1
|
Priya V, Vikas, Mehata AK, Jain D, Singh SK, Muthu MS. Efficient delivery of abciximab using mesoporous silica nanoparticles: In-vitro assessment for targeted and improved antithrombotic activity. Colloids Surf B Biointerfaces 2022; 218:112697. [PMID: 35917688 DOI: 10.1016/j.colsurfb.2022.112697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
Abciximab (ABX) is a chimeric monoclonal antibody reported for antithrombotic activity but their delivery remains challenging due to its poor stability in a biological system. The purpose of this research was to deliver ABX on the target efficiently using mesoporous silica nanoparticles (MSN). ABX coated mesoporous silica nanoparticles (MSN-ABX) were formulated and analyzed for particle size, shape, zeta-potential, surface morphology and surface chemistry. XPS analysis confirmed the presence of ABX on the surface of amino functionalized mesoporous silica nanoparticles (MSN-NH2). The degree of ABX attachment was 67.53 ± 5.81 % which was demonstrated by the Bradford assay. Furthermore, the targeting efficiency of the targeted nanoparticles has been evaluated by capturing the fluorescent images in-vitro which showed the significant accumulation of the ABX coated nanoparticles towards activated platelets. The significant (P < 0.05) increase in affinity of DiD dye loaded nanoparticles towards the activated platelets was confirmed by using an in-vitro imaging through photon imager optima. The hemolysis study of the nanoparticle formulations revealed that they were non-hemolytic for healthy human blood. The in-vitro antithrombotic effects of MSN-ABX were observed by blood clot assay which revealed its superior antithrombotic activity over clinical injection of ABX and could be a promising carrier for improved ABX targeted delivery.
Collapse
Affiliation(s)
- Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Dharmendra Jain
- Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sanjeev K Singh
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| |
Collapse
|
2
|
Prabha S, Durgalakshmi D, Rajendran S, Lichtfouse E. Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 19:1667-1691. [PMID: 33199978 PMCID: PMC7658439 DOI: 10.1007/s10311-020-01123-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/17/2020] [Indexed: 05/05/2023]
Abstract
Silica nanoparticles have rapidly found applications in medicine, supercapacitors, batteries, optical fibers and concrete materials, because silica nanoparticles have tunable physical, chemical, optical and mechanical properties. In most applications, high-purity silica comes from synthetic organic precursors, yet this approach could be costly, polluting and non-biocompatible. Alternatively, natural silica sources from biomass are often cheap and abundant, yet they contain impurities. Silica can be extracted from corn cob, coffee husk, rice husk, sugarcane bagasse and wheat husk wastes, which are often disposed of in rivers, lands and ponds. These wastes can be used to prepare homogenous silica nanoparticles. Here we review properties, preparation and applications of silica nanoparticles. Preparation includes chemical and biomass methods. Applications include biosensors, bioimaging, drug delivery and supercapacitors. In particular, to fight the COVID-19 pandemic, recent research has shown that silver nanocluster/silica deposited on a mask reduces SARS-Cov-2 infectivity to zero.
Collapse
Affiliation(s)
- S. Prabha
- Department of Medical Physics, Anna University, Chennai, 600025 India
| | - D. Durgalakshmi
- Department of Medical Physics, Anna University, Chennai, 600025 India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775 Arica, Chile
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Avenue Louis Philibert, 13100 Aix en Provence, France
- International Research Centre for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
3
|
Qu G, Xia T, Zhou W, Zhang X, Zhang H, Hu L, Shi J, Yu XF, Jiang G. Property-Activity Relationship of Black Phosphorus at the Nano-Bio Interface: From Molecules to Organisms. Chem Rev 2020; 120:2288-2346. [PMID: 31971371 DOI: 10.1021/acs.chemrev.9b00445] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a novel member of the two-dimensional nanomaterial family, mono- or few-layer black phosphorus (BP) with direct bandgap and high charge carrier mobility is promising in many applications such as microelectronic devices, photoelectronic devices, energy technologies, and catalysis agents. Due to its benign elemental composition (phosphorus), large surface area, electronic/photonic performances, and chemical/biological activities, BP has also demonstrated a great potential in biomedical applications including biosensing, photothermal/photodynamic therapies, controlled drug releases, and antibacterial uses. The nature of the BP-bio interface is comprised of dynamic contacts between nanomaterials (NMs) and biological systems, where BP and the biological system interact. The physicochemical interactions at the nano-bio interface play a critical role in the biological effects of NMs. In this review, we discuss the interface in the context of BP as a nanomaterial and its unique physicochemical properties that may affect its biological effects. Herein, we comprehensively reviewed the recent studies on the interactions between BP and biomolecules, cells, and animals and summarized various cellular responses, inflammatory/immunological effects, as well as other biological outcomes of BP depending on its own physical properties, exposure routes, and biodistribution. In addition, we also discussed the environmental behaviors and potential risks on environmental organisms of BP. Based on accumulating knowledge on the BP-bio interfaces, this review also summarizes various safer-by-design strategies to change the physicochemical properties including chemical stability and nano-bio interactions, which are critical in tuning the biological behaviors of BP. The better understanding of the biological activity of BP at BP-bio interfaces and corresponding methods to overcome the challenges would promote its future exploration in terms of bringing this new nanomaterial to practical applications.
Collapse
Affiliation(s)
- Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tian Xia
- Division of Nanomedicine, Department of Medicine , University of California Los Angeles California 90095 , United States
| | - Wenhua Zhou
- Materials Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P.R. China
| | - Xue Zhang
- Materials Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P.R. China
| | - Haiyan Zhang
- College of Environment , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xue-Feng Yu
- Materials Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P.R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
5
|
Björk EM, Baumann B, Hausladen F, Wittig R, Lindén M. Cell adherence and drug delivery from particle based mesoporous silica films. RSC Adv 2019; 9:17745-17753. [PMID: 35520598 PMCID: PMC9064623 DOI: 10.1039/c9ra02823d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Spatially and temporally controlled drug delivery is important for implant and tissue engineering applications, as the efficacy and bioavailability of the drug can be enhanced, and can also allow for drugging stem cells at different stages of development. Long-term drug delivery over weeks to months is however difficult to achieve, and coating of 3D surfaces or creating patterned surfaces is a challenge using coating techniques like spin- and dip-coating. In this study, mesoporous films consisting of SBA-15 particles grown onto silicon wafers using wet processing were evaluated as a scaffold for drug delivery. Films with various particle sizes (100–900 nm) and hence thicknesses were grown onto trichloro(octadecyl)silane-functionalized silicon wafers using a direct growth method. Precise patterning of the areas for film growth could be obtained by local removal of the OTS functionalization through laser ablation. The films were incubated with the drug model 3,3′-dioctadecyloxacarbocyanine perchlorate (DiO), and murine myoblast cells (C2C12 cells) were seeded onto films with different particle sizes. Confocal laser scanning microscopy (CLSM) was used to study the cell growth, and a vinculin-mediated adherence of C2C12 cells on all films was verified. The successful loading of DiO into the films was confirmed by UV-vis and CLSM. It was observed that the drugs did not desorb from the particles during 24 hours in cell culture. During adherent growth on the films for 4 h, small amounts of DiO and separate particles were observed inside single cells. After 24 h, a larger number of particles and a strong DiO signal were recorded in the cells, indicating a particle mediated drug uptake. The vast majority of the DiO-loaded particles remained attached to the substrate also after 24 h of incubation, making the films attractive as longer-term reservoirs for drugs on e.g. medical implants. Particle-based mesoporous silica films synthesized through a direct growth method were successfully used as a drug delivery system.![]()
Collapse
Affiliation(s)
- Emma M. Björk
- Institute for Inorganic Chemistry II
- University of Ulm
- 890 81 Ulm
- Germany
- Nanostructured Materials
| | - Bernhard Baumann
- Institute for Inorganic Chemistry II
- University of Ulm
- 890 81 Ulm
- Germany
| | - Florian Hausladen
- Institute for Laser Technologies in Medicine & Metrology (ILM)
- Ulm University
- 890 81 Ulm
- Germany
| | - Rainer Wittig
- Institute for Laser Technologies in Medicine & Metrology (ILM)
- Ulm University
- 890 81 Ulm
- Germany
| | - Mika Lindén
- Institute for Inorganic Chemistry II
- University of Ulm
- 890 81 Ulm
- Germany
| |
Collapse
|
6
|
Singharoy D, Ghosh S, Samai B, Bhattacharya SC. Deciphering Block Copolymers as Carriers of a Pyrazoline Derivative through Its Solvatochromic Behavior: A Spectroscopic and Theoretical Exploration. Chempluschem 2018; 83:991-997. [PMID: 31950724 DOI: 10.1002/cplu.201800449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 11/06/2022]
Abstract
Many biologically active water-insoluble drug molecules have limited clinical application because of strong hydrophobicity. Recently triblock copolymers have attracted enormous interest as potential drug carriers. For the purpose of delivering the 5-(1-(bromohexa-1,3,5-triyn-1-yl)-3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoindazol-3-yl)-3-methyl-1-phenyl-1H-pyrazole-4-carbonitrile (PYZ) molecule, triblock copolymers are used. In order to understand the delivery of this water-insoluble probe through triblock copolymers (TBP), the solvent-dependent fluorescence properties of this compound have been examined in different homogeneous solvents. Besides the experimental work, theoretical studies have also been conducted to explain actual orientation of atoms in PYZ through optimized structures to support the experimental findings. Moreover, the three TBP polymers P-123 (PEO19 PPO69 PEO19 ), F-127 (PEO100 PPO65PEO100 ) and L-64 (PEO13 PPO30 PEO13 ) have been treated here as potential carriers that encapsulate a pyrazoline derivative. The consequence of spatial captivity on the emission properties was systematically visualized by means of steady-state and time-resolved fluorescence spectroscopy. From DLS measurements the size variation with the polydispersity index of TBP in the presence and absence of PYZ in different triblock copolymers was also monitored. Furthermore these measurements have been supported by TEM imaging also.
Collapse
Affiliation(s)
- Dipti Singharoy
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Swadesh Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Boby Samai
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | | |
Collapse
|