1
|
Kumar S, Arora A, Maikhuri VK, Chaudhary A, Kumar R, Parmar VS, Singh BK, Mathur D. Advances in chromone-based copper(ii) Schiff base complexes: synthesis, characterization, and versatile applications in pharmacology and biomimetic catalysis. RSC Adv 2024; 14:17102-17139. [PMID: 38808245 PMCID: PMC11130647 DOI: 10.1039/d4ra00590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Chromones are well known as fundamental structural elements found in numerous natural compounds and medicinal substances. The Schiff bases of chromones have a much wider range of pharmacological applications such as antitumor, antioxidant, anti-HIV, antifungal, anti-inflammatory, and antimicrobial properties. A lot of research has been carried out on chromone-based copper(ii) Schiff-base complexes owing to their role in the organometallic domain and promise as potential bioactive cores. This review article is centered on copper(ii) Schiff-base complexes derived from chromones, highlighting their diverse range of pharmacological applications documented in the past decade, as well as the future research opportunities they offer.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry and Environmental Science, Medgar Evers College 1638 Bedford Avenue, Brooklyn New York 11225 USA
| | - Aditi Arora
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Vipin K Maikhuri
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Ankita Chaudhary
- Department of Chemistry, Maitreyi College, University of Delhi Delhi India
| | - Rajesh Kumar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry, R. D. S College, B. R. A. Bihar University Muzaffarpur India
| | - Virinder S Parmar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry and Environmental Science, Medgar Evers College 1638 Bedford Avenue, Brooklyn New York 11225 USA
- Amity Institute of Click Chemistry and Research Studies, Amity University Sector 125 Noida 201313 Uttar Pradesh India
| | - Brajendra K Singh
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Divya Mathur
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry, Daulat Ram College, University of Delhi Delhi India
| |
Collapse
|
2
|
Pincer Complexes Derived from Tridentate Schiff Bases for Their Use as Antimicrobial Metallopharmaceuticals. INORGANICS 2022. [DOI: 10.3390/inorganics10090134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Within the current challenges in medicinal chemistry, the development of new and better therapeutic agents effective against infectious diseases produced by bacteria, fungi, viruses, and parasites stands out. With chemotherapy as one of the main strategies against these diseases focusing on the administration of organic and inorganic drugs, the latter is generally based on the synergistic effect produced by the formation of metal complexes with biologically active organic compounds. In this sense, Schiff bases (SBs) represent and ideal ligand scaffold since they have demonstrated a broad spectrum of antitumor, antiviral, antimicrobial, and anti-inflammatory activities, among others. In addition, SBs are synthesized in an easy manner from one-step condensation reactions, being thus suitable for facile structural modifications, having the imine group as a coordination point found in most of their metal complexes, and promoting chelation when other donor atoms are three, four, or five bonds apart. However, despite the wide variety of metal complexes found in the literature using this type of ligands, only a handful of them include on their structures tridentate SBs ligands and their biological evaluation has been explored. Hence, this review summarizes the most important antimicrobial activity results reported this far for pincer-type complexes (main group and d-block) derived from SBs tridentate ligands.
Collapse
|
3
|
A Novel Coumarin Based Probe for Al(III): Synthesis, Spectral Characterization, Photophysical Properties, DFT calculations and Fluorescence cellular bio-imaging. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Copper(II) and oxidovanadium(IV) complexes of chromone Schiff bases as potential anticancer agents. J Biol Inorg Chem 2021; 27:89-109. [PMID: 34817681 DOI: 10.1007/s00775-021-01913-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
We report the synthesis, characterization and biological screening of new chromone Schiff bases derived from the condensation of three 6-substituted-3-formyl-chromones with pyridoxal (HL1-3) and its Cu(II) complexes [Cu(L1-3)Cl], 1-3. For the 6-methyl derivative, HL2, the VIVO-complex [VO(L2)Cl] (5), as well as ternary Cu and VIVO complexes with 1,10-phenanthroline (phen), [Cu(L2)(phen)Cl] (4) and [VO(L2)(phen)Cl] (6), were also prepared and evaluated. Their stability in aqueous medium and radical scavenging activity toward DPPH are screened, with [Cu(L2)(phen)Cl] (4) showing hydrolytic stability and [VO(L2)(phen)Cl] (6) high radical scavenging activity. Spectroscopic studies establish bovine serum albumin (BSA), a model for HSA, as a potential reversible carrier of [Cu(L2)(phen)Cl] in blood with KBC ≈ 105 M-1. The cytotoxic activity of a group of compounds is evaluated against a panel of human cancer cell lines of different origin (ovary, cervix, brain and breast) and compared to normal cells. Our results indicate that Cu complexes are more cytotoxic than the ligands but not selective towards cancer cells. The most potent complexes (4 and 6) are further evaluated for their apoptotic potential, induction of reactive oxygen species (ROS) and genotoxicity. Both complexes efficiently triggered cell death through apoptosis as evaluated by DNA morphology and TUNEL assay, increased ROS formation as determined by DCFDA (2',7'-dichlorodihydrofluorescein diacetate) analysis, and induced genotoxic damage as visualized via COMET assay in all cancer cells under study. Therefore, 4 and 6 may be potential precursor anticancer molecules, yet they need to be targeted toward cancer cells.
Collapse
|
5
|
Kalaiarasi G, Dharani S, Rajkumar SRJ, Kaminsky W, Prabhakaran R. Synthesis, spectroscopic/electrochemical characterization, DNA/Protein binding studies and bioactivity assays of Ru(II) carbonyl complexes of 4-oxo-4H-chromene-3-carbaldehyde thiosemicarbazones. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Elamathi C, Butcher RJ, Mohankumar A, Sundararaj P, Elango KP, Kalaivani P, Prabhakaran R. Dual sensing of methionine and aspartic acid in aqueous medium by a quinoline-based fluorescent probe. Dalton Trans 2021; 50:8820-8830. [PMID: 34096948 DOI: 10.1039/d1dt00648g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A quinoline-based Schiff base sensor, 6-methyl-2-oxo-1,2-dihydro-quinoline-3-carboxaldehyde-4(N)-phenylsemicarbazone (6MPS), has been developed for selective sensing of methionine and aspartic acid in aqueous medium through "on-off-on" type selective detection of copper ion. Fluorescence imaging of 6MPS, 6MPSC, 6MPSCN, 6MPSC-met, 6MPSCN-met, 6MPSC-asp and 6MPSCN-asp has been successfully demonstrated, in which the sensing probes 6MPSC-met, 6MPSCN-met, 6MPSC-asp and 6MPSCN-asp displayed bright green fluorescence in both in vitro and in vivo live cells.
Collapse
Affiliation(s)
- C Elamathi
- Department of Chemistry, Bharathiar University, Coimbatore-641 046, India.
| | - R J Butcher
- Department of Inorganic and Structural Chemistry, Howard University, Washington DC 20059, USA
| | - A Mohankumar
- Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - P Sundararaj
- Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - K P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624 302, India
| | - P Kalaivani
- Department of Chemistry, Nirmala College for Women, Red Fields, Coimbatore-641018, India
| | - R Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore-641 046, India.
| |
Collapse
|
7
|
Churusova SG, Aleksanyan DV, Rybalkina EY, Susova OY, Peregudov AS, Brunova VV, Gutsul EI, Klemenkova ZS, Nelyubina YV, Glushko VN, Kozlov VA. Palladium(II) Pincer Complexes of Functionalized Amides with S-Modified Cysteine and Homocysteine Residues: Cytotoxic Activity and Different Aspects of Their Biological Effect on Living Cells. Inorg Chem 2021; 60:9880-9898. [PMID: 34130457 DOI: 10.1021/acs.inorgchem.1c01138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the search for potential new metal-based antitumor agents, two series of nonclassical palladium(II) pincer complexes based on functionalized amides with S-modified cysteine and homocysteine residues have been prepared and fully characterized by 1D and 2D NMR (1H, 13C, COSY, HMQC or HSQC, 1H-13C, and 1H-15N HMBC) and IR spectroscopy and, in some cases, X-ray diffraction. Most of the resulting complexes exhibit a high level of cytotoxic activity against several human cancer cell lines, including colon (HCT116), breast (MCF7), and prostate (PC3) cancers. Some of the compounds under consideration are also efficient in both native and doxorubicin-resistant transformed breast cells HBL100, suggesting the prospects for the creation of therapeutic agents based on the related compounds that would be able to overcome drug resistance. An analysis of different aspects of their biological effects on living cells has revealed a remarkable ability of the S-modified derivatives to induce cell apoptosis and efficient cellular uptake of their fluorescein-conjugated counterpart, confirming the high anticancer potential of Pd(II) pincer complexes derived from functionalized amides with S-donor amino acid pendant arms.
Collapse
Affiliation(s)
- Svetlana G Churusova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Diana V Aleksanyan
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Ekaterina Yu Rybalkina
- Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 23, Moscow 115478, Russia
| | - Olga Yu Susova
- Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 23, Moscow 115478, Russia
| | - Alexander S Peregudov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Valentina V Brunova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Evgenii I Gutsul
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Zinaida S Klemenkova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Yulia V Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| | - Valentina N Glushko
- Institute of Chemical Reagents and High Purity Chemical Substances of the National Research Centre "Kurchatov Institute", Bogorodskii val 3, Moscow 107076, Russia
| | - Vladimir A Kozlov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russia
| |
Collapse
|
8
|
Kalaiarasi G, Mohankumar A, Dharani S, Dallemer F, Sundararaj P, Prabhakaran R. ONO‐Pincer‐Type Coumarin‐Based Copper(II) Metalates: Effect on Alzheimer's Disease Pathologies in
Caenorhabditis elegans. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Giriraj Kalaiarasi
- Department of Chemistry Bharathiar University Coimbatore 641 046 India
- Department of Chemistry Karpagam Academy of Higher Education Coimbatore 641 021 India
| | | | - Sivadasan Dharani
- Department of Chemistry Bharathiar University Coimbatore 641 046 India
| | - Frederic Dallemer
- Laboratoire MADIREL CNRS UMR7246 University of Aix-Marseille Centre de Saint-Jerome, bat. MADIREL 13397 Marseille Cedex 20 France
| | | | | |
Collapse
|
9
|
Sindhu M, Kalaivani P, Prabhakaran R. New organoruthenium metallates containing ferrocenecarboxalidine thiosemicarbazones and their nucleic acid/albumin binding and
in vitro
cytotoxicity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mathiyazhagan Sindhu
- Department of Chemistry, Nirmala College for Women Bharathiar University Coimbatore 641 018 India
| | - Palaniappan Kalaivani
- Department of Chemistry, Nirmala College for Women Bharathiar University Coimbatore 641 018 India
| | | |
Collapse
|
10
|
Yekke-ghasemi Z, Ramezani M, Mague JT, Takjoo R. Synthesis, characterization and bioactivity studies of new dithiocarbazate complexes. NEW J CHEM 2020. [DOI: 10.1039/d0nj01187h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Six new dithiocarbazate compounds are synthesized and characterized. HSA interaction and MTT assay are evaluated for all compounds.
Collapse
Affiliation(s)
- Zahra Yekke-ghasemi
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center
- School of Pharmacy
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Joel T. Mague
- Department of Chemistry
- Tulane University
- New Orleans
- USA
| | - Reza Takjoo
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| |
Collapse
|
11
|
Li Y, Li Y, Wang N, Lin D, Liu X, Yang Y, Gao Q. Synthesis, DNA/BSA binding studies and in vitro biological assay of nickel(II) complexes incorporating tridentate aroylhydrazone and triphenylphosphine ligands. J Biomol Struct Dyn 2019; 38:1-20. [PMID: 31739745 DOI: 10.1080/07391102.2019.1694995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023]
Abstract
Two new nickel (II) triphenylphosphine complexes derived from tridentate aroylhydrazone ligands [H2L1 = 2-hydroxy-3-methoxybenzylidene)benzohydrazone and H2L2 = N'-(2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzoylhydrazone] and triphenylphosphine were prepared and their molecular structures were determined by single crystal X-ray diffraction analysis. Both nickel(II) complexes showed slightly distorted square planar geometry with one tridentate aroylhydrazone ligand coordinated through ONO donor atoms and one triphenylphosphine ligand coordinated to the nickel center through the phosphorus atom. DNA interaction studies indicated that both complexes possessed higher affinity to herring sperm DNA (HS-DNA) than the corresponding free aroylhydrazone ligand. Molecular docking investigations showed that both complexes could bind to DNA through intercalation of the phenyl rings between adjacent base pairs in the double helix. Meanwhile, bovine serum albumin (BSA) binding studies revealed the complexes could effectively interact with BSA and change the secondary structure of BSA. Further pharmacological evaluations of the synthesized complexes by in vitro antioxidant assays demonstrated high antioxidant activity against NO· and O2˙- radicals. The anticancer activity of each complex was assessed through in vitro cytotoxicity assays (CCK-8 kit) toward A549 and MCF-7 cancer cell and normal L-02 cell lines. Significantly, the Ni(II) complex derived from H2L1 ligand was found to be more effective cytotoxic toward MCF-7cancerous cell with the IC50 value equaled 9.7 μM, which showed potent cytotoxic activity over standard drug cisplatin. AbbreviationsA549human lung carcinoma cellBSAbovine serum albuminCCK-8Cell Counting Kit-8DFTdensity functional theoryDNAdeoxyribonucleic acidDPPH˙2,2-diphenyl-1-picrylhydrazylH2L12-hydroxy-3-methoxybenzylidene)benzohydrazone N'-(2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzoylhydrazoneH2L2N'-(2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzoylhydrazoneHOMOhighest occupied molecular orbitalIC50the 50% activityL-02human normal liver cellLOMOlowest unoccupied molecular orbital (LUMO)MCF-7human breast carcinoma cellNO˙nitric oxideO2˙-superoxide anionSODsuperoxide dismutaseCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yun Li
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Yueqin Li
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Nana Wang
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Dong Lin
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Xiaohui Liu
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Yong Yang
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Qinwei Gao
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
12
|
Kalaiarasi G, Rex Jeya Rajkumar S, Dharani S, Rath NP, Prabhakaran R. In vitro cytotoxicity of new water soluble copper(II) metallates containing 7-hydroxy-4-oxo-4H-chromene thiosemicarbazones. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Pahonțu E, Proks M, Shova S, Lupașcu G, Ilieș D, Bărbuceanu Ș, Socea L, Badea M, Păunescu V, Istrati D, Gulea A, Drăgănescu D, Pîrvu CED. Synthesis, characterization, molecular docking studies andin vitroscreening of new metal complexes with Schiff base as antimicrobial and antiproliferative agents. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Elena Pahonțu
- General and Inorganic Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Maria Proks
- Functional Sciences Department, Faculty of MedicineUniversity of Medicine and Pharmacy ‘Victor Babeș’, ‘Pius Brinzeu’, County Emergency Clinical Hospital, Oncogen Institute 156 Liviu Rebreanu 300723 Timișoara Romania
| | - Sergiu Shova
- Institute of Macromolecular Chemistry ‘Petru Poni’ 41A Grigore Ghica Voda Alley 700487 Iași Romania
| | - Gina Lupașcu
- Physiology Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Diana‐Carolina Ilieș
- Organic Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Ștefania‐Felicia Bărbuceanu
- Organic Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Laura‐Ileana Socea
- Organic Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Mihaela Badea
- Inorganic Chemistry Department, Faculty of ChemistryUniversity of Bucharest 23 Dumbrava Rosie Street 020462 Bucharest Romania
| | - Virgil Păunescu
- Functional Sciences Department, Faculty of MedicineUniversity of Medicine and Pharmacy ‘Victor Babeș’, ‘Pius Brinzeu’, County Emergency Clinical Hospital, Oncogen Institute 156 Liviu Rebreanu 300723 Timișoara Romania
| | - Dorin Istrati
- Department of Therapeutic DentistryFaculty of Dentistry ‘Nicolae Testemiţanu’, State University of Medicine and Pharmacy 165 Stefan cel Mare si Sfant Street 2009 Chişinău Moldova
| | - Aurelian Gulea
- Laboratory of Advanced Materials in Biofarmaceuticals and TechnicsMoldova State University 60 Mateevici Street 2009 Chisinau Moldova
| | - Doina Drăgănescu
- Pharmaceutical Physics Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| | - Cristina Elena Dinu Pîrvu
- Physical and Colloidal Chemistry Department, Faculty of PharmacyUniversity of Medicine and Pharmacy ‘Carol Davila’ 6 Traian Vuia Street 020956 Bucharest Romania
| |
Collapse
|
14
|
Elamathi C, Butcher R, Prabhakaran R. Anomalous coordination behaviour of 6-methyl-2-oxo-1,2-dihydroquinoline-3-carboxaldehyde-4(N)-substituted Schiff bases in Cu(II) complexes: Studies of structure, biomolecular interactions and cytotoxicity. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- C. Elamathi
- Department of Chemistry; Bharathiar University; Coimbatore 641 046 India
| | - Ray Butcher
- Department of Inorganic and Structural Chemistry; Howard University; Washington DC 20059 USA
| | - R. Prabhakaran
- Department of Chemistry; Bharathiar University; Coimbatore 641 046 India
| |
Collapse
|