1
|
Das R, Dash PP, Bishoyi AK, Mohanty P, Mishra L, Prusty L, Sahoo CR, Padhy RN, Mishra M, Sahoo H, Sahoo SK, Sethi SK, Jali BR. Antibacterial and cytotoxicity studies of pyrrolo-based organic scaffolds and their binding interaction with bovine serum albumin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8725-8743. [PMID: 38829386 DOI: 10.1007/s00210-024-03187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
Two pyrrolo-based compounds, 1H-pyrrolo[3,2-b]pyridine-3-carboxylic acid (L1) and 1H-pyrrolo[3,2-c]pyridine-4-carboxylic acid (L2), were employed for the detection of bovine serum albumin (BSA) by UV-Vis and fluorescence spectroscopic methods in phosphate buffer solution (pH = 7). In the presence of L1 and L2, the fluorescence emission of BSA at 340 nm was quenched and concomitantly a red-shifted emission band appeared at 420 nm (L1)/450 nm (L2). The fluorescence spectral changes indicate the protein-ligand complex formation between BSA and L1/L2. An isothermal titration calorimetry (ITC) experiment was conducted to determine the binding ability between BSA and L1/L2. The binding constants are found to be 4.45 ± 0.22 × 104 M-1 for L1 and 2.29 ± 0.11 × 104 M-1 for L2, respectively. The thermodynamic parameters were calculated from ITC measurements (i.e. ∆rH = -40 ± 2 kcal/mol, ∆rG = -4.57 ± 0.22 kcal/mol and -T∆rS = 35.4 ± 1.77 kcal/mol), which indicated that the protein-ligand complex formation between L1/L2 with BSA is mainly due to the electrostatic interactions. The protein-ligand interactions were studied by performing molecular docking. Further, the antibacterial assay of L1 and L2 was conducted against gram-positive and gram-negative bacterial strains in an effort to address the difficulties caused by the co-occurrence of antimicrobial and multidrug-resistant bacteria. E. coli and S. aureus were significantly inhibited by L1 and L2. The L1 exhibits 13, 12 and 15 mm, whereas L2 exhibits a 2, 3 and 5 mm zone of inhibition against S. aureus, S. pyogenes and E. coli, respectively. In silico molecular docking of L1 and L2 was performed with bacterial DNA gyrase to establish the intermolecular interactions. Finally, the in vitro cytotoxicity activities of the ligands L1 and L2 have been carried out using drosophila.
Collapse
Affiliation(s)
- Rosalin Das
- School of Biotechnology, Gangadhar Meher University, Sambalpur, 768001, Odisha, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Ajit K Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Lokanath Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Laxmipriya Prusty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Chita R Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Harekrushna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Suban K Sahoo
- Department of Chemistry, SV National Institute of Technology, Surat, 395007, Gujarat, India
| | - Santosh K Sethi
- School of Biotechnology, Gangadhar Meher University, Sambalpur, 768001, Odisha, India.
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
| |
Collapse
|
2
|
Zeng M, Feng A, Ren Y, Zhang Q, Wang R, Zhang B, Liu M, Guo P, Zhang Y, Lyu J, Zheng X. Salvia miltiorrhiza Bunge extract and Przewalskin ameliorate Bleomycin-induced pulmonary fibrosis by inhibition of apoptosis, oxidative stress and collagen deposition via the TGF-β1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155339. [PMID: 38237513 DOI: 10.1016/j.phymed.2024.155339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Salvia miltiorrhiza Bunge (Labiatae) (DS) is a key part of the traditional Chinese medicine, whose roots are used to remove blood stasis, relieve pain, eliminate carbuncle and calm the nerves. Our research team found that the DS extract could significantly reverse LPS-induced lung injury, and five new diterpenoid quinones in DS extract with excellent lung protective activity for the first time. However, the material basis and mechanism of DS on pulmonary fibrosis (PF) needs to be explored in depth. OBJECTIVE Bleomycin (BLM) was employed to establish the PF model, and Transcriptome and Surface plasmon resonance (SPR) ligand fishing technology were used to explore the material basis and mechanism of DS on PF, and provided theoretical research for clinical treatment of PF. METHODS DS extract (24.58 or 49.16 mg/kg, i.g.) was administered daily from Day 8 to Day 28, followed by intratracheal BLM drip (5 mg/kg) to induce PF. Data about the influences of DS on PF were collected by transcriptome sequencing technology. Pulmonary ultrasound, airway responsiveness, lung damage, collagen deposition, and the levels of TNF-α, IL-1β, apoptosis, oxidative stress (OS), immune cells, TGF-β1, α-SMA, E-Cadherin and Collage Ⅰ were examined. The affinity component (Przewalskin) in DS extract targeted by TGF-β1 was fished by SPR ligand fishing technology. Furthermore, an in vivo PF mouse model and an in vitro TGF-β1 induced BEAS-2B cell model were established, to explore the mechanism of Przewalskin on PF from the apoptosis, OS and epithelial mesenchymal transformation pathway. RESULTS DS extract improved pulmonary ultrasound, reduced lung damage and collagen deposition, downregulated TNF-α, IL-1β, apoptosis, OS, TGF-β1, α-SMA, E-Cadherin and Collage Ⅰ, transformed immune cells following Bleomycin challenge. Furthermore, affinity component (Przewalskin) also improved pulmonary ultrasound and airway responsiveness, reduced lung damage and collagen deposition, downregulated TNF-α, IL-1β, apoptosis, OS in vivo and in vitro. CONCLUSION Analysis using a mouse model revealed that DS extract and Przewalskin can relieve clinical symptoms of PF, reduce lung injury and improve lung function. Meanwhile, DS extract and Przewalskin can improve BLM-induced PF by inhibition of, OS, apoptosis and collagen deposition might via the TGF-β1 pathway. This study provides references to identification of novel therapeutic targets, thereby facilitating drug development for PF.
Collapse
Affiliation(s)
- Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China; Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Aozi Feng
- Department of Clinical Research, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yingjie Ren
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Qinqin Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Ru Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Meng Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Pengli Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yuhan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Jun Lyu
- Department of Clinical Research, the First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China; Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China.
| |
Collapse
|
3
|
Behera S, Dash PP, Bishoyi AK, Dash K, Mohanty P, Sahoo CR, Padhy RN, Mishra M, Ghosh BN, Sahoo H, Jali BR. Protein interactions, molecular docking, antimicrobial and antifungal studies of terpyridine ligands. J Biomol Struct Dyn 2023; 41:11274-11285. [PMID: 36562209 DOI: 10.1080/07391102.2022.2161012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Resistance to antibiotics/antibacterials/antifungals in pathogenic microbes has been developing over the past few decades and has recently become a commonplace public-health peril. Thus, alternative nontoxic potent antibiotic agents are covertly needed to control antibiotic-resistant outbreaks. In an effort to combat the challenges posed by the co-occurrence of multidrug resistance, two terpyridine ligands 4'-(4-N,N'-dimethylaminophenyl)-2,2':6',2″-terpyridine (L1) and 4'-(4-tolyl)-2,2':6',2″-terpyridine (L2) have been designed, prepared and confirmed their structure by spectral studies. Thereafter, antimicrobial assay was performed against gram positive and negative bacterial strains along with fungal strains. Both compounds L1 and L2 exhibited remarkable inhibitory activities against bacteria, Escherichia coli and Staphylococcus aureus at MIC values 6.25 and 3.125 µg/ml, respectively. In addition, in silico molecular docking studies were ascertained with bacterial DNA gyrase and fungal demethylase. Furthermore, both L1 and L2 could bind Bovine Serum Albumin (BSA) protein and binding interaction has been studied with the help of UV-Visible and fluorescence spectroscopy. While fluorescence of BSA unperturbed in the presence of L2, an addition of L1 to the solution of BSA resulted significant quenching. The binding constant calculations at different temperature confirmed that the fluorescence quenching between BSA and L1 is predominantly static in nature. The toxicity of L1 and L2 was checked using Drosophila melanogaster. The toxicity analysis suggest both the dyes are non-cytotoxic in nature.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Behera
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| | - Ajit K Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, India
| | - K Dash
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - P Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| | - Chita R Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, India
| | - M Mishra
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - B N Ghosh
- Department of Chemistry, National Institute of Technology, Silchar, India
| | - H Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela, India
| | - B R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| |
Collapse
|
4
|
Zhao D, Guo K, Zhang Q, Wu Y, Ma C, He W, Jin X, Zhang X, Wang Y, Lin S, Shang H. Mechanism of XiJiaQi in the treatment of chronic heart failure: Integrated analysis by pharmacoinformatics, molecular dynamics simulation, and SPR validation. Comput Biol Med 2023; 166:107479. [PMID: 37783074 DOI: 10.1016/j.compbiomed.2023.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE Chronic heart failure (CHF) is a complicated clinical syndrome with a high mortality rate. XiJiaQi (XJQ) is a traditional Chinese medicine used in the clinical treatment of CHF, but its bioactive components and their modes of action remain unknown. This study was designed to unravel the molecular mechanism of XJQ in the treatment of CHF using multiple computer-assisted and experimental methods. METHODS Pharmacoinformatics-based methods were used to explore the active components and targets of XJQ in the treatment of CHF. ADMETlab was then utilized to evaluate the pharmacokinetic and toxicological properties of core components. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were to explore the underlying mechanism of XJQ treatment. Molecular docking, surface plasmon resonance (SPR), and molecular dynamics (MD) were employed to evaluate the binding of active components to putative targets. RESULTS Astragaloside IV, formononetin, kirenol, darutoside, periplocin and periplocymarin were identified as core XJQ-related components, and IL6 and STAT3 were identified as core XJQ targets. ADME/T results indicated that periplocin and periplocymarin may have potential toxicity. GO and KEGG pathway analyses revealed that XJQ mainly intervenes in inflammation, apoptosis, diabetes, and atherosclerosis-related biological pathways. Molecular docking and SPR revealed that formononetin had a high affinity with IL6 and STAT3. Furthermore, MD simulation confirmed that formononetin could firmly bind to the site 2 region of IL6 and the DNA binding domain of STAT3. CONCLUSION This study provides a mechanistic rationale for the clinical application of XJQ. Modulation of STAT3 and IL-6 by XJQ can impact CHF, further guiding research efforts into the molecular underpinnings of CHF.
Collapse
Affiliation(s)
- Dongyang Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kaijing Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yan Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chen Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenyi He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiangju Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xinyu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yanan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
5
|
Pan Q, Lu Y, Xie L, Wu D, Liu R, Gao W, Luo K, He B, Pu Y. Recent Advances in Boosting EGFR Tyrosine Kinase Inhibitors-Based Cancer Therapy. Mol Pharm 2023; 20:829-852. [PMID: 36588471 DOI: 10.1021/acs.molpharmaceut.2c00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a key role in signal transduction pathways associated with cell proliferation, growth, and survival. Its overexpression and aberrant activation in malignancy correlate with poor prognosis and short survival. Targeting inhibition of EGFR by small-molecular tyrosine kinase inhibitors (TKIs) is emerging as an important treatment model besides of chemotherapy, greatly reshaping the landscape of cancer therapy. However, they are still challenged by the off-targeted toxicity, relatively limited cancer types, and drug resistance after long-term therapy. In this review, we summarize the recent progress of oral, pulmonary, and injectable drug delivery systems for enhanced and targeting TKI delivery to tumors and reduced side effects. Importantly, EGFR-TKI-based combination therapies not only greatly broaden the applicable cancer types of EGFR-TKI but also significantly improve the anticancer effect. The mechanisms of TKI resistance are summarized, and current strategies to overcome TKI resistance as well as the application of TKI in reversing chemotherapy resistance are discussed. Finally, we provide a perspective on the future research of EGFR-TKI-based cancer therapy.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Serseg T, Benarous K, Serseg M, Rehman HM, El Bakri Y, Goumri-Said S. Discovery of inhibitors against SARS-CoV-2 associated fungal coinfections via virtual screening, ADMET evaluation, PASS, molecular docking, dynamics and pharmacophore studies. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1080/25765299.2022.2126588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Talia Serseg
- Natural Sciences department, Ecole Normale Supérieure Taleb Abderrahmane, Laghouat, Algeria
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
| | - Khedidja Benarous
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
- Biology department, Amar Telidji University, Laghouat, Algeria
| | - Menaouar Serseg
- Laboratory of Hematology, Central Hospital of Army, Ain Naadja, Algiers, Algeria
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
- Alnoorians Group of Institutes 55-Elahi Bukhsh Park, Amir Road, Shad Bagh, Shad Bagh, Lahore, Pakistan
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russian Federation
| | - Souraya Goumri-Said
- College of Science, Physics Department, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Wang P, Sun H, Yang W, Fang Y. Optical Methods for Label-Free Detection of Bacteria. BIOSENSORS 2022; 12:bios12121171. [PMID: 36551138 PMCID: PMC9775963 DOI: 10.3390/bios12121171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Pathogenic bacteria are the leading causes of food-borne and water-borne infections, and one of the most serious public threats. Traditional bacterial detection techniques, including plate culture, polymerase chain reaction, and enzyme-linked immunosorbent assay are time-consuming, while hindering precise therapy initiation. Thus, rapid detection of bacteria is of vital clinical importance in reducing the misuse of antibiotics. Among the most recently developed methods, the label-free optical approach is one of the most promising methods that is able to address this challenge due to its rapidity, simplicity, and relatively low-cost. This paper reviews optical methods such as surface-enhanced Raman scattering spectroscopy, surface plasmon resonance, and dark-field microscopic imaging techniques for the rapid detection of pathogenic bacteria in a label-free manner. The advantages and disadvantages of these label-free technologies for bacterial detection are summarized in order to promote their application for rapid bacterial detection in source-limited environments and for drug resistance assessments.
Collapse
Affiliation(s)
- Pengcheng Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Sun
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wei Yang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yimin Fang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
8
|
Sharma S, Takkella D, Kumar P, Gavvala K. Spectroscopic analysis to identify the binding site for Rifampicin on Bovine Serum Albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121721. [PMID: 35964352 DOI: 10.1016/j.saa.2022.121721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
This article reports the interaction of rifampicin, one of the important antituberculosis drugs, with Bovine Serum Albumin (BSA). Herein, we have monitored the fluorescence properties of tryptophan (Trp) residue in BSA to understand the interactions between protein and rifampicin. Fluorescence intensity of BSA was quenched tremendously upon interacting with the drug. Using steady state and time-resolved spectroscopic tools the static and dynamic nature of quenching have been characterised. Time correlated single photon counting technique confirmed that out of two lifetime components ∼6.2 ns and ∼2.8 ns of BSA, the rifampicin has affected only the shorter lifetime component a lot that was assigned to Trp-213 residue. Hence, it was thought that the drug must have been located near to the amino acid residue. Molecular docking studies have revealed the structural information of drug-protein complex which supported the above conjecture, confirming the nearest tryptophan as Trp-213 to the complexing rifampicin molecule.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Dineshbabu Takkella
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Pintu Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Krishna Gavvala
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
9
|
Sharmeen S, Kyei I, Hatch A, Hage DS. Analysis of drug interactions with serum proteins and related binding agents by affinity capillary electrophoresis: A review. Electrophoresis 2022; 43:2302-2323. [PMID: 36250426 PMCID: PMC10098505 DOI: 10.1002/elps.202200191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug-protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins.
Collapse
Affiliation(s)
- Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Arden Hatch
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
10
|
Voltammetric immunoassay based on MWCNTs@Nd(OH) 3-BSA-antibody platform for sensitive BSA detection. Mikrochim Acta 2022; 189:422. [PMID: 36253569 DOI: 10.1007/s00604-022-05514-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
Abstract
An electrochemical approach is presented based on multiwall carbon nanotubes (MWCNTs) and neodymium(III) hydroxide (Nd(OH)3) nanoflakes for detection of bovine serum albumin (BSA). The materials were characterized morphologically (XRPD, SEM, and HR-TEM) and electrochemically (DPV, EIS). The MWCNTs@Nd(OH)3 composite was used as support for bovine serum albumin polyclonal antibody (anti-BSA). After the antibody immobilization on the electrochemical platform and antigen/antibody binding time (optimum 60 min), the proposed approach shows a linear voltammetric response toward BSA concentration in the range 0.066 to 6.010 ng mL-1 at maximum peak potential of 0.13 V (vs. Ag/AgCl). Limit of detection (LOD) and limit of quantification (LOQ) were 18 pg mL-1 and 61 pg mL-1, respectively. The precision of the method calculated as relative standard deviation (RSD) of five independent measurements was better 3%. The selectivity of the optimized method regarding structurally similar proteins (human serum albumin and human hemoglobin), ions (Na+, K+, Ca2+, and NO2-), or compounds (glucose, ascorbic acid, dopamine, uric acid, paracetamol, and glycine) was found to be satisfactory, with the current changes of less than 5% in the presence of up to 1 × 105 times higher concentrations (depending on the compound) of the listed potential interfering compounds. Practical applicability of immunosensor for BSA determination in cow whey sample, with recovery values in the range 97 to 103%, shows that the developed method has high potential for precise and accurate detection of BSA, as well as exceptional miniaturization possibilities for on-site and equipment-free sensing.
Collapse
|
11
|
Bagheri F, Fatemi MH. Investigation of the Interaction between Nilotinib and Alpha-Lactalbumin by Spectroscopic Methods and Docking Studies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Exploring binding interaction of baricitinib with bovine serum albumin (BSA): multi-spectroscopic approaches combined with theoretical calculation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Rashtbari S, Dehghan G, Sadeghi L, Sareminia L, Iranshahy M, Iranshahi M, Khataee A, Yoon Y. Interaction of bovine serum albumin with ellagic acid and urolithins A and B: Insights from surface plasmon resonance, fluorescence, and molecular docking techniques. Food Chem Toxicol 2022; 162:112913. [PMID: 35276234 DOI: 10.1016/j.fct.2022.112913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022]
Abstract
Human serum albumin (HSA) shows the sequence homology and structural similarity with bovine serum albumin (BSA). Therefore, here, the interaction of natural phenolic antioxidants, ellagic acid (ELA), and its derivatives-urolithins A (ULA) and B (ULB)-with BSA was investigated. The results of surface plasmon resonance (SPR) indicated a high affinity of ELA, ULA, and ULB to BSA, with KD value < 1 × 10-6 M. The KD values of binding of the studied compounds to BSA increased with temperature, revealing a reduction in affinity with an increase in temperature. Fluorescence data showed that the quenching of BSA by tested compounds occurred via a static quenching. However, the affinity of ELA for BSA was higher than that of ULA and ULB, which may be because of the presence of a large number of hydroxyl groups in its structure. The assessment of the antioxidant activity of BSA and BSA-ELA/ULA/ULB complexes using the DPPH assay indicated that the DPPH scavenging activity of BSA increased after complex formation with ELA/ULA/ULB in the following order: BSA-ELA > BSA-ULA > BSA-ULB > BSA, which was due to their structural differences. The results of the docking analysis were in agreement with the experimental results.
Collapse
Affiliation(s)
- Samaneh Rashtbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Leila Sadeghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Leila Sareminia
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
14
|
Influence of Rutin, Sinapic Acid, and Naringenin on Binding of Tyrosine Kinase Inhibitor Erlotinib to Bovine Serum Albumin Using Analytical Techniques Along with Computational Approach. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073575] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flavonoid-containing food supplements are widely used as antioxidants, and the continuous use of these supplements with other drugs can lead to clinically significant interactions between these and other drugs. The medications in systemic circulation are mainly transported by serum albumin, a major transport protein. This study evaluated the interactions of rutin (RUT), naringenin (NAR), and sinapic acid (SIN) with the most abundant transport protein, bovine serum albumin (BSA), and the anticancer drug, the tyrosine kinase inhibitor Erlotinib (ETB), using various analytical methods. Interaction between multiple types of ligands with the transport proteins and competition between themselves can lead to the bound ETB’s displacement from the BSA-binding site, leading to elevated ETB concentrations in the systemic circulation. These elevated drug fractions can lead to adverse events and lower tolerance, and increased resistance to the therapeutic regimen of ETB. The experimental and computational methods, including molecular-docking studies, were used to understand the molecular interactions. The results suggested that the complexes formed were utterly different in the binary and the ternary system. Furthermore, comparing the ternary systems amongst themselves, the spectra differed from each other. They thus inferred that complexes formed between BSA-ETB in the presence of each RUT, NAR, and SIN separately were also different, with the highest value of the reduction in the binding energy in RUT, followed by SIN and then NAR. Thus, we conclude that a competitive binding between the ETB and these flavonoids might influence the ETB pharmacokinetics in cancer patients by increasing ETB tolerance or resistance.
Collapse
|
15
|
Wani TA, Alanazi MM, Alsaif NA, Bakheit AH, Zargar S, Alsalami OM, Khan AA. Interaction Characterization of a Tyrosine Kinase Inhibitor Erlotinib with a Model Transport Protein in the Presence of Quercetin: A Drug-Protein and Drug-Drug Interaction Investigation Using Multi-Spectroscopic and Computational Approaches. Molecules 2022; 27:molecules27041265. [PMID: 35209054 PMCID: PMC8874853 DOI: 10.3390/molecules27041265] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
The interaction between erlotinib (ERL) and bovine serum albumin (BSA) was studied in the presence of quercetin (QUR), a flavonoid with antioxidant properties. Ligands bind to the transport protein BSA resulting in competition between different ligands and displacing a bound ligand, resulting in higher plasma concentrations. Therefore, various spectroscopic experiments were conducted in addition to in silico studies to evaluate the interaction behavior of the BSA-ERL system in the presence and absence of QUR. The quenching curve and binding constants values suggest competition between QUR and ERL to bind to BSA. The binding constant for the BSA-ERL system decreased from 2.07 × 104 to 0.02 × 102 in the presence of QUR. The interaction of ERL with BSA at Site II is ruled out based on the site marker studies. The suggested Site on BSA for interaction with ERL is Site I. Stability of the BSA-ERL system was established with molecular dynamic simulation studies for both Site I and Site III interaction. In addition, the analysis can significantly help evaluate the effect of various quercetin-containing foods and supplements during the ERL-treatment regimen. In vitro binding evaluation provides a cheaper alternative approach to investigate ligand-protein interaction before clinical studies.
Collapse
Affiliation(s)
- Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Ommalhasan Mohammed Alsalami
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Azmat Ali Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Study of β-lactam-based drug interaction with albumin protein using optical, sensing, and docking methods. J Biol Phys 2022; 48:177-194. [DOI: 10.1007/s10867-021-09599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022] Open
|
17
|
Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129024] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Thermodynamic analysis of albumin interaction with monosodium glutamate food additive: Insights from multi-spectroscopic and molecular docking approaches. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Hájovská P, Chytil M, Kalina M. Rheological study of albumin and hyaluronan-albumin hydrogels: Effect of concentration, ionic strength, pH and molecular weight. Int J Biol Macromol 2020; 161:738-745. [DOI: 10.1016/j.ijbiomac.2020.06.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
|
20
|
Sandu N, Chilom CG, David M, Florescu M. Evaluation of the interaction of levothyroxine with bovine serum albumin using spectroscopic and molecular docking studies. J Biomol Struct Dyn 2020; 40:1139-1151. [PMID: 32948118 DOI: 10.1080/07391102.2020.1822919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bovine serum albumin (BSA) acts as a carrier for many endogenous and exogenous compounds, such as thyroid hormones or corresponding drugs. Binding of the hydrophilic levothyroxine drug (LT4) to BSA is of significant pharmacological importance. In this work, UV-vis measurements were used to determine the pH value at which LT4 interacts optimally with proteins. The binding mechanism and affinity of the interaction between LT4 and BSA were investigated using Fourier-transform infrared spectroscopy (FT-IR), fluorescence, fluorescence resonance energy transfer (FRET), Surface Plasmon Resonance (SPR), supplemented by molecular docking analysis. Fluorescence measurements revealed the quenching effect of LT4 on the BSA intrinsic fluorescence and LT4 binding with BSA is driven by a ground-state complex formation that may be accompanied by a nonradiative energy transfer process. The thermodynamic parameters correspond to an enthalpic process, driven mainly by hydrogen bonds and van der Waals forces. Using SPR, the adsorbed amount of biomolecules was calculated and the binding affinity of LT4 with confined-BSA was characterized, indicating that the BSA immobilization plays an important role in LT4 binding. Docking studies confirmed the formation of the LT4-BSA complex with LT4 bound to site I on the BSA structure mainly with amino acid residues Trp 213, Tyr 137, Tyr 147. The calculation of the apparent association constant confirms the result obtained in SPR.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nicoleta Sandu
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Măgurele, Romania
| | - Claudia G Chilom
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Măgurele, Romania
| | - Melinda David
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brasov, Romania
| | - Monica Florescu
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brasov, Romania
| |
Collapse
|
21
|
Hornok V, Juhász Á, Paragi G, Kovács AN, Csapó E. Thermodynamic and kinetic insights into the interaction of kynurenic acid with human serum albumin: Spectroscopic and calorimetric approaches. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
|
23
|
Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115943] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Mohammadzadeh-Asl S, Aghanejad A, Yekta R, de la Guardia M, Ezzati Nazhad Dolatabadi J, Keshtkar A. Kinetic and thermodynamic insights into interaction of erlotinib with epidermal growth factor receptor: Surface plasmon resonance and molecular docking approaches. Int J Biol Macromol 2020; 163:954-958. [PMID: 32653374 DOI: 10.1016/j.ijbiomac.2020.07.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays an important role in cell proliferation at non-small cell lung cancer (NSCLC). Therefore, targeted therapy of cancer via this kind of receptor is highly interested. Small molecule drugs such as erlotinib and gefitinib inhibit EGFR tyrosine kinase and thus suppress cell proliferation. At this paper, erlotinib interaction with EGFR on the cell surface was studied via surface plasmon resonance (SPR) and molecular docking methods. Kinetic parameters indicated that erlotinib affinity toward EGFR was increased through increment of temperature. The thermodynamic analysis showed that van der Waals and hydrogen binding forces play a major role in the interaction of erlotinib with EGFR. Docking results showed that Domain II in EGFR has role in the interaction with erlotinib. Besides, the binding energy for this interaction was -10.7 kcal/mol, which is suitable for binding of erlotinib to Domain II in EGFR.
Collapse
Affiliation(s)
- Saeideh Mohammadzadeh-Asl
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Yekta
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | | | - Ahmad Keshtkar
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Javaheri-Ghezeldizaj F, Mahmoudpour M, Yekta R, Ezzati Nazhad Dolatabadi J. Albumin binding study to sodium lactate food additive using spectroscopic and molecular docking approaches. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Multi-spectroscopic, thermodynamic and molecular dockimg insights into interaction of bovine serum albumin with calcium lactate. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Singh N, Kumar N, Rathee G, Sood D, Singh A, Tomar V, Dass SK, Chandra R. Privileged Scaffold Chalcone: Synthesis, Characterization and Its Mechanistic Interaction Studies with BSA Employing Spectroscopic and Chemoinformatics Approaches. ACS OMEGA 2020; 5:2267-2279. [PMID: 32064388 PMCID: PMC7016911 DOI: 10.1021/acsomega.9b03479] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/15/2020] [Indexed: 05/28/2023]
Abstract
Chalcone, a privileged structure, is considered as an effective template in the field of medicinal chemistry for potent drug discovery. In the present study, a privileged template chalcone was designed, synthesized, and characterized by various spectroscopic techniques (NMR, high-resolution mass spectrometry, Fourier transform infrared (FT-IR) spectroscopy, UV spectroscopy, and single-crystal X-ray diffraction). The mechanism of binding of chalcone with bovine serum albumin (BSA) was determined by multispectroscopic techniques and computational methods. Steady-state fluorescence spectroscopy suggests that the intrinsic fluorescence of BSA was quenched upon the addition of chalcone by the combined dynamic and static quenching mechanism. Time-resolved spectroscopy confirms complex formation. FT-IR and circular dichroism spectroscopy suggested the presence of chalcone in the BSA molecule microenvironment and also the possibility of rearrangement of the native structure of BSA. Moreover, molecular docking studies confirm the moderate binding of chalcone with BSA and the molecular dynamics simulation analysis shows the stability of the BSA-drug complex system with minimal deformability fluctuations and potential interaction by the covariance matrix. Moreover, pharmacodynamics and pharmacological analysis show good results through Lipinski rules, with no toxicity profile and high gastrointestinal absorptions by boiled egg permeation assays. This study elucidates the mechanistic profile of the privileged chalcone scaffold to be used in therapeutic applications.
Collapse
Affiliation(s)
- Nidhi Singh
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Neeraj Kumar
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Garima Rathee
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Damini Sood
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Aarushi Singh
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Vartika Tomar
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Sujata K. Dass
- BLK
Super Speciality Hospital, Pusa Road, Delhi, New Delhi 110005, India
| | - Ramesh Chandra
- Department
of Chemistry, University of Delhi, Delhi 110007, India
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
28
|
Exploring the binding interaction between bovine serum albumin and perindopril as well as influence of metal ions using multi-spectroscopic, molecular docking and DFT calculation. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Fathi F, Sharifi M, Jafari A, Kakavandi N, Kashanian S, Ezzati Nazhad Dolatabadi J, Rashidi MR. Kinetic and thermodynamic insights into interaction of albumin with piperacillin: Spectroscopic and molecular modeling approaches. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111770] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Mohammadzadeh-Asl S, Jafari A, Aghanejad A, Monirinasab H, Ezzati Nazhad Dolatabadi J. Kinetic and thermodynamic studies of sunitinib malate interaction with albumin using surface plasmon resonance and molecular docking methods. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Korshunova AV, Lopanskaia IN, Gudimchuk NB. Modern Approaches to Analysis of Protein–Ligand Interactions. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919040079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Rezende JDP, Hudson EA, De Paula HMC, Meinel RS, Da Silva AD, Da Silva LHM, Pires ACDS. Human serum albumin-resveratrol complex formation: Effect of the phenolic chemical structure on the kinetic and thermodynamic parameters of the interactions. Food Chem 2019; 307:125514. [PMID: 31639576 DOI: 10.1016/j.foodchem.2019.125514] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
The thermodynamics and kinetics of binding between human serum albumin (HSA) and resveratrol (RES) or its analog (RESAn1) were investigated by surface plasmon resonance (SPR). The binding constant and the kinetic constants of association and dissociation indicated that RESAn1 has higher affinity toward HSA than does RES. The formation of these complexes was entropically driven ( [Formula: see text] , [Formula: see text] KJ mol-1). However, for both polyphenols, the activation energy (Eact) of association (a) of free molecules was higher than that for dissociation (d) of the stable complex ( [Formula: see text] KJ mol-1), and the rate of association was faster than that of dissociation since the activation Gibbs free energy (ΔG‡) was lower for the former (ΔGaHSA-RES‡≅54.73,ΔGdHSA-RES‡≅73.83,ΔGaHSA-RESAn1‡≅54.14,ΔGdHSA-RESAn1‡≅73.97 KJ mol-1). This study showed that small differences in the structure of polyphenols such as RES and RESAn1 influenced the thermodynamics and kinetics of the complex formation with HSA.
Collapse
Affiliation(s)
- Jaqueline de Paula Rezende
- Applied Molecular Thermodynamics Group (THERMA), Department of Food Technology, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil
| | - Eliara Acipreste Hudson
- Applied Molecular Thermodynamics Group (THERMA), Department of Food Technology, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil
| | - Hauster Maximiler Campos De Paula
- Colloidal and Macromolecular Green Chemistry Group (QUIVECOM), Department of Chemistry, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil
| | - Raissa Soares Meinel
- Department of Chemistry, Institute of Exact Sciences (I.C.E.), Federal University of Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Adilson David Da Silva
- Department of Chemistry, Institute of Exact Sciences (I.C.E.), Federal University of Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Luis Henrique Mendes Da Silva
- Colloidal and Macromolecular Green Chemistry Group (QUIVECOM), Department of Chemistry, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil.
| | - Ana Clarissa Dos Santos Pires
- Applied Molecular Thermodynamics Group (THERMA), Department of Food Technology, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil.
| |
Collapse
|
33
|
Mahmoudpour M, Ezzati Nazhad Dolatabadi J, Torbati M, Homayouni-Rad A. Nanomaterials based surface plasmon resonance signal enhancement for detection of environmental pollutions. Biosens Bioelectron 2019; 127:72-84. [DOI: 10.1016/j.bios.2018.12.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 01/02/2023]
|