1
|
Zhao Z, Yang T, Li F. Sperm RNA code in spermatogenesis and male infertility. Reprod Biomed Online 2024; 49:104375. [PMID: 39481211 DOI: 10.1016/j.rbmo.2024.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 11/02/2024]
Abstract
Spermatozoa are traditionally thought to be transcriptionally inert, but recent studies have revealed the presence of sperm RNA, some of which is derived from the residues of spermatocyte transcription and some from epididymosomes. Paternal sperm RNA can be affected by external factors and further modified at the post-transcriptional level, for example N6-methyladenosine (m6A), thus shaping spermatogenesis and reproductive outcome. This review briefly introduces the origin of sperm RNA and, on this basis, summarizes the current knowledge on RNA modifications and their functional role in spermatogenesis and male infertility. The bottlenecks and knowledge gaps in the current research on RNA modification in male reproduction have also been indicated. Further investigations are needed to elucidate the functional consequences of these modifications, providing new therapeutic and preventive strategies for reproductive health and genetic inheritance.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Tingting Yang
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
2
|
Moradi A, Ghaffari Novin M, Bayat M. A Comprehensive Systematic Review of the Effects of Photobiomodulation Therapy in Different Light Wavelength Ranges (Blue, Green, Red, and Near-Infrared) on Sperm Cell Characteristics in Vitro and in Vivo. Reprod Sci 2024; 31:3275-3302. [PMID: 39095677 DOI: 10.1007/s43032-024-01657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
Around 7% of the male population in the world are entangle with considerable situation which is known as male infertility. Photobiomodulation therapy (PBMT) is the application of low-level laser radiation, that recently used to increase or promote the various cell functions including, proliferation, differentiation, ATP production, gene expressions, regulation of reactive oxygen spices (ROS), and also boost the tissue healing and reduction of inflammation. This systematic review's main idea is a comprehensive appraisal of the literatures on subjects of PBMT consequences in four light ranges wavelength (blue, green, red, near-infrared (NIR)) on sperm cell characteristics, in vitro and in vivo. In this study, PubMed, Google Scholar, and Scopus databases were used for abstracts and full-text scientific papers published from 2003-2023 that reported the application of PBM on sperm cells. Criteria's for inclusion and exclusion to review were applied. Finally, the studies that matched with our goals were included, classified, and reported in detail. Also, searched studies were subdivided into the effects of four ranges of light irradiation, including the blue light range (400-500 nm), green light range (500-600 nm), red light range (600-780 nm), and NIR light range (780-3000 nm) of laser irradiation on human or animal sperm cells, in situations of in vitro or in vivo. Searches with our keywords results in 137 papers. After primary analysis, some articles were excluded because they were review articles or incomplete and unrelated studies. Finally, we use the 63 articles for this systematic review. Our category tables were based on the light range of irradiation, source of sperm cells (human or animal cells) and being in vitro or in vivo. Six% of publications reported the effects of blue, 10% green, 53% red and 31% NIR, light on sperm cell. In general, most of these studies showed that PBMT exerted a positive effect on the sperm cell motility. The various effects of PBMT in different wavelength ranges, as mentioned in this review, provide more insights for its potential applications in improving sperm characteristics. PBMT as a treatment method has significant effectiveness for treatment of different medical problems. Due to the lack of reporting data in this field, there is a need for future studies to assessment the biochemical and molecular effects of PBMT on sperm cells for the possible application of this treatment to the human sperm cells before the ART process.
Collapse
Affiliation(s)
- Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, USA.
- Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
3
|
Parvin A, Erabi G, Saboohi Tasooji MR, Sadeghpour S, Mellatyar H, Rezaei Arablouydareh S, Navapour L, Taheri-Anganeh M, Ghasemnejad-Berenji H. The effects of photobiomodulation on the improvement of sperm parameters: A review study. Photochem Photobiol 2024; 100:1713-1739. [PMID: 38623963 DOI: 10.1111/php.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
The prevalence of male infertility has become a significant clinical concern worldwide, with a noticeable upward trend in recent times. The rates of fertilization and subsequent development of embryos are dependent on many parameters associated with the quality and viability of sperm. Photobiomodulation (PBM) is a promising approach with a great potential for translational applications in the treatment of spermatozoa exhibiting low quality and motility. In this study, a comprehensive analysis of the existing literature, specifically examining the mechanisms of action of PBM has been presented. Our objective was to enhance knowledge in the field of laser light therapy in order to promote the usage of irradiation in clinical settings in a more effective way. Within the realm of reproductive science, the utilization of PBM has been employed to enhance the metabolic processes, motility, and viability of spermatozoa. This is attributed to its advantageous effects on mitochondria, resulting in the activation of the mitochondrial respiratory chain and subsequent synthesis of ATP. This therapeutic approach can be highly advantageous in circumventing the reliance on chemical substances within the culture medium for spermatozoa while also facilitating the viability and motility of spermatozoa, particularly in circumstances involving thawing or samples with significant immotility.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Navapour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Soltani R, Abbaszadeh HA, Nazarian H, Tabeie F, Akbari H, Mohammadzadeh I, Afshar A, Aghajanpour F, Fadaei Fathabadi F, Norouzian M. The Impact of Photobiomodulation Therapy on Enhancing Spermatogenesis and Blood-Testis Barrier Integrity in Adult Male Mice Subjected to Scrotal Hyperthermia. J Lasers Med Sci 2024; 15:e43. [PMID: 39381783 PMCID: PMC11459248 DOI: 10.34172/jlms.2024.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/12/2024] [Indexed: 10/10/2024]
Abstract
Introduction: Unhealthy lifestyle choices such as alcohol, chemicals, and heat stress can worsen male infertility. Heat stress can cause damage to the essential structure known as the blood-testis barrier (BTB). Photobiomodulation therapy (PBMT) has been employed in various studies to enhance sperm quality in individuals with genital inflammatory conditions in recent times. The current research sought to study how laser therapy affects spermatogenesis and the structure of the BTB in a mouse model of scrotal heat exposure. Methods: Thirty adult male NMRI mice, 8 weeks old, were divided into three groups: Control, Hyperthermia, and Hyperthermia+Laser 0.03 J/cm2. The animals in the hyperthermia group had their testicles exposed to water at 43 °C for 20 minutes five times every other day. Then, the testicles were exposed to laser radiation every other day for 35 days, lasting 3 minutes each time, with an energy density of 0.03 J/cm2. Animals were sacrificed, and sperm parameters, reactive oxygen species (ROS) and glutathione (GSH) levels, stereological parameters, and gene expression were assessed in the end. Results: The study showed that PBMT can significantly enhance sperm quality, quantity of spermatogenic cells, testicular volume, levels of ROS and GSH, and gene expression related to the blood-testis barrier. Conclusion: Currently, PBMT is a novel approach for addressing male infertility by preserving the integrity of the BTB in Sertoli cells, which in turn supports the growth and specialization of germ cells.
Collapse
Affiliation(s)
- Reza Soltani
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraj Tabeie
- Department of Basic Sciences, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Akbari
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ibrahim Mohammadzadeh
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azar Afshar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fakhroddin Aghajanpour
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ziaeipour S, Norouzian M, Abbaszadeh HA, Aliaghaei A, Nazarian H, Karamian A, Tabeie F, Naserzadeh P, Abdi S, Abdollahifar MA, Paktinat S. Photobiomodulation therapy reverses spermatogenesis arrest in hyperthermia-induced azoospermia mouse model. Lasers Med Sci 2023; 38:114. [PMID: 37103593 DOI: 10.1007/s10103-023-03780-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Testicular heat stress leads to impairment of spermatogenesis in mammals. Involved mechanism in this vulnerability to heat-induced injury remains unclear, and research is being conducted to find an approach to reverse spermatogenesis arrest caused by hyperthermia. Recently, different studies have utilized photobiomodulation therapy (PBMT) therapy for the improvement of sperm criteria and fertility. This study aimed at evaluating the effect of PBMT on the improvement of spermatogenesis in mouse models of hyperthermia-induced azoospermia. A total of 32 male NMRI mice were equally divided into four groups consisting of control, hyperthermia, hyperthermia + Laser 0.03 J/cm2, and hyperthermia + Laser 0.2 J/cm2. To induce scrotal hyperthermia, mice were anesthetized and placed in a hot water bath at 43 °C for 20 min for 5 weeks. Then, PBMT was operated for 21 days using 0.03 J/cm2 and 0.2 J/cm2 laser energy densities in the Laser 0.03 and Laser 0.2 groups, respectively. Results revealed that PBMT with lower intensity (0.03 J/cm2) increased succinate dehydrogenase (SDH) activity and glutathione (GSH)/oxidized glutathione (GSSG) ratio in hyperthermia-induced azoospermia mice. At the same time, low-level PBMT reduced reactive oxygen species (ROS), mitochondrial membrane potential, and lipid peroxidation levels in the azoospermia model. These alterations accompanied the restoration of spermatogenesis manifested by the elevated number of testicular cells, increased volume and length of seminiferous tubules, and production of mature spermatozoa. After conducting experiments and analyzing the results, it has been revealed that the use of PBMT at a dosage of 0.03 J/cm2 has shown remarkable healing effects in the heat-induced azoospermia mouse model.
Collapse
Affiliation(s)
- Sanaz Ziaeipour
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Mohsen Norouzian
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Hojjat-Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Amin Karamian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Faraj Tabeie
- Department of Basic Sciences, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Amin Abdollahifar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran.
| | - Shahrokh Paktinat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran.
| |
Collapse
|
6
|
Wang JY, Ma D, Luo M, Tan YP, Tian G, Lv YT, Li MX, Chen X, Tang ZH, Hu LL, Lei XC. Effect of spermidine on ameliorating spermatogenic disorders in diabetic mice via regulating glycolysis pathway. Reprod Biol Endocrinol 2022; 20:45. [PMID: 35255928 PMCID: PMC8900360 DOI: 10.1186/s12958-022-00890-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM), a high incidence metabolic disease, is related to the impairment of male spermatogenic function. Spermidine (SPM), one of the biogenic amines, was identified from human seminal plasma and believed to have multiple pharmacological functions. However, there exists little evidence that reported SPM's effects on moderating diabetic male spermatogenic function. Thus, the objective of this study was to investigate the SPM's protective effects on testicular spermatogenic function in streptozotocin (STZ)-induced type 1 diabetic mice. Therefore, 40 mature male C57BL/6 J mice were divided into four main groups: the control group (n = 10), the diabetic group (n = 10), the 2.5 mg/kg SPM-treated diabetic group (n = 10) and the 5 mg/kg SPM-treated diabetic group (n = 10), which was given intraperitoneally for 8 weeks. The type 1 diabetic mice model was established by a single intraperitoneal injection of STZ 120 mg/kg. The results showed that, compare to the control group, the body and testis weight, as well the number of sperm were decreased, while the rate of sperm malformation was significantly increased in STZ-induced diabetic mice. Then the testicular morphology was observed, which showed that seminiferous tubule of testis were arranged in mess, the area and diameter of which was decreased, along with downregulated anti-apoptotic factor (Bcl-2) expression, and upregulated pro-apoptotic factor (Bax) expression in the testes. Furthermore, testicular genetic expression levels of Sertoli cells (SCs) markers (WT1, GATA4 and Vimentin) detected that the pathological changes aggravated observably, such as the severity of tubule degeneration increased. Compared to the saline-treated DM mice, SPM treatment markedly improved testicular function, with an increment in the body and testis weight as well as sperm count. Pro-apoptotic factor (Bax) was down-regulated expression with the up-regulated expression of Bcl-2 and suppression of apoptosis in the testes. What's more, expression of WT1, GATA4, Vimentin and the expressions of glycolytic rate-limiting enzyme genes (HK2, PKM2, LDHA) in diabetic testes were also upregulated by SPM supplement. The evidence derived from this study indicated that the SMP's positive effect on moderating spermatogenic disorder in T1DM mice's testis. This positive effect is delivered via promoting spermatogenic cell proliferation and participating in the glycolytic pathway's activation.
Collapse
Affiliation(s)
- Jin-Yuan Wang
- grid.412017.10000 0001 0266 8918Clinical Anatomy & Reproductive Medicine Application Institute, Heng Yang Medical College, University of South China, Hengyang, 421001 Hunan China
| | - Duo Ma
- grid.412017.10000 0001 0266 8918Clinical Anatomy & Reproductive Medicine Application Institute, Heng Yang Medical College, University of South China, Hengyang, 421001 Hunan China
| | - Min Luo
- grid.412017.10000 0001 0266 8918Clinical Anatomy & Reproductive Medicine Application Institute, Heng Yang Medical College, University of South China, Hengyang, 421001 Hunan China
| | - Yong-Peng Tan
- grid.412017.10000 0001 0266 8918Clinical Anatomy & Reproductive Medicine Application Institute, Heng Yang Medical College, University of South China, Hengyang, 421001 Hunan China
| | - Ge Tian
- grid.412017.10000 0001 0266 8918Clinical Anatomy & Reproductive Medicine Application Institute, Heng Yang Medical College, University of South China, Hengyang, 421001 Hunan China
| | - Yong-Ting Lv
- grid.412017.10000 0001 0266 8918Clinical Anatomy & Reproductive Medicine Application Institute, Heng Yang Medical College, University of South China, Hengyang, 421001 Hunan China
| | - Mei-Xiang Li
- grid.412017.10000 0001 0266 8918Clinical Anatomy & Reproductive Medicine Application Institute, Heng Yang Medical College, University of South China, Hengyang, 421001 Hunan China
| | - Xi Chen
- grid.412017.10000 0001 0266 8918Clinical Anatomy & Reproductive Medicine Application Institute, Heng Yang Medical College, University of South China, Hengyang, 421001 Hunan China
| | - Zhi-Han Tang
- grid.412017.10000 0001 0266 8918Postdoctoral Station for Basic Medicine, Hengyang Medical College, University of South China, Hengyang, 421001 Hunan China
| | - Lin-Lin Hu
- grid.460081.bChina Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000 Guangxi China
| | - Xiao-Can Lei
- grid.412017.10000 0001 0266 8918Clinical Anatomy & Reproductive Medicine Application Institute, Heng Yang Medical College, University of South China, Hengyang, 421001 Hunan China
- grid.412017.10000 0001 0266 8918Postdoctoral Station for Basic Medicine, Hengyang Medical College, University of South China, Hengyang, 421001 Hunan China
| |
Collapse
|
7
|
Rezaei F, Bayat M, Nazarian H, Aliaghaei A, Abaszadeh HA, Naserzadeh P, Amini A, Ebrahimi V, Abdi S, Abdollahifar MA. Photobiomodulation Therapy Improves Spermatogenesis in Busulfan-Induced Infertile Mouse. Reprod Sci 2021; 28:2789-2798. [PMID: 33825170 DOI: 10.1007/s43032-021-00557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
About 50% of infertility is caused by men. This study aimed to investigate the efficiency of photobiomodulation on spermatogenesis in a busulfan-induced infertile mouse as a testicular degeneration treatment. Thirty-two adult NMRI male mice were divided into 4 groups: control, busulfan, PBMT 0.03 J/cm2, and laser 0.2 J/cm2. In the study, azoospermia was induced by busulfan as a testicular degeneration, and then, they were treated using photobiomodulation therapy at 0.03 J/cm2 and 0.2 J/cm2 energy densities. Sperm parameters, stereological analysis, serum testosterone levels, together with SDH activity, MDA production oxidized as a marker for lipid peroxidation, glutathione (GSSG) and glutathione (GSH), mitochondrial membrane permeability (MMP), reactive oxygen species (ROS) production, and ATP production as well as TUNEL assay were assessed. Photobiomodulation therapy with 0.03 J/cm2 energy densities group revealed a significant increase the testosterone hormone level and spermatogenic cells with the reduction of apoptotic cells and marked increase in GSH, ATP, and SDH levels and decrease the levels of MDA and ROS production in the busulfan-induced mice when compared with the control and sham groups. In conclusion, the photobiomodulation therapy (0.03 J/cm2 energy density) may provide benefits on the spermatogenesis following busulfan injection and might be an alternative treatment to the patients with oligospermia and azoospermia in a dose-dependent manner.
Collapse
Affiliation(s)
- Fatereh Rezaei
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical, Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abaszadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shabnam Abdi
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical, Sciences, Tehran, Iran. .,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Cai Z, Niu Y, Li H. RNA N6-methyladenosine modification, spermatogenesis, and human male infertility. Mol Hum Reprod 2021; 27:6179814. [PMID: 33749751 DOI: 10.1093/molehr/gaab020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/15/2021] [Indexed: 12/28/2022] Open
Abstract
RNA N6-methyladenosine (m6A) modification is one of the main forms of posttranscriptional modification, and its dysregulation is involved in a series of pathological processes. RNA m6A regulators, which mediate dynamic RNA m6A modification, are expressed in almost all types of testicular cells, including spermatogenetic cells and somatic cells. Cumulative studies have found that knockout of RNA m6A regulators in the testis leads to abnormal metabolism of the target mRNAs, which eventually causes spermatogenetic disorders and infertility. To date, a role for dysregulated RNA m6A modification in human male infertility remains elusive; however, dysregulated expression of RNA m6A regulators in abnormal human semen samples, including oligospermia, asthenozoospermia and azoospermia, has been found. Therefore, we speculate that abnormal RNA m6A methylation may be an important mechanism of male infertility. In this review, we summarize the recent findings regarding the spatiotemporal expression of RNA m6A regulators in the testes, mechanisms of RNA m6A modification in spermatogenesis and the relation between dysregulated RNA m6A regulators and human male infertility. In addition, we also discuss future directions in studying the molecular mechanism of male infertility and exploring their clinical applications from the viewpoint of RNA m6A modification.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Façanha EL, de Morais EF, Pinheiro JC, de Melo Fernandes Almeida DR, Morais DB, Barboza CAG. Effect of low-level laser therapy on seminiferous epithelium: a systematic review of in vivo studies. Lasers Med Sci 2020; 36:259-267. [PMID: 32813260 DOI: 10.1007/s10103-020-03122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
Laser therapy has proved effective in the treatment of different tissue injuries but little is known about its effect on the testis. The aim of this review was to synthesize research on the in vivo effect of low-level laser therapy on the seminiferous epithelium. A search was performed in the PubMed/Medline, Scopus, Web of Science, and LILACS databases. The initial search retrieved 354 references, and five articles that met the eligibility criteria were selected. In general, the studies showed that laser therapy exerted a positive effect on the germ cell population; however, there was considerable variation in the laser parameters, as well as in the experimental models and methods of tissue analysis used. In conclusion, further studies determining the biostimulation parameters of laser therapy in the testis are necessary in order to provide a basis for the possible application of this technique to the restoration of the human seminiferous epithelium and consequent treatment of some male reproductive disorders.
Collapse
|
10
|
Hasani A, Khosravi A, Rahimi K, Afshar A, Fadaei-Fathabadi F, Raoofi A, Raee P, Aghajanpour F, Aliaghaei A, Abdi S, Norouzian M, Abdollahifar MA. Photobiomodulation restores spermatogenesis in the transient scrotal hyperthermia-induced mice. Life Sci 2020; 254:117767. [DOI: 10.1016/j.lfs.2020.117767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 01/18/2023]
|