1
|
Zhang M, Gu G, Xu Y, Luan X, Liu J, He P, Wei G. Injectable Self-Healing Antibacterial Hydrogels with Tailored Functions by Loading Peptide Nanofiber-Biomimetic Silver Nanoparticles. Macromol Rapid Commun 2024; 45:e2400173. [PMID: 38923127 DOI: 10.1002/marc.202400173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Polymer hydrogels find extensive application in biomedicine, serving specific purposes such as drug delivery, biosensing, bioimaging, cancer therapy, tissue engineering, and others. In response to the growing threat of bacterial infections and the escalating resistance to conventional antibiotics, this research introduces a novel injectable, self-healing antimicrobial hydrogel comprising bioactive aldolized hyaluronic acid (AHA) and quaternized chitosan (QCS). This designed QCS/AHA hydrogel incorporates self-assembling peptide nanofibers (PNFs) and small-sized silver nanoparticles (AgNPs) for tailored functionality. The resulting hybrid QCS/AHA/PNF/AgNPs hydrogel demonstrates impressive rheological characteristics, broad-spectrum antimicrobial efficacy, and high biocompatibility. Notably, its antimicrobial effectiveness against Escherichia coli and S. aureus surpasses 99.9%, underscoring its potential for treating infectious wounds. Moreover, the rheological analysis confirms its excellent shear-thinning and self-healing properties, enabling it to conform closely to irregular wound surfaces. Furthermore, the cytotoxicity assessment reveals its compatibility with human umbilical vein endothelial cells, exhibiting no significant adverse effects. The combined attributes of this bioactive QCS/AHA/PNF/AgNPs hydrogel position it as a promising candidate for antimicrobial applications and wound healing.
Collapse
Affiliation(s)
- Mingze Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Guanghui Gu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266035, PR China
| | - Youyin Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Jianyu Liu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|
2
|
Gong X, Jadhav ND, Lonikar VV, Kulkarni AN, Zhang H, Sankapal BR, Ren J, Xu BB, Pathan HM, Ma Y, Lin Z, Witherspoon E, Wang Z, Guo Z. An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications. Adv Colloid Interface Sci 2024; 323:103053. [PMID: 38056226 DOI: 10.1016/j.cis.2023.103053] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Present review emphatically introduces the synthesis, biocompatibility, and applications of silver nanoparticles (AgNPs), including their antibacterial, antimicrobial, and antifungal properties. A comprehensive discussion of various synthesis methods for AgNPs, with a particular focus on green chemistry mediated by plant extracts has been made. Recent research has revealed that the optical properties of AgNPs, including surface plasmon resonance (SPR), depend on the particle size, as well as the synthesis methods, preparation synthesis parameters, and used reducing agents. The significant emphasis on the use of synthesized AgNPs as antibacterial, antimicrobial, and antifungal agents in various applications has been reviewed. Furthermore, the application areas have been thoroughly examined, providing a detailed discussion of the underlying mechanisms, which aids in determining the optimal control parameters during the synthesis process of AgNPs. Furthermore, the challenges encountered while utilizing AgNPs and the corresponding advancements to overcome them have also been addressed. This review not only summarizes the achievements and current status of plant-mediated green synthesis of AgNPs but also explores the future prospects of these materials and technology in diverse areas, including bioactive applications.
Collapse
Affiliation(s)
- Xianyun Gong
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Nilesh D Jadhav
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India
| | - Vishal V Lonikar
- Department of Physics, MET's Bhujbal Academy of Science and Commerce, Nashik 422003 (M.S.), India
| | - Anil N Kulkarni
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India.
| | - Hongkun Zhang
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Babasaheb R Sankapal
- Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010 (M.S.), India
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China; Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Ben Bin Xu
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Habib M Pathan
- Department of Physics, Savitribai Phule Pune University, Pune 411 007, India.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhiping Lin
- College of Materials Science and Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| | | | - Zhe Wang
- Chemistry Department, Oakland University, Rochester 48309, USA.
| | - Zhanhu Guo
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
3
|
Kim M, Sung JS, Atchudan R, Syed A, Nadda AK, Kim DY, Ghodake GS. A rapid, high-yield and bioinspired synthesis of colloidal silver nanoparticles using Glycyrrhiza glabra root extract and assessment of antibacterial and phytostimulatory activity. Microsc Res Tech 2023; 86:1154-1168. [PMID: 37421302 DOI: 10.1002/jemt.24389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/10/2023]
Abstract
Silver nanoparticles (AgNPs) have emerged as highly effective antimicrobial agents against multidrug-resistant (MDR) pathogens. This study aims to employ green chemistry principles for AgNP synthesis involving phytochemical-rich extract from Glycyrrhiza glabra roots. The approach highlights using renewable feedstocks, safer chemicals, minimum byproducts, and process scale-up. The synthesis of AgNPs was assessed using a surface plasmon resonance band at 420 nm, and structural properties were characterized using TEM, x-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. This method enables the production of high-yield dispersions of AgNPs with desired physicochemical characteristics, including dark yellow solution, size (~20 nm), spherical to an oval shape, crystal structure, and stable colloidal properties. The antimicrobial activity of AgNPs was investigated against the MDR bacteria strains of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli). This work reveals that the antimicrobial activity of AgNPs can be influenced by bacterial cell wall components. The results demonstrate the strong interaction between AgNPs and E. coli, exhibiting a dose-dependent antibacterial response. The green approach facilitated the safer, facile, and rapid synthesis of colloidal dispersions of AgNPs, providing a sustainable and promising alternative to conventional chemical and physical methods. Furthermore, the effect of AgNPs on various growth parameters, including seed germination, root and shoot elongation, and dry weight biomass, was assessed for mung bean seedlings. The results revealed phytostimulatory effects, suggesting the promising prospects of AgNPs in the nano-priming of agronomic seeds. RESEARCH HIGHLIGHTS: Glycyrrhiza glabra root extract enabled rapid, high-yield, and eco-friendly synthesis of silver nanoparticles (AgNPs). Spectrophotometric analysis examined the optical properties, scalability, and stability of AgNPs. Transmission electron microscopy provided insights into the size, shape, and dispersity of AgNPs. Scanning electron microscopy revealed significant damage to gram-negative bacterial cell morphology and membrane integrity. AgNPs were found to enhance seed germination, seedling growth, and biomass yield of Vigna radiata.
Collapse
Affiliation(s)
- Min Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Gyeonggi, South Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang, Gyeonggi, South Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Goyang, Gyeonggi, South Korea
| | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Goyang, Gyeonggi, South Korea
| |
Collapse
|
4
|
Khan ZUH, Gul NS, Mehmood F, Sabahat S, Muhammad N, Rahim A, Iqbal J, Khasim S, Salam MA, Khan TM, Wu J. Green synthesis of lead oxide nanoparticles for photo-electrocatalytic and antimicrobial applications. Front Chem 2023; 11:1175114. [PMID: 37601905 PMCID: PMC10435987 DOI: 10.3389/fchem.2023.1175114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Synthesis of nanoparticles (NPs) for many different uses requires the development of environmentally friendly synthesis protocols. In this article, we present a simple and environmentally friendly method to synthesize lead oxide (PbO) NPs from the plant material of the Mangifera indica. Analytical techniques such as spectroscopy, X-ray diffraction, and microscopy were used to characterize the synthesized PbO NPs, and their photo-electrocatalytic and antifungal properties were also evaluated. H2O2 was used to investigate the efficacy of removing methylene blue dye. At a range of pH values, H2O2 was used to study the role of hydroxyl radicals in the breakdown of methylene blue dye. Methylene blue dyes are more easily eliminated due to increased generation of the *OH radical during removal. Dye degradation was also significantly affected by the aqueous medium's pH. Additionally, the electrocatalytic properties of the PbO NPs adapted electrode were studied in CH3COONa aqueous solution using cyclic voltammetry. Excellent electrocatalytic properties of the PbO NPs are shown by the unity of the anodic and cathodic peaks of the modified electrode in comparison to the stranded electrode. Aspergillus flavus, Aspergillus niger, and Candida glabrata were some fungi tested with the PbO NPs. Against A. flavus (40%) and A. niger (50%), and C. glabrata (75%), the PbO NPs display an excellent inhibition zone. Finally, PbO NPs were used in antioxidant studies with the powerful antioxidant 2, 2 diphenyl-1-picrylhydrazyl (DPPH). This study presents a simple and environmentally friendly method for synthesizing PbO NPs with multiple uses, including photo-electrocatalytic and antimicrobial activity.
Collapse
Affiliation(s)
- Zia Ul Haq Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Noor Shad Gul
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Faisal Mehmood
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Syed Khasim
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taj Malook Khan
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Imran M, Murtaza B, Ansar S, Shah NS, Haq Khan ZU, Ali S, Boczkaj G, Hafeez F, Ali S, Rizwan M. Potential of nanocomposites of zero valent copper and magnetite with Eleocharis dulcis biochar for packed column and batch scale removal of Congo red dye. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119291. [PMID: 35427680 DOI: 10.1016/j.envpol.2022.119291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/02/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
The current study is the first attempt to prepare nanocomposites of Eleocharis dulcis biochar (EDB) with nano zero-valent Copper (nZVCu/EDB) and magnetite nanoparticles (MNPs/EDB) for batch and column scale sequestration of Congo Red dye (CR) from synthetic and natural water. The adsorbents were characterized with advanced analytical techniques. The impact of EDB, MNPs/EDB and nZVCu/EDB dosage (1-4 g/L), pH (4-10), initial concentration of CR (20-500 mg/L), interaction time (180 min) and material type to remove CR from water was examined at ambient temperature. The CR removal followed sequence of nZVCu/EDB > MNPs/EDB > EDB (84.9-98% > 77-95% > 69.5-93%) at dosage 2 g/L when CR concentration was increased from 20 to 500 mg/L. The MNPs/EDB and nZVCu/EDB showed 10.9% and 20.1% higher CR removal than EDB. The adsorption capacity of nZVCu/EDB, MNPs/EDB and EDB was 212, 193 and 174 mg/g, respectively. Freundlich model proved more suitable for sorption experiments while pseudo 2nd order kinetic model well explained the adsorption kinetics. Fixed bed column scale results revealed excellent retention of CR (99%) even at 500 mg/L till 2 h when packed column was filled with 3.0 g nZVCu/EDB, MNPs/EDB and EDB. These results revealed that nanocomposites with biochar can be applied efficiently for the decontamination of CR contaminated water.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100, Vehari, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100, Vehari, Pakistan
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100, Vehari, Pakistan
| | - Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100, Vehari, Pakistan
| | - Shahid Ali
- Materials Research Laboratory, Department of Physics, University of Peshawar, Peshawar, 25120, Pakistan
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland
| | - Farhan Hafeez
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Tobe Camp, Abbottabad Campus, KPK, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
6
|
A green protocol for the electrochemical synthesis of a fluorescent dye with antibacterial activity from imipramine oxidation. Sci Rep 2022; 12:4921. [PMID: 35318352 PMCID: PMC8941072 DOI: 10.1038/s41598-022-08770-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/02/2022] [Indexed: 12/31/2022] Open
Abstract
Electrochemical oxidation of imipramine (IMP) has been studied in aqueous solutions by cyclic voltammetry and controlled-potential coulometry techniques. Our voltammetric results show a complex behavior for oxidation of IMP at different pH values. In this study, we focused our attention on the electrochemical oxidation of IMP at a pH of about 5. Under these conditions, our results show that the oxidation of IMP leads to the formation of a unique dimer of IMP (DIMP). The structure of synthesized dimer is fully characterized by UV-visible, FTIR, 1H NMR, 13C NMR and mass spectrometry techniques. It seems that the first step in the oxidation of IMP is the cleavage of the alkyl group (formation of IMPH). After this, a domino oxidation-hydroxylation-dimerization-oxidation reaction, converts IMPH to (E)-10,10',11,11'-tetrahydro-[2,2'-bidibenzo[b,f]azepinylidene]-1,1'(5H,5'H)-dione (DIMP). The synthesis of DIMP is performed in an aqueous solution under mild conditions, without the need for any catalyst or oxidant. Based on our electrochemical findings as well as the identification of the final product, a possible reaction mechanism for IMP oxidation has been proposed. Conjugated double bonds in the DIMP structure cause the compound to become colored with sufficient fluorescence activity (excitation wave-length 535 nm and emission wave-length 625 nm). Moreover, DIMP has been evaluated for in vitro antibacterial. The antibacterial tests indicated that DIMP showed good antibacterial performance against all examined gram-positive and gram-negative bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Shigella sonnei).
Collapse
|
7
|
Ou X, Karmakar B, Awwad NS, Ibrahium HA, Osman HEH, El-kott AF, Abdel-Daim MM. Au nanoparticles adorned chitosan-modified magnetic nanocomposite: An investigation towards its antioxidant and anti-hepatocarcinoma activity in vitro. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Caesalpinia crista Seeds Mediated Green Synthesis of Zinc Oxide Nanoparticles for Antibacterial, Antioxidant, and Anticancer Activities. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00952-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Stalin Dhas T, Sowmiya P, Parthasarathy K, Natarajan A, Narendrakumar G, Kumar R, Samrot AV, Riyaz SUM, Ganesh VK, Karthick V, Rajasekar A. In vitro antibacterial activity of biosynthesized silver nanoparticles against gram negative bacteria. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tharmathass Stalin Dhas
- Centre for Ocean Research (DST – FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Prasad Sowmiya
- Centre for Ocean Research (DST – FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Krupakar Parthasarathy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anandakumar Natarajan
- Department of Education, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, Dindigul, Tamil Nadu, India
| | - Gopakumaran Narendrakumar
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ramesh Kumar
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Antony Vincent Samrot
- School of Biosciences, Faculty of Medicine, Biosciences and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom, Selangor, Malaysia
| | | | - Vijayakumar Kumar Ganesh
- Centre for Ocean Research (DST – FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Velu Karthick
- Centre for Ocean Research (DST – FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Arulaih Rajasekar
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| |
Collapse
|
10
|
Rangam NV, Sudagar AJ, Ruszczak A, Borowicz P, Tóth J, Kövér L, Michałowska D, Roszko MŁ, Noworyta KR, Lesiak B. Valorizing the Unexplored Filtration Waste of Brewing Industry for Green Silver Nanocomposite Synthesis. NANOMATERIALS 2022; 12:nano12030442. [PMID: 35159787 PMCID: PMC8839514 DOI: 10.3390/nano12030442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023]
Abstract
The brewing industry generates a substantial amount of by-products rich in polyphenols, carbohydrates, sugars, sulfates, nitrogen compounds, organic carbon, and several elements, including chlorine, magnesium, and phosphorus. Although limited quantities of these by-products are used in fertilizers and composts, a large amount is discarded as waste. Therefore, it is crucial to identify different ways of valorizing the by-products. Research regarding the valorization of the brewery by-products is still in its nascent stage; therefore, it still has high potential. Herein, we report the valorization of the brewery by-product from the filtration stage of the brewing process (BW9) to synthesize silver nanocomposites as this waste has remained largely unexplored. The BW9 nanocomposites have been compared to those obtained from the brewery product B. The chemical composition analysis of BW9 and B revealed several organic moieties capable of reducing metal salts and capping the formed nanoparticles. Therefore, the brewery waste from stage 9 was valorized as a precursor and added to silver-based precursor at various temperatures (25, 50, and 80 °C) and for various time periods (10, 30, and 120 min) to synthesize silver nanocomposites. The nanocomposites obtained using BW9 were compared to those obtained using the main product of the brewing industry, beer (B). Synthesized nanocomposites composed of AgCl as a major phase and silver metal (Agmet) was incorporated in minor quantities. In addition, Ag3PO4 was also found in B nanocomposites in minor quantities (up to 34 wt.%). The surface morphology depicted globular nanoparticles with layered structures. Small ball-like aggregates on the layer representative of Ag3PO4 were observed in B nanocomposites. The surface of nanocomposites was capped with organic content and functional groups present in the brewery products. The nanocomposites demonstrated high antibacterial activity against Escherichia coli (E. coli), with BW9 nanocomposites exhibiting a higher activity than B nanocomposites.
Collapse
Affiliation(s)
- Neha Venkatesh Rangam
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (A.R.); (P.B.); (K.R.N.); (B.L.)
- Correspondence: or (N.V.R.); or (A.J.S.)
| | - Alcina Johnson Sudagar
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (A.R.); (P.B.); (K.R.N.); (B.L.)
- Correspondence: or (N.V.R.); or (A.J.S.)
| | - Artur Ruszczak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (A.R.); (P.B.); (K.R.N.); (B.L.)
| | - Paweł Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (A.R.); (P.B.); (K.R.N.); (B.L.)
| | - József Tóth
- Institute for Nuclear Research, BemTér 18/c, H-4026 Debrecen, Hungary; (J.T.); (L.K.)
| | - László Kövér
- Institute for Nuclear Research, BemTér 18/c, H-4026 Debrecen, Hungary; (J.T.); (L.K.)
| | - Dorota Michałowska
- Institute of Agriculture and Food Biotechnology—State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland; (D.M.); (M.Ł.R.)
| | - Marek Łukasz Roszko
- Institute of Agriculture and Food Biotechnology—State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland; (D.M.); (M.Ł.R.)
| | - Krzysztof Robert Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (A.R.); (P.B.); (K.R.N.); (B.L.)
| | - Beata Lesiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (A.R.); (P.B.); (K.R.N.); (B.L.)
| |
Collapse
|
11
|
Kordy MGM, Abdel-Gabbar M, Soliman HA, Aljohani G, BinSabt M, Ahmed IA, Shaban M. Phyto-Capped Ag Nanoparticles: Green Synthesis, Characterization, and Catalytic and Antioxidant Activities. NANOMATERIALS 2022; 12:nano12030373. [PMID: 35159718 PMCID: PMC8839298 DOI: 10.3390/nano12030373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
Using a simple approach, silver nanoparticles (Ag NPs) were synthesized from green coffee bean extract. The optical color change from yellowish to reddish-brown of the green-produced Ag NPs was initially observed, which was confirmed by the UV-Visible spectrophotometer’s surface plasmonic resonance (SPR) bands at 329 and 425 nm. The functional groups of green coffee-capped Ag NPs (GC-capped Ag NPs) were studied using a Fourier transform infrared spectrometer, revealing that Ag NPs had been capped by phytochemicals, resulting in excellent stability, and preventing nanoparticle aggregation. The presence of elemental silver is confirmed by energy dispersive X-ray analysis. In addition to the measurement of the zeta potential of the prepared GC-capped Ag NPs, the size distribution is evaluated by the dynamic light scattering. Depending on the nano-morphological study, the particle diameter of Ag NPs is 8.6 ± 3.5 nm, while the particle size of GC-capped Ag NPs is 29.9 ± 4.3 nm, implying the presence of well-dispersed nanospheres with an average capsulation layer of thickness 10.7 nm. The phyto-capped Ag NPs were found to be crystalline, having a face-centered cubic (FCC) lattice structure and Ag crystallite size of ~7.2 nm, according to the XRD crystallographic analysis. The catalytic performance of phyto-capped Ag NPs in the removal of methylene blue dye by sodium borohydride (NaBH4) was investigated for 12 min to reach a degradation efficiency of approximately 96%. The scavenging activities of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radicals are also examined in comparison to previously reported Ag-based nano-catalysts, demonstrating a remarkable IC50 of 26.88 µg/mL, which is the first time it has been recorded.
Collapse
Affiliation(s)
- Mohamed G. M. Kordy
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.G.M.K.); (M.A.-G.); (H.A.S.)
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohammed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.G.M.K.); (M.A.-G.); (H.A.S.)
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.G.M.K.); (M.A.-G.); (H.A.S.)
| | - Ghadah Aljohani
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawwarah 14177, Saudi Arabia;
| | - Mohammad BinSabt
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait;
| | - Inas A. Ahmed
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62224, Saudi Arabia;
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Physics, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawwarah 42351, Saudi Arabia
- Correspondence:
| |
Collapse
|
12
|
Seçkin H, Meydan I. Synthesis and characterization of Sophora alopecuroides L. green synthesized of Ag nanoparticles for the antioxidant, antimicrobial and DNA damage prevention activity. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Ismet Meydan
- Van Yüzüncü Yıl University, Turkey; Van Yüzüncü Yıl University, Turkey
| |
Collapse
|
13
|
Edhari BA, Mashreghi M, Makhdoumi A, Darroudi M. Antibacterial and antibiofilm efficacy of Ag NPs, Ni NPs and Al 2O 3 NPs singly and in combination against multidrug-resistant Klebsiella pneumoniae isolates. J Trace Elem Med Biol 2021; 68:126840. [PMID: 34425454 DOI: 10.1016/j.jtemb.2021.126840] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Although traditional antibiotic therapy provided an effective approach to combat pathogenic bacteria, the long-term and widespread use of antibiotic results in the evolution of multidrug-resistant bacteria. Recent progress in nanotechnology offers an alternative opportunity to discover and develop novel antibacterial agents. METHODS A total of 51 K. pneumoniae strains were collected from several specimens of hospitalized patients and identified by two parallel methods (biochemical tests and Vitek-2 system). The antibiotic sensitivity of isolates was evaluated by disk diffusion antibiogram and Vitek-2 system. The biofilms formation ability of antibiotic-resistant strains was examined by microtiter plate and tube methods based on crystal violet staining. The molecular technique was used to determine key genes responsible for biofilms formation of clinical isolates. The antibacterial and antibiofilm activities of Ag NPs, Ni NPs, Al2O3 NPs singly (NPs) and in combination (cNPs) were investigated against selected strains using standard methods. Moreover, the cytotoxicity of NPs was evaluated on mouse neural crest-derived (Neuro-2A) cell line. RESULTS The results of bacterial studies revealed that more than 80 % of the isolates were resistant to commonly used antibiotics and about 95 % of them were able to form biofilms. Moreover, the presence of fimA and mrkA genes were determined in all biofilm-producing strains. The results of antibacterial and antibiofilm activities of NPs and cNPs demonstrated the lower MIC and MBEC values for Al2O3 NPs singly as well as for Ag/Ni cNPs and Ag/Al2O3 cNPs in combination, respectively. Overall, the inhibitory effects of cNPs were superior to NPs against all strains. Furthermore, the results of the checkerboard assays showed that Ag NPs act synergistically with two other NPs against multidrug-resistant Klebsiella pneumoniae (MDR-K. pneumoniae) isolates. The in vitro cytotoxicity assay revealed no significant toxicity of NPs against Neuro-2A cells. CONCLUSION In the present study, the combination of Ag NPs, Ni NPs, and Al2O3 NPs were used against MDR-K. pneumoniae strains and antibacterial and antibiofilm activities were observed for Ag/Ni cNPs and Ag/Al2O3 cNPs.
Collapse
Affiliation(s)
- Bushra Al Edhari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Ali Makhdoumi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Biosynthesis of Zinc oxide nanoparticles using Bergenia ciliate aqueous extract and evaluation of their photocatalytic and antioxidant potential. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
De A, Jain P, Manna AK, Srivastava V, Das R. An eco-benign synthesis of silver nanoparticles using Aegle marmelos L. bark extract and evaluation of their DNA cleavage, DNA binding, antioxidant and antibacterial activity. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.2007129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Anindita De
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Preeti Jain
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Amit Kumar Manna
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vivek Srivastava
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Riya Das
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
16
|
‘‘Biopolymer-PAA and surfactant-CTAB assistant solvothermal synthesis of Zn-based MOFs: design, characterization for removal of toxic dyes, copper and their biological activities”. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Mumtaz U, Fiaz M, Athar M. Synthesis of TiO 2/Ga 2O 3@MIL-125(Ti) as a potential catalyst for photodegradation of methylene blue and oxygen evolution reaction. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1952262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Uzma Mumtaz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Fiaz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Athar
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
18
|
Amaravathi C, Geetha K, Surendrababu MS. Biopolymer-PAA and surfactant-CTAB assistant solvothermal synthesis of Mn-based MOFs: design, characterization for enhanced biological activities. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1953530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chinthamreddy Amaravathi
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, Telangana, India
- Department of Chemistry, CMR Technical Campus, Hyderabad, Telangana, India
| | - Karra Geetha
- Department of Biotechnology, CMR College of Pharmacy, Hyderabad, Telangana, India
| | | |
Collapse
|
19
|
Lotfali H, Meshkini A. Synthesis and characterization of lysozyme-conjugated Ag.ZnO@HA nanocomposite: A redox and pH-responsive antimicrobial agent with photocatalytic activity. Photodiagnosis Photodyn Ther 2021; 35:102418. [PMID: 34197967 DOI: 10.1016/j.pdpdt.2021.102418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022]
Abstract
Hydroxyapatite (HA) is extensively used for implantable device coating; however, it lacks antibacterial property, leading to potential bacterial infection during orthopedic implantation surgery. Herein, to enhance the antibacterial activity of HA, a redox- and pH-responsive HA nanocomposite with photocatalytic activity was designed. A photosensitive heterostructure, zinc oxide/hydroxyapatite (ZnO.HA), was coated with Ag nanoparticles (AgNPs) with assisted gallic acid using the UV-irradiation method. An antibacterial enzyme, lysozyme, was then conjugated on the surface of the nanocomposite by a cleavable disulfide linker, resulting in a redox-sensitive nanoplatform. In comparison with bare HA, the designed nanocomposites as Lyso.CAGZ@HA displayed much higher antibacterial activity (> 5-fold) toward Escherichia coli (E. coli) owing to the synergistic antibacterial effects of ZnONPs, AgNPs, gallic acid, and lysozyme on the surface of the nanocomposite. However, antibacterial and antifouling effects are much more enhanced in Lyso.CAGZ@HA-treated bacteria as they were subjected to UVA irradiation. Moreover, the cellular uptake of nanocomposite and intracellular glutathione depletion enhanced in the presence of UVA light, resulting in reactive oxygen specious generation enhancement. Further, in vitro cytotoxicity experiments on mammalian cells (human foreskin fibroblast) revealed that nanocomposite has no cytotoxic effects. Hence, this study demonstrated that Lyso.CAGZ@HA could be considered as a potential therapeutic approach against bacterial infectious diseases.
Collapse
Affiliation(s)
- Hanieh Lotfali
- Biochemical Research center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, P. O. Box 9177948974, Mashhad, Iran
| | - Azadeh Meshkini
- Biochemical Research center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, P. O. Box 9177948974, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
20
|
Talreja N, Ashfaq M, Chauhan D, Mera AC, Rodríguez CA, Mangalaraja RV. A Zn-doped BiOI microsponge-based photocatalyst material for complete photodegradation of environmental contaminants. NEW J CHEM 2021. [DOI: 10.1039/d1nj03415d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The present study describes Zn metal incorporation within BiOI microsponge structures for the photocatalytic degradation of tetracycline (TC) antibiotics.
Collapse
Affiliation(s)
- Neetu Talreja
- Multidisciplinary Research Institute for Science and Technology, IIMCT, University of La Serena, 1015 Juan Cisternas St., La Serena, Chile
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepción, Concepción 4070409, Chile
| | - Mohammad Ashfaq
- Multidisciplinary Research Institute for Science and Technology, IIMCT, University of La Serena, 1015 Juan Cisternas St., La Serena, Chile
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepción, Concepción 4070409, Chile
- School of Life Science, BS Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Divya Chauhan
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, USA
| | - Adriana C. Mera
- Multidisciplinary Research Institute for Science and Technology, IIMCT, University of La Serena, 1015 Juan Cisternas St., La Serena, Chile
- Department of Chemistry, Faculty of Sciences, University of La Serena, La Serena, Chile
| | - C. A. Rodríguez
- Multidisciplinary Research Institute for Science and Technology, IIMCT, University of La Serena, 1015 Juan Cisternas St., La Serena, Chile
- Department of Chemistry, Faculty of Sciences, University of La Serena, La Serena, Chile
| | - R. V. Mangalaraja
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepción, Concepción 4070409, Chile
| |
Collapse
|
21
|
Al Juboury MF, Alshammari MH, Al-Juhaishi MR, Naji LA, Faisal AAH, Naushad M, Lima EC. Synthesis of composite sorbent for the treatment of aqueous solutions contaminated with methylene blue dye. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1494-1506. [PMID: 32616701 DOI: 10.2166/wst.2020.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To apply the principles of sustainability, this study aims to prepare the composite sorbent from mixing of solid wastes that resulted from activities of treatment plants for wastewater and water supply. The manufacturing process depends on the mixing of sewage sludge with waterworks sludge at different proportions and the best mixture is modified by ferric nitrate solution. The prepared composite sorbent was evaluated as permeable reactive barrier (PRB) in the capturing of methylene blue (MB) dye presented in the simulated groundwater. Results proved that the suitable mixture of composite sorbent consisting of 0.25 g sewage sludge with 0.75 g waterworks sludge coated with aqueous solution of 2 g of Fe(NO3)2 achieved the maximum sorption capacity. In comparison with Freundlich model, Langmuir expression described the sorption measurements in a well manner; so, the chemisorption is governed by the removal of MB with maximum adsorption capacity reached to 268.98 mg/g. Kinetic measurements could be more representative by pseudo-first-order model and this means that the sorption process is supported by physical forces. Finally, the effects of inlet concentrations and bed thickness on the migration of MB front were simulated in an efficient manner by COMSOL Multiphysics 3.5a package with root mean squared errors not in excess of 0.152.
Collapse
Affiliation(s)
| | | | - Mohammed R Al-Juhaishi
- Department of Water Resources Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Laith A Naji
- Technical Instructors Training Institute, Middle Technical University, Baghdad, Iraq
| | - Ayad A H Faisal
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Bld#5, Riyadh, Saudi Arabia E-mail:
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Miri A, Akbarpour Birjandi S, Sarani M. Survey of cytotoxic and UV protection effects of biosynthesized cerium oxide nanoparticles. J Biochem Mol Toxicol 2020; 34:e22475. [PMID: 32053270 DOI: 10.1002/jbt.22475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/24/2019] [Accepted: 02/06/2020] [Indexed: 11/07/2022]
Abstract
Cerium oxide nanoparticles (CeO2 NPs) are among the important nanoparticles that are extensively utilized in cosmetics, automotive industries, ultraviolet (UV) filtration, gas sensors, and pharmaceutical products. In this study, CeO2 NPs were synthesized using an aqueous extract of Ziziphus jujube fruit. The synthesized nanoparticles were characterized using UV-visible spectroscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive spectroscopy, field energy scanning electron microscopy, and Raman methods. The results indicated that the size of synthesized nanoparticles is between 18 and 25 nm, and they have a spherical shape. UV absorbance of the synthesized nanoparticles was measured through spectrophotometric method in the range of 290 to 320 nm. The cytotoxic activity of synthesized CeO2 NPs against colon (HT-29) cancer cell line was surveyed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results showed that synthesized nanoparticles are nontoxic on HT-29 cells under 400 μg/mL concentrations after 24 hours of treatment time periods. The increase in treatment time cases increases cytotoxic activity of synthesized nanoparticles. Sun protection factor of CeO2 NPs, as a criterion for amount of sunlight radiation protection, was determined by applying Mansur equation. The results demonstrated that synthesized CeO2 NPs have excellent UV protection and sunscreen physical absorption properties.
Collapse
Affiliation(s)
- Abdolhossein Miri
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Shiva Akbarpour Birjandi
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Mina Sarani
- Zabol Medicinal Plants, Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
23
|
Elemike EE, Onwudiwe DC, Ekennia AC. Eco-friendly synthesis of silver nanoparticles using Umbrella plant, and evaluation of their photocatalytic and antibacterial activities. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1716005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elias Emeka Elemike
- Department of Chemistry, College of Science, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria
| | - Damian Chinedu Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa
- Department of Chemistry, School of Mathematics and Physical Sciences, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa
| | - Anthony Chinonso Ekennia
- Department of Chemistry, Faculty of Science, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki, Ebonyi State, Nigeria
| |
Collapse
|
24
|
Khatami M, Alijani HQ, Mousazadeh F, Hashemi N, Mahmoudi Z, Darijani S, Bamorovat M, Keyhani A, Abdollahpour-Alitappeh M, Borhani F. Calcium carbonate nanowires: greener biosynthesis and their leishmanicidal activity. RSC Adv 2020; 10:38063-38068. [PMID: 35548370 PMCID: PMC9088172 DOI: 10.1039/d0ra04503a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022] Open
Abstract
The synthesis of inorganic rod shape nanostructures is important in chromatography, dentistry, and medical applications such as bone implants, and drug and gene delivery systems.
Collapse
Affiliation(s)
- Mehrdad Khatami
- Noncommunicable Diseases Research Center
- Bam University of Medical Sciences
- Bam
- Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center
| | - Hajar Q. Alijani
- Noncommunicable Diseases Research Center
- Bam University of Medical Sciences
- Bam
- Iran
| | - Farideh Mousazadeh
- Noncommunicable Diseases Research Center
- Bam University of Medical Sciences
- Bam
- Iran
| | | | - Zahra Mahmoudi
- School of Medicine
- Bam University of Medical Sciences
- Bam
- Iran
| | | | - Mehdi Bamorovat
- Leishmaniasis Research Center
- Kerman University of Medical Sciences
- Kerman
- Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center
- Kerman University of Medical Sciences
- Kerman
- Iran
| | | | - Fariba Borhani
- Medical Ethics and Law Research Center
- Shahid Beheshti University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|
25
|
Das P, Karankar VS. New avenues of controlling microbial infections through anti-microbial and anti-biofilm potentials of green mono-and multi-metallic nanoparticles: A review. J Microbiol Methods 2019; 167:105766. [PMID: 31706910 DOI: 10.1016/j.mimet.2019.105766] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Nanoparticles synthesized through the green route deserve special mention because this green technology is not only energy-efficient and cost-effective but also amenable to the environment. Various biological resources have been used for the generation of these 'green nanoparticles'. Biological wastes have also been focused in this direction thereby promoting the value of waste. Reports indicate that green nanoparticles exhibit remarkable antimicrobial activitiesboth singly as well as in combination with standard antibiotics. The current phenomenon of multi-drug resistance has resulted due to indiscriminate administration of high-doses of antibiotics followed by significant toxicity. In the face of this emergence of drug-resistant microbesthe efficacy of green nanoparticles might prove greatly beneficial. Microbial biofilm is another hurdle in the effective treatment of diseases as the microorganismsbeing embedded in the meshwork of the biofilmevade the antimicrobial agents. Nanoparticles may act as a ray of hope on the face of this challenge tooas they not only destroy the biofilms but also lessen the doses of antibiotics requiredwhen administered in combination with the nanoparticles. It should be further noted that the resistance mechanisms exhibited by the microorganisms seem not that relevant for nanoparticles. The current review, to the best of our knowledgefocuses on the structures of these green nanoparticles along with their biomedical potentials. It is interesting to note how a variety of structures are generated by using resources like microbes or plants or plant products and how the structure affects their activities. This study might pave the way for further development in this arena and future work may be taken up in identifying the detailed mechanism by which 'green' synthesis empowers nanoparticles to kill pathogenic microbes.
Collapse
Affiliation(s)
- Palashpriya Das
- National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India.
| | - Vijayshree S Karankar
- National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| |
Collapse
|
26
|
Abbasi BA, Iqbal J, Mahmood T, Qyyum A, Kanwal S. Biofabrication of iron oxide nanoparticles by leaf extract ofRhamnus virgata: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4947] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Javed Iqbal
- Department of Plant SciencesQuaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Tariq Mahmood
- Department of Plant SciencesQuaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Abdul Qyyum
- School of Physics and Information TechnologyShaanxi Normal University Changan South Road 199 Xian 710062 China
| | - Sobia Kanwal
- Department of ZoologyUniversity of Gujrat Sub‐Campus Rawalpindi Pakistan
| |
Collapse
|
27
|
Khan ZUH, Sadiq HM, Shah NS, Khan AU, Muhammad N, Hassan SU, Tahir K, Safi SZ, Khan FU, Imran M, Ahmad N, Ullah F, Ahmad A, Sayed M, Khalid MS, Qaisrani SA, Ali M, Zakir A. Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 192:147-157. [PMID: 30738346 DOI: 10.1016/j.jphotobiol.2019.01.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 01/29/2019] [Indexed: 11/21/2022]
Abstract
Synthesis of nanoparticles (NPs) through "green" chemistry is an exciting area of research with wide applications. Trianthema portulacastrum's extract containing greater amount of reducing agents has been explored first time for the synthesis of ZnO-NPs that characterized with UV/Vis, XRD, FT-IR, SEM,EDX, HR-TEM and XPS. The particles of ZnO-NPs are crystalline and having the size in the range of 25-90 nm. The cell viability of ZnO-NPs was studied using Mouse pre-osteoblast cell line MC3T3-E1 sub-clone 14 cells which confirmed its biocompatibility that render for biomedical applications. The antibacterial properties were evaluated against Staphylococcus aureus and Escherichia coli which showed high potency of synthesized ZnO-NPs against these species. The antifungal activities of ZnO-NPs were screened against Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus of fungal species. The antioxidant activity of the as-synthesized NPs was also studied using DPPH (2, 2-diphenyl-1-picrylhydrazyl) substrate. The ZnO-NPs were evaluated for catalytic activity through degradation of Synozol Navy Blue-KBF textile dye using solar irradiation that causes 91% degradation of the dye in 159 min. Mechanistic pathways for the degradation of Synozol Navy Blue-KBF dye using ZnO-NPs were also proposed from the pattern of the degradation of the dye and the resulting by-products. The results concluded that the ZnO-NPs synthesized by green method have high biological and photocatalytic applications.
Collapse
Affiliation(s)
- Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China.
| | - Hafiz Masood Sadiq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan.
| | - Arif Ullah Khan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Kamran Tahir
- Institute of Chemical Science, Gomal University DIK, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Faheem Ullah Khan
- Department of Biotechnology, Woman University of AJ&K Bagh, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan.
| | - Naveed Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Faizan Ullah
- Department of Botany, University of Science and Technology, Bannu 28100, Pakistan
| | - Ashfaq Ahmad
- Department of Chemistry, Women University of AJ&K Bagh, Pakistan
| | - Murtaza Sayed
- Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Shafique Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Saeed Ahmad Qaisrani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Mazhar Ali
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Ali Zakir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| |
Collapse
|
28
|
Ali J, Irshad R, Li B, Tahir K, Ahmad A, Shakeel M, Khan NU, Khan ZUH. Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:349-356. [DOI: 10.1016/j.jphotobiol.2018.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/19/2018] [Accepted: 05/05/2018] [Indexed: 10/16/2022]
|