1
|
Rubilar-Huenchuman M, Ortega-Villanueva C, González IA, Palavecino CE. The Effect of Photodynamic Therapy on Enterococcus spp. and Its Application in Dentistry: A Scoping Review. Pharmaceutics 2024; 16:825. [PMID: 38931945 PMCID: PMC11207625 DOI: 10.3390/pharmaceutics16060825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Enterococci spp. are Gram-positive bacteria that cause mild to severe infections, many associated with the oral cavity, such as periapical infections and healthcare-associated infections (HAIs). Many of these infections become serious diseases that are difficult to resolve, specifically when multidrug-resistant (MDR) strains cause them. In recent years, the number of MDR strains of Enterococcus spp. has increased significantly. This increased prevalence of MDR strains produces significant pressure to generate more antimicrobial therapies, but there is a decline in the production of new antibiotics, driving the development of complementary therapies, such as photodynamic therapy (PDT). PDT combines a photosensitizer agent (PS), light, and oxygen to cause photooxidative stress in bacterial cells. PDT can eradicate Enterococcus spp. contaminations, improve the classic cleaning processes, and eradicate the bacteria in dental pieces. PDT's effectiveness can be improved with nanoparticles that function as carriers. Our work aims to describe the advances in PDT against Enterococcus spp. as a complement to antibiotic therapy, focusing on infections by Enterococcus faecium and Enterococcus faecalis, dental hygiene, and using nanoparticles to improve the antimicrobial effect. A systematic bibliographic search without a meta-analysis was conducted on various databases, using inclusion and exclusion criteria to identify the most relevant research. Of the 193 non-redundant articles found, 65 were selected for a systematic review, from which a summary table was created and a manual description was made. Photodynamic therapy for treating E. faecium and E. faecalis is a widely studied area, with promising results concerning bactericidal effectiveness and reductions in biofilm formation, particularly in regard to dental hygiene. Because most of the studies were conducted in vitro or ex vivo, the results indicated that there were not sufficient data to initiate clinical trials for safety and efficacy studies on humans.
Collapse
Affiliation(s)
- Mariaignacia Rubilar-Huenchuman
- Laboratorio de Microbiología Celular, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago 8330546, Chile; (M.R.-H.); (C.O.-V.)
| | - Camilo Ortega-Villanueva
- Laboratorio de Microbiología Celular, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago 8330546, Chile; (M.R.-H.); (C.O.-V.)
| | - Iván A. González
- Departamento de Química, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile;
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago 8330546, Chile; (M.R.-H.); (C.O.-V.)
| |
Collapse
|
2
|
Cui Z, Li Y, Qin Y, Li J, Shi L, Wan M, Hu M, Chen Y, Ji Y, Hou Y, Ye F, Liu C. Polymyxin B-targeted liposomal photosensitizer cures MDR A. baumannii burn infections and accelerates wound healing via M 1/M 2 macrophage polarization. J Control Release 2024; 366:297-311. [PMID: 38161034 DOI: 10.1016/j.jconrel.2023.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii infections pose a significant challenge in burn wound management, necessitating the development of innovative therapeutic strategies. In this work, we introduced a novel polymyxin B (PMB)-targeted liposomal photosensitizer, HMME@Lipo-PMB, for precise and potent antimicrobial photodynamic therapy (aPDT) against burn infections induced by MDR A. baumanni. HMME@Lipo-PMB-mediated aPDT exhibited enhanced antibacterial efficacy by specifically targeting and disrupting bacterial cell membranes, and generating increased intracellular ROS. Remarkably, even at low concentrations, this targeted approach significantly reduced bacterial viability in vitro and completely eradicated burn infections induced by MDR A. baumannii in vivo. Additionally, HMME@Lipo-PMB-mediated aPDT facilitated burn infection wound healing by modulating M1/M2 macrophage polarization. It also effectively promoted acute inflammation in the early stage, while attenuated chronic inflammation in the later stage of wound healing. This dynamic modulation promoted the formation of granulation tissue, angiogenesis, and collagen regeneration. These findings demonstrate the tremendous potential of HMME@Lipo-PMB-mediated aPDT as a promising alternative for the treatment of burn infections caused by MDR A. baumannii.
Collapse
Affiliation(s)
- Zixin Cui
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China; Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Yiyang Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China; Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Yannan Qin
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China
| | - Jianzhou Li
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Lei Shi
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Meijuan Wan
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Min Hu
- Department of Chemistry, School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, PR China
| | - Yunru Chen
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Yanhong Ji
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China
| | - Feng Ye
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China.
| | - Chengcheng Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China.
| |
Collapse
|
3
|
Glowacka-Sobotta A, Ziental D, Czarczynska-Goslinska B, Michalak M, Wysocki M, Güzel E, Sobotta L. Nanotechnology for Dentistry: Prospects and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2130. [PMID: 37513141 PMCID: PMC10383982 DOI: 10.3390/nano13142130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
In the XXI century, application of nanostructures in oral medicine has become common. In oral medicine, using nanostructures for the treatment of dental caries constitutes a great challenge. There are extensive studies on the implementation of nanomaterials to dental composites in order to improve their properties, e.g., their adhesive strength. Moreover, nanostructures are helpful in dental implant applications as well as in maxillofacial surgery for accelerated healing, promoting osseointegration, and others. Dental personal care products are an important part of oral medicine where nanomaterials are increasingly used, e.g., toothpaste for hypersensitivity. Nowadays, nanoparticles such as macrocycles are used in different formulations for early cancer diagnosis in the oral area. Cancer of the oral cavity-human squamous carcinoma-is the sixth leading cause of death. Detection in the early stage offers the best chance at total cure. Along with diagnosis, macrocycles are used for photodynamic mechanism-based treatments, which possess many advantages, such as protecting healthy tissues and producing good cosmetic results. Application of nanostructures in medicine carries potential risks, like long-term influence of toxicity on body, which need to be studied further. The introduction and development of nanotechnologies and nanomaterials are no longer part of a hypothetical future, but an increasingly important element of today's medicine.
Collapse
Affiliation(s)
- Arleta Glowacka-Sobotta
- Chair and Department of Orthodontics and Temporomandibular Disorders, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Maciej Michalak
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Emre Güzel
- Department of Engineering Fundamental Sciences, Sakarya University of Applied Sciences, 54050 Sakarya, Türkiye
- Biomedical Technologies Application and Research Center (BIYOTAM), Sakarya University of Applied Sciences, 54050 Sakarya, Türkiye
| | - Lukasz Sobotta
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
4
|
Zinc(II) Sulfanyltribenzoporphyrazines with Bulky Peripheral Substituents—Synthesis, Photophysical Characterization, and Potential Photocytotoxicity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The study’s aim was to synthesize new unsymmetrical sulfanyl zinc(II) porphyrazines and subject them to physicochemical and electrochemical characterization and also an initial acute toxicity assessment. The procedure was initiated from a commercially available dimercaptomaleonitrile disodium salt and o-phthalonitrile using Linstead’s macrocyclization reaction conditions, which led to magnesium(II) tribenzoporphyrazine with 4-(3,5-dibutoxycarbonylphenoxy)butylthio substituents. The obtained macrocycle was demetallated with trifluoroacetic acid and subsequently remetallated with zinc(II) acetate toward the zinc(II) porphyrazine derivative. The zinc(II) tribenzoporphyrazine with 4-(3,5-dibutoxycarbonylphenoxy)butylthio substituents was then subjected to the reduction reaction with LiAlH4, yielding zinc(II) tribenzoporphyrazine with 4-[3,5-di(hydroxymethyl)phenoxy]butylthio substituents. The new zinc(II) tribenzoporphyrazines were characterized by UV-Vis spectroscopy, various NMR techniques (1HNMR, 13CNMR, 1H-1H COSY, 1H-13C HSQC, and 1H-13C HMBC), and mass spectrometry. In the UV-Vis spectra, both macrocycles revealed characteristic Soret and Q-bands, whose positions were dependent on the solvent used for the measurements. Zinc(II) tribenzoporphyrazines were studied using electrochemical and photochemical methods, including the singlet oxygen generation assessment. Both zinc(II) porphyrazines revealed high singlet oxygen generation quantum yield values of up to 0.59 in DMSO, which indicates their potential photosensitizing potential for photodynamic therapy. In addition, new derivatives were subjected to a Microtox® bioluminescence assay.
Collapse
|
5
|
Czarczynska-Goslinska B, Stolarska M, Ziental D, Falkowski M, Glowacka-Sobotta A, Dlugaszewska J, Goslinski T, Sobotta L. Photodynamic antimicrobial activity of magnesium(II) porphyrazine with bulky peripheral sulfanyl substituents. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2012780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Magdalena Stolarska
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Falkowski
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Arleta Glowacka-Sobotta
- Chair and Department of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznan, Poland
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
6
|
Wierzchowski M, Ziental D, Łażewski D, Korzanski A, Gielara-Korzanska A, Tykarska E, Dlugaszewska J, Sobotta L. New Metallophthalocyanines Bearing 2-Methylimidazole Moieties-Potential Photosensitizers against Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23115910. [PMID: 35682587 PMCID: PMC9180345 DOI: 10.3390/ijms23115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023] Open
Abstract
Newly developed tetra- and octasubstituted methimazole-phthalocyanine conjugates as potential photosensitizers have been obtained. Synthesized intermediates and final products were characterized by the MALD-TOF technique and various NMR techniques, including 2D methods. Single-crystal X-ray diffraction was used to determine the crystal structures of dinitriles. The studied phthalocyanines revealed two typical absorption bands—the Soret band and the Q band. The most intense fluorescence was observed for octasubstituted magnesium(II) phthalocyanine in DMF (ΦFL = 0.022). The best singlet oxygen generators were octasubstituted magnesium(II) and zinc(II) phthalocyanines (Φ∆ 0.56 and 0.81, respectively). The studied compounds presented quantum yields of photodegradation at the level between 10−5 and 10−6. Due to their low solubility in a water environment, the liposomal formulations were prepared. Within the studied group, octasubstituted zinc(II) phthalocyanine at the concentration of 100 µM activated with red light showed the highest antibacterial activity against S. aureus equal to a 5.68 log reduction of bacterial growth.
Collapse
Affiliation(s)
- Marcin Wierzchowski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.W.); (D.Ł.); (A.G.-K.); (E.T.)
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Dawid Łażewski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.W.); (D.Ł.); (A.G.-K.); (E.T.)
| | - Artur Korzanski
- Department of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Agnieszka Gielara-Korzanska
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.W.); (D.Ł.); (A.G.-K.); (E.T.)
| | - Ewa Tykarska
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.W.); (D.Ł.); (A.G.-K.); (E.T.)
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Correspondence:
| |
Collapse
|
7
|
Güzel E, Atmaca GY, Kuznetsov AE, Turkkol A, Bilgin MD, Erdoğmuş A. Ultrasound versus Light: Exploring Photophysicochemical and Sonochemical Properties of Phthalocyanine-Based Therapeutics, Theoretical Study, and In Vitro Evaluations. ACS APPLIED BIO MATERIALS 2022; 5:1139-1150. [PMID: 35239311 DOI: 10.1021/acsabm.1c01199] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) applications carried out with the assistance of ultrasound have attracted significant attention in recent years. The use of phthalocyanines, which are an important component as photosensitizers in PDT, is becoming more important day by day. In therapeutic applications, phthalocyanines can promote the production of reactive oxygen species. Motivated by this fact, the syntheses of metal-free (2), gallium (3), and indium (4) phthalocyanines have been achieved by substituting 4-(cinnamyloxy)phthalonitrile for the first time to evaluate their therapeutic applications. Additionally, photophysicochemical, sonophotochemical, and in vitro evaluations of phthalocyanines have been reported. To the best of our knowledge, this is the first study of the use of phthalocyanines with different metal ions as potential photosensitizers for sonophotodynamic therapy (SPDT) applications in gastric cancer cell lines. The results show that the quantum yield of the generation of singlet oxygen increased in sonophotochemical studies (ΦΔ = 0.55 (2), 0.85 (3), 0.96 (4)), compared to photochemical studies (ΦΔ = 0.22 (2), 0.61 (3), 0.78 (4)). The density functional theory (DFT) results are in good agreement with the experimental results and suggest increased reactivity of phthalocyanines 3 and 4 in various redox processes, thus implying their applicability and usefulness as potential therapeutic agents. These phthalocyanines are effective sensitizers for PDT, sonodynamic therapy (SDT), and SPDT against MKN-28 gastric cancer cell line in vitro. All three treatments decreased cell viability and induced apoptosis in the gastric cancer cell line. However, indium phthalocyanine (4)-mediated SPDT was a more effective treatment modality compared to indium phthalocyanine (4)-mediated PDT and SDT. Also, indium phthalocyanine (4) was found to be a more effective sensitizer to activate apoptosis compared to the other phthalocyanines. To sum up, phthalocyanine-mediated SPDT enhances the cytotoxic effect on gastric cancer cells more than the effect of SDT or PDT alone.
Collapse
Affiliation(s)
- Emre Güzel
- Department of Engineering Fundamental Sciences, Faculty of Technology, Sakarya University of Applied Sciences, 54050 Sakarya, Turkey.,Biomedical Technologies Application and Research Center (BIYOTAM), Sakarya University of Applied Sciences, 54050 Sakarya, Turkey
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Yıldız Technical University, 34220 İstanbul, Turkey
| | - Aleksey E Kuznetsov
- Department of Chemistry, Universidad Técnica Federico Santa Maria, Av. Santa Maria 6400, Campus Vitacura, 7660251 Santiago, Chile
| | - Aysegul Turkkol
- Department of Biophysics, Faculty of Medicine, Aydın Adnan Menderes University, 09010 Aydın, Turkey
| | - Mehmet Dincer Bilgin
- Department of Biophysics, Faculty of Medicine, Aydın Adnan Menderes University, 09010 Aydın, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Yıldız Technical University, 34220 İstanbul, Turkey
| |
Collapse
|
8
|
Akin M, Saki N, Guzel E, Orman B, Nalbantsoy A, Kocak MB. Assessment of in vitro Cytotoxic, iNOS, Antioxidant and Photodynamic Antimicrobial Activities of Water-soluble Sulfonated Phthalocyanines. Photochem Photobiol 2021; 98:907-915. [PMID: 34748237 DOI: 10.1111/php.13558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/01/2021] [Indexed: 01/09/2023]
Abstract
In recent years, much effort has been devoted to the development of effective anticancer agents. In this manner, the utilization of water-soluble sulfonated phthalocyanines is crucial for many cancer cell lines. In this study, phthalonitrile and metallophthalocyanine compounds linked by benzenesulfonic acid groups have been prepared. Antimicrobial behaviors of those compounds were investigated by performing disk diffusion and photodynamic assays on gram-positive and negative bacteria. Indium phthalocyanine (InClPc) (3) showed inhibition activity against B. cereus, B. subtilis and S. aureus with disk diffusion assay. Also, gallium and indium phthalocyanines (2 and 3) exhibited inhibitory activity on both gram-positive and -negative microorganisms after light activation. Increasing the inhibitor concentration and light exposure time increased the inhibition activity for both molecules. GaClPc (2) demonstrated the maximum reducing power capacity among studied compounds, and CoPc (4) showed even better DPPH radical scavenging ability than the standard molecule Trolox at 2000 µg mL-1 concentration. The dose-dependent effect of compounds on cytotoxicity was studied against cancer cells PANC-1, MDA-MB-231, HepG2, A549, HeLa, CaCo-2 and non-tumorigenic cells HEK-293. All compounds showed no significant cytotoxic effect on any cell line up to the highest treated concentration at 50 µg mL-1 . However, all phthalocyanines had significant nitric oxide inhibition activity, and only in copper phthalocyanine (CuPc) (5), the MTT IC50 value was reached on LPS-activated RAW 264.7 macrophage cells. The lowest inducible nitric oxide synthase (iNOS) IC50 values were defined as 6 ± 1 μg mL-1 and 7 ± 0.5 μg mL-1 for CuPc (5) and InClPc (3), respectively.
Collapse
Affiliation(s)
- Mustafa Akin
- Petroyağ and Kimyasallar San. Tic. A.Ş, Research and Development Center, Kocaeli, Turkey
| | - Neslihan Saki
- Department of Chemistry, Kocaeli University, Kocaeli, Turkey
| | - Emre Guzel
- Department of Engineering Fundamental Sciences, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Batuhan Orman
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Makbule B Kocak
- Department of Chemistry, İstanbul Technical University, İstanbul, Turkey
| |
Collapse
|
9
|
Cheng X, Gao J, Ding Y, Lu Y, Wei Q, Cui D, Fan J, Li X, Zhu E, Lu Y, Wu Q, Li L, Huang W. Multi-Functional Liposome: A Powerful Theranostic Nano-Platform Enhancing Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100876. [PMID: 34085415 PMCID: PMC8373168 DOI: 10.1002/advs.202100876] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/11/2021] [Indexed: 05/05/2023]
Abstract
Although photodynamic therapy (PDT) has promising advantages in almost non-invasion, low drug resistance, and low dark toxicity, it still suffers from limitations in the lipophilic nature of most photosensitizers (PSs), short half-life of PS in plasma, poor tissue penetration, and low tumor specificity. To overcome these limitations and enhance PDT, liposomes, as excellent multi-functional nano-carriers for drug delivery, have been extensively studied in multi-functional theranostics, including liposomal PS, targeted drug delivery, controllable drug release, image-guided therapy, and combined therapy. This review provides researchers with a useful reference in liposome-based drug delivery.
Collapse
Affiliation(s)
- Xiamin Cheng
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jing Gao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yao Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiancheng Wei
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Dezhi Cui
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jiali Fan
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Xiaoman Li
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Ershu Zhu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yongna Lu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| |
Collapse
|
10
|
Prabhu C P K, Nemakal M, Managa M, Nyokong T, Koodlur Sannegowda L. Symmetrically Substituted Zn and Al Phthalocyanines and Polymers for Photodynamic Therapy Application. Front Chem 2021; 9:647331. [PMID: 34249856 PMCID: PMC8263923 DOI: 10.3389/fchem.2021.647331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
N4 macrocyclic complexes of Al and Zn phthalocyanines with symmetrical imine and imidazole moiety at the periphery were synthesized. The synthesized ligands, complexes, and polymers were purified and characterized to study the structure of the molecule. These synthesized complexes were used for photodynamic therapy application as the diamagnetic Zn and Al have the ability to produce and stabilize singlet oxygen species. The synthesized N4 molecules of aluminum iminomethoxy phenyl phthalocyanine and aluminum ethyl phenyl benzimidazolephthalocyanine showed better activity against MCF-7 cells. These results suggest that this assay may be used as an early biomarker of clinical response.
Collapse
Affiliation(s)
- Keshavananda Prabhu C P
- Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari, India
| | - Manjunatha Nemakal
- Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari, India
| | - Muthumuni Managa
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| | | |
Collapse
|
11
|
Stolarska M, Glowacka-Sobotta A, Ziental D, Dlugaszewska J, Falkowski M, Goslinski T, Sobotta L. Photochemical properties and promising activity against staphylococci of sulfanyl porphyrazines with dendrimeric moieties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Güzel E, Koçyiğit ÜM, Taslimi P, Erkan S, Taskin OS. Biologically active phthalocyanine metal complexes: Preparation, evaluation of α-glycosidase and anticholinesterase enzyme inhibition activities, and molecular docking studies. J Biochem Mol Toxicol 2021; 35:1-9. [PMID: 33704864 DOI: 10.1002/jbt.22765] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 01/04/2023]
Abstract
In this study, preparation, as well as investigation of α-glycosidase and cholinesterase (ChE) enzyme inhibition activities of furan-2-ylmethoxy-substituted compounds 1-7, are reported. Peripherally, tetra-substituted copper and manganese phthalocyanines (5 and 6) were synthesized for the first time. The substitution of furan-2-ylmethoxy groups provides remarkable solubility to the complex and redshift of the phthalocyanines Q-band. Besides, the inhibitory effects of these compounds on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase (α-Gly) enzymes have been investigated. The AChE was inhibited by these compounds (1-7) in low micromolar levels, and K i values were recorded between 11.17 ± 1.03 and 83.28 ± 11.08 µM. Against the BChE, the compounds demonstrated K i values from 7.55 ± 0.98 to 81.35 ± 12.80 µM. Also, these compounds (1-7) effectively inhibited α-glycosidase, with K i values in the range of 744.87 ± 67.33 to 1094.38 ± 88.91 µM. For α-glycosidase, the most effective K i values of phthalocyanines 3 and 6 were with K i values of 744.87 ± 67.33 and 880.36 ± 56.77 µM, respectively. Moreover, the studied metal complexes were docked with target proteins PDB ID: 4PQE, 1P0I, and 3WY1. Pharmacokinetic parameters and secondary chemical interactions that play an active role in interaction were predicted with docking simulation results. Overall, furan-2-ylmethoxy-substituted phthalocyanines can be considered as potential agents for the treatment of Alzheimer's diseases and diabetes mellitus.
Collapse
Affiliation(s)
- Emre Güzel
- Department of Fundamental Sciences, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Ümit M Koçyiğit
- Department of Basic Pharmaceutical Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Bartın University, Bartın, Turkey
| | - Sultan Erkan
- Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| | - Omer S Taskin
- Department of Chemical Oceanography, İstanbul University, İstanbul, Turkey
| |
Collapse
|
13
|
Photochemical properties and photocytotoxicities against wound bacteria of sulfanyl porphyrazines with bulky peripheral substituents. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Synthesis of sulfanyl porphyrazines with bulky peripheral substituents – Evaluation of their photochemical properties and biological activity. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Bekmukhametova A, Ruprai H, Hook JM, Mawad D, Houang J, Lauto A. Photodynamic therapy with nanoparticles to combat microbial infection and resistance. NANOSCALE 2020; 12:21034-21059. [PMID: 33078823 DOI: 10.1039/d0nr04540c] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infections caused by drug-resistant pathogens are rapidly increasing in incidence and pose an urgent global health concern. New treatments are needed to address this critical situation while preventing further resistance acquired by the pathogens. One promising approach is antimicrobial photodynamic therapy (PDT), a technique that selectively damages pathogenic cells through reactive oxygen species (ROS) that have been deliberately produced by light-activated chemical reactions via a photosensitiser. There are currently some limitations to its wider deployment, including aggregation, hydrophobicity, and sub-optimal penetration capabilities of the photosensitiser, all of which decrease the production of ROS and lead to reduced therapeutic performance. In combination with nanoparticles, however, these challenges may be overcome. Their small size, functionalisable structure, and large contact surface allow a high degree of internalization by cellular membranes and tissue barriers. In this review, we first summarise the mechanism of PDT action and the interaction between nanoparticles and the cell membrane. We then introduce the categorisation of nanoparticles in PDT, acting as nanocarriers, photosensitising molecules, and transducers, in which we highlight their use against a range of bacterial and fungal pathogens. We also compare the antimicrobial efficiency of nanoparticles to unbound photosensitisers and examine the relevant safety considerations. Finally, we discuss the use of nanoparticulate drug delivery systems in clinical applications of antimicrobial PDT.
Collapse
Affiliation(s)
| | - Herleen Ruprai
- School of Science, Western Sydney University, Penrith, NSW 2750, Australia.
| | - James M Hook
- School of Chemistry, University of New South Wales, Kensington, NSW 2052, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW 2052, Australia and Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent BioNano Science and Technology, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jessica Houang
- Biomedical Engineering, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia and Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW 2750, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW 2750, Australia. and Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW 2750, Australia
| |
Collapse
|
16
|
Piskorz J, Porolnik W, Kucinska M, Dlugaszewska J, Murias M, Mielcarek J. BODIPY-Based Photosensitizers as Potential Anticancer and Antibacterial Agents: Role of the Positive Charge and the Heavy Atom Effect. ChemMedChem 2020; 16:399-411. [PMID: 32964632 DOI: 10.1002/cmdc.202000529] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Indexed: 12/24/2022]
Abstract
Boron-dipyrromethene derivatives, including cationic and iodinated analogs, were obtained and subjected to physicochemical and in vitro photodynamic activity studies. Iodinated derivatives revealed a substantial heavy atom effect manifested by a bathochromic shift of the absorption band by about 30 nm and fluorescence intensity reduced by about 30-35 times, compared to that obtained for non-iodinated ones. In consequence, singlet oxygen generation significantly increased with ΦΔ values in the range 0.69-0.97. The in vitro photodynamic activity was evaluated on Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and on human androgen-sensitive prostate adenocarcinoma cells (LNCaP). The novel cationic, iodinated BODIPY, demonstrated the highest activity toward all studied cells. An excellent cytotoxic effect was found against LNCaP cells with an IC50 value of 19.3 nM, whereas the viability of S. aureus was reduced by >5.6 log10 at 0.25 μM concentration and by >5.3 log10 in the case of E. coli at 5 μM. Thus, this analog seems to be a very promising candidate for the application in both anticancer and antimicrobial photodynamic therapy.
Collapse
Affiliation(s)
- Jaroslaw Piskorz
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780 Poznan, Poland
| | - Weronika Porolnik
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780 Poznan, Poland
| | - Malgorzata Kucinska
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Poznań, Dojazd 30 Street, 60-631 Poznan, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego, Poznań, 4, 60-781 Poznan, Poland
| | - Marek Murias
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Poznań, Dojazd 30 Street, 60-631 Poznan, Poland
| | - Jadwiga Mielcarek
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780 Poznan, Poland
| |
Collapse
|
17
|
Chelminiak-Dudkiewicz D, Rybczynski P, Smolarkiewicz-Wyczachowski A, Mlynarczyk DT, Wegrzynowska-Drzymalska K, Ilnicka A, Goslinski T, Marszałł MP, Ziegler-Borowska M. Photosensitizing potential of tailored magnetite hybrid nanoparticles functionalized with levan and zinc (II) phthalocyanine. APPLIED SURFACE SCIENCE 2020; 524:146602. [PMID: 32382204 PMCID: PMC7204711 DOI: 10.1016/j.apsusc.2020.146602] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 05/08/2023]
Abstract
Phototherapies, including photodynamic therapy (PDT), have been widely used in the treatment of various diseases, especially for cancer. However, there is still a lack of effective, safe photosensitizers that would be well tolerated by patients. The combination of several methods (like phototherapy and hyperthermia) constitutes a modern therapeutic approach, which demands new materials based on components that are non-toxic without irradiation. Therefore, this study presents the synthesis and properties of novel, advanced nanomaterials in which the advantage features of the magnetic nanoparticles and photoactive compounds were combined. The primary purpose of this work was the synthesis of magnetic nanoparticles coated with biocompatible and antitumor polysaccharide - levan, previously unknown from scientific literature, and the deposition of potent photosensitizer - zinc(II) phthalocyanine on their surface. In order to better characterize the nature of the coating covering the magnetic core, the atomic force microscope analysis, a contact angle measurement, and the mechanical properties of pure levan and its blend with zinc(II) phthalocyanine films were investigated. This magnetic nanomaterial revealed the ability to generate singlet oxygen upon exposure to light. Finally, preliminary toxicity of obtained nanoparticles was tested using the Microtox® test - with and without irradiation.
Collapse
Affiliation(s)
| | - Patryk Rybczynski
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | | | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | | | - Anna Ilnicka
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Michał P. Marszałł
- Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, dr A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
18
|
Stolarska M, Glowacka-Sobotta A, Mlynarczyk DT, Dlugaszewska J, Goslinski T, Mielcarek J, Sobotta L. Photodynamic Activity of Tribenzoporphyrazines with Bulky Periphery against Wound Bacteria. Int J Mol Sci 2020; 21:ijms21176145. [PMID: 32858898 PMCID: PMC7504025 DOI: 10.3390/ijms21176145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
Magnesium(II) tribenzoporphyrazines with phenoxybutylsulfanyl substituents were evaluated as photosensitizers in terms of their optical properties against wound bacteria. In the UV-vis spectra of analyzed tribenzoporphyrazines, typical absorption ranges were found. However, the emission properties were very weak, with fluorescence quantum yields in the range of only 0.002–0.051. What is important, they revealed moderate abilities to form singlet oxygen with the quantum yields up to 0.27. Under irradiation, the macrocycles decomposed via photobleaching mechanism with the quantum yields up to 8.64 × 10−5. The photokilling potential of tribenzoporphyrazines was assessed against Streptococcus pyogenes, Staphylococcus epidermidis, as well as various strains of Staphylococcus aureus, including methicillin-sensitive and-resistant bacteria. Both evaluated photosensitizers revealed high photodynamic potential against studied bacteria (>3 logs). S.aureus growth was reduced by over 5.9 log, methicillin-resistant S. aureus by 5.1 log, S.epidermidis by over 5.7 log, and S. pyogenes by over 4.7 log.
Collapse
Affiliation(s)
- Magdalena Stolarska
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.S.); (J.M.)
| | - Arleta Glowacka-Sobotta
- Chair and Department of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.G.)
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland;
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.G.)
| | - Jadwiga Mielcarek
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.S.); (J.M.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.S.); (J.M.)
- Correspondence:
| |
Collapse
|
19
|
Pucelik B, Sułek A, Dąbrowski JM. Bacteriochlorins and their metal complexes as NIR-absorbing photosensitizers: properties, mechanisms, and applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213340] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Sobotta L, Lijewski S, Dlugaszewska J, Nowicka J, Mielcarek J, Goslinski T. Photodynamic inactivation of Enterococcus faecalis by conjugates of zinc(II) phthalocyanines with thymol and carvacrol loaded into lipid vesicles. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.02.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Glowacka-Sobotta A, Wrotynski M, Kryjewski M, Sobotta L, Mielcarek J. Porphyrinoids in photodynamic diagnosis and therapy of oral diseases. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s108842461850116x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic methods have found application not only in the treatment process as photodynamic therapy but also for the early detection of neoplastic lesions and tumors as photodynamic diagnosis. Early detection of the disease allows not only to avoid the patient’s lifetime risk but also significantly reduce the costs of anticancer therapy, which are increasing every year. There is a constant search for new and more effective photosensitizers which will provide safety in therapy while maintaining efficiency. This paper summarizes recent reports focused on the photodynamic diagnosis of oral cancers. Moreover, it shows methods of the photodynamic treatment of oral verrucous hyperplasia, erythroleukoplakia, and oral leukoplakia. The treatment of choice for these diseases is a surgical excision, which always leads to scar formation. Photodynamic therapy provides a new scar-less tool for the treatment.
Collapse
Affiliation(s)
- Arleta Glowacka-Sobotta
- Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Maciej Wrotynski
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Michal Kryjewski
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Lukasz Sobotta
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Jadwiga Mielcarek
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|