiotic drug and utilization as a fungicides substitute was explored against nine resistant microbes. Statistically significant variations were analyzed via one-way analysis of variance (ANOVA) and Kruskal-Wallis test and specific multi comparison tests. Active to highly active inhibition zones manifested the use of biogenic silver nanoparticles as potential candidate for applications in biological arenas and as environmental remediators.
Collapse
Affiliation(s)
- Shaan Bibi Jaffri
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan.
| |
Collapse
|
20
|
Vijayan R, Joseph S, Mathew B. Costus speciosus rhizome extract mediated synthesis of silver and gold nanoparticles and their biological and catalytic properties. INORG NANO-MET CHEM 2019. [DOI: 10.1080/24701556.2019.1661439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Remya Vijayan
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| | - Siby Joseph
- Department of Chemistry, St. George’s College, Kottayam, India
| | - Beena Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| |
Collapse
|
21
|
Veena S, Devasena T, Sathak SSM, Yasasve M, Vishal LA. Green Synthesis of Gold Nanoparticles from Vitex negundo Leaf Extract: Characterization and In Vitro Evaluation of Antioxidant–Antibacterial Activity. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01601-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Nandhini N, Rajeshkumar S, Mythili S. The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101138] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Kamran U, Bhatti HN, Iqbal M, Nazir A. Green Synthesis of Metal Nanoparticles and their Applications in Different Fields: A Review. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/zpch-2018-1238] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Nanotechnology is an art for application and handling of materials at very small scales i.e. 1–100 nm. The materials at this scale exhibit significantly different properties compared to same materials at larger scales. There are so many physical and chemical methods for the synthesis of nanoscale materials but the most appropriate are the ones that synthesize materials using green chemistry eco-friendly techniques. Recently, the collaboration between nanotechnology and biology has opened up new horizons of nanobiotechnology that integrates the use of biological materials in a number of biochemical and biophysical processes. This approach has significantly boosted up nanoparticles (NPs) production without employing harsh and toxic conditions and chemicals. This review is aimed to provide an outline of latest developments in synthesis of NPs through biotic entities and their potential applications.
Collapse
Affiliation(s)
- Urooj Kamran
- Department of Chemistry , University of Agriculture , Faisalabad , Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry , University of Agriculture , Faisalabad , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| |
Collapse
|
24
|
Bhagat M, Anand R, Datt R, Gupta V, Arya S. Green Synthesis of Silver Nanoparticles Using Aqueous Extract of Rosa brunonii Lindl and Their Morphological, Biological and Photocatalytic Characterizations. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0994-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Bhuyan B, Paul B, Paul A, Dhar SS. Paederia foetida
Linn. promoted synthesis of CoFe
2
O
4
and NiFe
2
O
4
nanostructures and their photocatalytic efficiency. IET Nanobiotechnol 2018. [DOI: 10.1049/iet-nbt.2017.0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Bishal Bhuyan
- Department of ChemistryNational Institute of TechnologySilchar, Silchar788010AssamIndia
| | - Bappi Paul
- Department of ChemistryNational Institute of TechnologySilchar, Silchar788010AssamIndia
| | - Arijita Paul
- Department of ChemistryNational Institute of TechnologySilchar, Silchar788010AssamIndia
| | | |
Collapse
|
26
|
Kourmouli A, Valenti M, van Rijn E, Beaumont HJE, Kalantzi OI, Schmidt-Ott A, Biskos G. Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles? JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2018; 20:62. [PMID: 29527123 PMCID: PMC5834581 DOI: 10.1007/s11051-018-4152-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/05/2018] [Indexed: 05/19/2023]
Abstract
The use of disc diffusion susceptibility tests to determine the antibacterial activity of engineered nanoparticles (ENPs) is questionable because their low diffusivity practically prevents them from penetrating through the culture media. In this study, we investigate the ability of such a test, namely the Kirby-Bauer disc diffusion test, to determine the antimicrobial activity of Au and Ag ENPs having diameters from 10 to 40 nm on Escherichia coli cultures. As anticipated, the tests did not show any antibacterial effects of Au nanoparticles (NPs) as a result of their negligible diffusivity through the culture media. Ag NPs on the other hand exhibited a strong antimicrobial activity that was independent of their size. Considering that Ag, in contrast to Au, dissolves upon oxidation and dilution in aqueous solutions, the apparent antibacterial behavior of Ag NPs is attributed to the ions they release. The Kirby-Bauer method, and other similar tests, can therefore be employed to probe the antimicrobial activity of ENPs related to their ability to release ions rather than to their unique size-dependent properties. Graphical abstractᅟ.
Collapse
Affiliation(s)
- Angeliki Kourmouli
- Faculty of Applied Sciences, Delft University of Technology, 2628-BL Delft, The Netherlands
- Department of Environment, University of the Aegean, 81100 Mytilene, Greece
- Present Address: The Birmingham Institute of Forest Research (BIFoR), School of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Marco Valenti
- Faculty of Applied Sciences, Delft University of Technology, 2628-BL Delft, The Netherlands
| | - Erwin van Rijn
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, 2628-CJ Delft, The Netherlands
| | - Hubertus J. E. Beaumont
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, 2628-CJ Delft, The Netherlands
| | | | - Andreas Schmidt-Ott
- Faculty of Applied Sciences, Delft University of Technology, 2628-BL Delft, The Netherlands
| | - George Biskos
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628-CN Delft, The Netherlands
- Energy, Environment and Water Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
| |
Collapse
|
27
|
Bhuyan B, Paul A, Devi M, Dhar SS. A silver NP-dispersed water extract of fly ash as a green and efficient medium for oxidant-free dehydrogenation of benzyl alcohols. RSC Adv 2018; 8:1313-1319. [PMID: 35540896 PMCID: PMC9076987 DOI: 10.1039/c7ra12225j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/12/2017] [Indexed: 11/21/2022] Open
Abstract
Herein, a green, efficient, and new catalytic system for dehydrogenative oxidation of benzyl alcohols using Ag nanoparticles (NPs) dispersed in water extract of fly ash (WEFA) has been developed. Various characterization techniques were performed to authenticate the formation of Ag@WEFA. The as-prepared Ag NPs (10–20 nm) were found to be dispersed in WEFA, as indicated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images. With Ag@WEFA, a variety of substituted benzyl alcohols were efficiently converted to carbonyl compounds in high yields. All the reactions were deliberately carried out without using any ligand or hazardous organic solvent. This catalytic system involving WEFA is a genuinely new concept. It is, therefore, expected to attract attention from researchers working in the areas of sustainable chemistry. A new catalytic system for dehydrogenative oxidation of benzyl alcohols using Ag nanoparticles dispersed in WEFA is developed.![]()
Collapse
Affiliation(s)
- Bishal Bhuyan
- Department of Chemistry
- National Institute of Technology, Silchar
- Silchar-788010
- India
| | - Arijita Paul
- Department of Chemistry
- National Institute of Technology, Silchar
- Silchar-788010
- India
| | - Meghali Devi
- Department of Chemistry
- National Institute of Technology, Silchar
- Silchar-788010
- India
| | | |
Collapse
|