1
|
Jin Y, Li M, Ding W, Wu H. Correlation between 25-hydroxyvitamin D level of lactating mothers and bone mineral density of infants and analysis of risk factors. J Med Biochem 2024; 43:960-966. [PMID: 39876918 PMCID: PMC11771972 DOI: 10.5937/jomb0-48471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/06/2024] [Indexed: 01/31/2025] Open
Abstract
Background Aim was to demonstrate the influencing factors of infant bone mineral density (BMD) and its correlation with serum 25-hydroxyvitamin D (25-(OH)D) in nursing mothers. Methods 200 children aged 0 č 1 years were rolled into normal group (n=120) and abnormal group (n=80) regarding the results of ultrasound BMD examination. The sunshine duration of infants with different BMD and 25(OH)D, calcium and phosphorus levels of nursing mothers were analyzed, and univariate and multivariate analyses of BMD were implemented. Results The results revealed that the sunshine duration and serum 25-(OH)D level of nursing mothers in abnormal group were inferior to those in normal group (P<0.05). Additionally, a notable positive correlation existed between sunshine duration, serum 25-(OH)D level of nursing mothers and BMD (r = 0.911 and 0.503, P<0.05). According to Logistic regression analysis, outdoor activity time 0 č 1 h/d, premature infants, and breastfeeding alone were independent risk factors (RFs) for abnormal BMD in infants, and vitamin D(VD) and calcium supplementation were independent protective factors (P<0.05). Conclusions VD and calcium intake, adequate sunshine duration, mixed feeding, and increasing serum 25-(OH)D can reduce the occurrence of abnormal BMD in infants.
Collapse
Affiliation(s)
- Yan Jin
- Maternal and Child Health Hospital of Hubei Province, Department of Child Health, Wuhan, Hubei Province, China
| | - Minghui Li
- Maternal and Child Health Hospital of Hubei Province, Department of Child Health, Wuhan, Hubei Province, China
| | - Wei Ding
- Maternal and Child Health Hospital of Hubei Province, Department of Child Health, Wuhan, Hubei Province, China
| | - Huiwen Wu
- Maternal and Child Health Hospital of Hubei Province, Department of Child Health, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Liu W, Wang Y, Qiu H, Chen D, Wu S, Ji Q, Chang B, Li Y, Zhao H, Tan Y, Gu Y. Long-term ultraviolet B irradiation at 297 nm with light-emitting diode improves bone health via vitamin D regulation. BIOMEDICAL OPTICS EXPRESS 2024; 15:4081-4100. [PMID: 39022556 PMCID: PMC11249673 DOI: 10.1364/boe.520348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 07/20/2024]
Abstract
Ultraviolet radiation is the primary determinant for vitamin D synthesis. Sunlight is inefficient and poses a risk, particularly for long-term exposure. In this study, we screened the most favorable wavelength for vitamin D synthesis among four types of narrowband light-emitting diodes (LEDs) and then irradiated osteoporosis rats with the optimal wavelength for 3-12 months. The 297 nm narrowband LED was the most efficient. Long-term radiation increased vitamin D levels in all osteoporotic rats and improved bone health. No skin damage was observed during irradiation. Our findings provide an efficient and safe method of vitamin D supplementation.
Collapse
Affiliation(s)
- Wenwen Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Wang
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Haixia Qiu
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Defu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shengnan Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Quanbo Ji
- Department of Orthopaedics, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Biao Chang
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yunqi Li
- Department of Gastroenterology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yizhou Tan
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Gu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Tan T, Tang L, Guo X, Li T, Tian Y, Ouyang Z. Associations of residential greenness with bone mineral density and osteoporosis: the modifying effect of genetic susceptibility. Ann Rheum Dis 2024; 83:669-676. [PMID: 38443139 DOI: 10.1136/ard-2023-224941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/03/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES To investigate the associations of residential greenness with bone mineral density and incident osteoporosis, and further evaluate the potential modifying effect of genetic susceptibility. METHODS We used the Normalised Difference Vegetation Index (NDVI) at various buffer distances, including 300 m (NDVI300m), 500 m (NDVI500m), 1000 m (NDVI1000m) and 1500 m (NDVI1500m), to serve as indicators of greenness. We fitted linear regression, logistic regression and Cox proportional hazard models to assess the associations of residential greenness with estimated bone mineral density (eBMD), prevalent osteoporosis and incident osteoporosis, respectively. With the Polygenic Risk Score (PRS) for osteoporosis, we further assessed the joint effects of genetic risk and greenness on the risk of osteoporosis. We conducted causal mediation analyses to explore potential mediators. RESULTS Each IQR increase in NDVI300m was associated with 0.0007 (95% CI 0.0002 to 0.0013) increase in eBMD, 6% lower risk of prevalent osteoporosis (OR 0.94; 95% CI 0.92 to 0.97) and 5% lower risk of incident osteoporosis (HR 0.95; 95% CI 0.93 to 0.98). The joint effects of greenness and PRS on the risk of osteoporosis displayed a clear dose-response pattern. Compared with individuals exposed to low NDVI levels and high genetic risk, those exposed to high NDVI levels and low genetic risk had a 56% (95% CI 51% to 61%) lower risk of osteoporosis. The primary mediators in the association between greenness and incident osteoporosis were identified as PM2.5 and NO2. CONCLUSIONS Residential greenness was associated with higher bone mineral density and decreased risk of incident osteoporosis.
Collapse
Affiliation(s)
- Tingting Tan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoning Guo
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Osteopathy Laboratory of Surgical,The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Osteopathy Laboratory of Surgical,The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Wang Y, Li Y, Bo L, Zhou E, Chen Y, Naranmandakh S, Xie W, Ru Q, Chen L, Zhu Z, Ding C, Wu Y. Progress of linking gut microbiota and musculoskeletal health: casualty, mechanisms, and translational values. Gut Microbes 2023; 15:2263207. [PMID: 37800576 PMCID: PMC10561578 DOI: 10.1080/19490976.2023.2263207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
The musculoskeletal system is important for balancing metabolic activity and maintaining health. Recent studies have shown that distortions in homeostasis of the intestinal microbiota are correlated with or may even contribute to abnormalities in musculoskeletal system function. Research has also shown that the intestinal flora and its secondary metabolites can impact the musculoskeletal system by regulating various phenomena, such as inflammation and immune and metabolic activities. Most of the existing literature supports that reasonable nutritional intervention helps to improve and maintain the homeostasis of intestinal microbiota, and may have a positive impact on musculoskeletal health. The purpose of organizing, summarizing and discussing the existing literature is to explore whether the intervention methods, including nutritional supplement and moderate exercise, can affect the muscle and bone health by regulating the microecology of the intestinal flora. More in-depth efficacy verification experiments will be helpful for clinical applications.
Collapse
Affiliation(s)
- Yu Wang
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Enyuan Zhou
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yanyan Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Ru
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yuxiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
5
|
Namjoo AR, Abrbekoh FN, Saghati S, Amini H, Saadatlou MAE, Rahbarghazi R. Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Res Ther 2023; 14:90. [PMID: 37061717 PMCID: PMC10105969 DOI: 10.1186/s13287-023-03310-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- General and Vascular Surgery Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Yang Y, Li R, Cai M, Wang X, Li H, Wu Y, Chen L, Zou H, Zhang Z, Li H, Lin H. Ambient air pollution, bone mineral density and osteoporosis: Results from a national population-based cohort study. CHEMOSPHERE 2023; 310:136871. [PMID: 36244420 DOI: 10.1016/j.chemosphere.2022.136871] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Evidence concerning the associations of ambient air pollution exposure with bone mineral density and osteoporosis has been mixed. We conducted cross-sectional and prospective analysis of the associations between air pollution exposure and osteoporosis using data from UK Biobank study. Estimated bone mineral density (eBMD) of each participant at baseline survey was calculated using quantitative ultrasound data, and incident osteoporosis cases were identified during the follow-up period according to health-related records. Air pollution concentrations were assessed using land use regression models. We fitted multivariable linear and logistic regression models to estimate the associations of air pollution with eBMD and osteoporosis prevalence at baseline. We applied cox proportional hazard regression models to assess the relationships between air pollution and osteoporosis incidence. Among the 341,311 participants at baseline, higher air pollution exposure was associated with lower eBMD levels and increased odds of osteoporosis prevalence. For example, an IQR increase in PM2.5, PM2.5 absorbance, PM10, NO2 and NOx levels were associated with 0.0018 (95% CI: 0.0012, 0.0023) to 0.0052 (95% CI: 0.0046, 0.0058) g/cm2 decrease in eBMD. A total of 330,988 participants without osteoporosis were followed up for an average of 12.0 years. We identified 8105 incident osteoporosis cases (456 cases with pathological fracture and 7634 cases without pathological fracture) during the follow-up. The hazard ratios for an interquartile range increase in PM2.5, PM2.5 absorbance, PM10, NO2 and NOx were 1.09 (95% CI: 1.06, 1.12), 1.04 (95% CI: 1.02, 1.07), 1.04 (95% CI: 1.01, 1.07), 1.07 (95% CI: 1.04, 1.10), and 1.06 (95% CI: 1.03, 1.09), respectively. Our study suggests that ambient air pollution might be a risk factor of decreased bone mineral density and osteoporosis incidence.
Collapse
Affiliation(s)
- Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haopeng Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yinglin Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongtao Zou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Shenzhen University Health Science Center, Shenzhen, 518061, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Cui J, Fu Y, Yi Z, Dong C, Liu H. The beneficial effects of ultraviolet light supplementation on bone density are associated with the intestinal flora in rats. Appl Microbiol Biotechnol 2021; 105:3705-3715. [PMID: 33893837 DOI: 10.1007/s00253-021-11282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023]
Abstract
The general public spends one-third of its time under artificial lighting, which lacks bands beneficial to human health, and long-term exposure will have a negative impact on bone health. Here, we report the effects of long-term, low-dose ultraviolet (UV) supplementation to white light-emitting diode (LED) light exposure on intestinal microorganisms and bone metabolism, as well as the correlations between the two. Normal and ovariectomized rats were irradiated with LED white light with or without supplementation with UV. The effects of UV supplementation on the intestinal flora and the relationship between the intestinal flora and bone were investigated by measuring the intestinal flora, bone metabolism markers, and bone histomorphology. UV supplementation affected the bone density and bone mass by changing the relative content of Firmicutes, Saccharibacteria, and Proteobacteria; however, the intestinal flora were not the only factors affecting bone. Ultraviolet supplementation changed the composition and function of the gut flora in the bone loss model. By increasing the synthesis of short-chain fatty acids and affecting immunomodulatory, intestinal flora directly or indirectly regulate the activity of osteoclasts and thus mediate UV-mediated improvements in bone metabolism. Our work shows that UV supplementation affects bone density by influencing the intestinal flora, introducing a novel strategy to develop healthier artificial light sources and prevent bone loss. KEY POINTS: • We measured the bone metabolism markers and bone histomorphometry of rats. • The diversity, composition, and function of intestinal flora were analyzed. • The relationship between gut microbiota and host bone physiology was analyzed.
Collapse
Affiliation(s)
- Jingjing Cui
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.,International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100191, China.,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100083, China
| | - Yuming Fu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China. .,International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100191, China. .,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100083, China.
| | - Zhihao Yi
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.,International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100191, China.,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100083, China
| | - Chen Dong
- School of Sport Social Science, Shandong Sport University, Jinan, 250102, China
| | - Hong Liu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.,International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100191, China.,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100083, China
| |
Collapse
|
8
|
Does Prolonged Exposure of Environmental Fungi to Ultraviolet Irradiation Change the Pattern of Drug Resistance? Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The pathogenic and opportunistic fungal species cause life-threatening infections in immunocompromised patients. The ultraviolet (UV) germicidal irradiation is a well-known method for inactivating a significant number of microorganisms and has wide application for sterilization. Objectives: This study aimed to investigate the effect of ultraviolet C (UV-C) irradiation on the antifungal susceptibility pattern of some filamentous fungi. Methods: The effect of UV-C on the antifungal susceptibility pattern of itraconazole, voriconazole, fluconazole, and amphotericin B against filamentous fungi was examined. Changes in the morphological features of resistant strains following UV-C irradiation were also evaluated using scanning electron microscopy. Results: The results revealed a significant decrease in the number of the surviving spores of strains with the prolongation of UV-C irradiation (0 - 10 to 20 min; P < 0.05). Concerning the morphology of resistant Aspergillus spp., the results of scanning electron microscopy showed a significant increase in the length of irradiated hyphae compared to the non-irradiated hyphae (P < 0.05). In addition, colony count showed a significant decrease (P < 0.05). The findings revealed that UV-C radiation exposure could alter the antifungal susceptibility pattern of Aspergillus spp., such as increasing the minimum inhibitory concentration. Conclusions: Aspergillus spp. can cause systemic infections among lab technicians exposed to different doses of radiation. Moreover, this increase in susceptibility pattern can directly affect the duration of treatment.
Collapse
|
9
|
Lu Y, Yang J, Dong C, Fu Y, Liu H. Gut microbiome-mediated changes in bone metabolism upon infrared light exposure in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112156. [PMID: 33647735 DOI: 10.1016/j.jphotobiol.2021.112156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/25/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022]
Abstract
Adequate sunlight exposure helps reduce bone loss and is important to bone health. Currently, about 90% of the world population spends a major portion of daily life under artificial lighting. Unlike sunlight, LED white light, the main source of artificial lighting, has no infrared radiation, which is known to be beneficial to human health. In artificial lighting environments, infrared supplementation may be used to simulate the effects of sunlight on bone metabolism. Here, we supplemented white LED exposure with infrared light in normal and ovariectomized rats for three consecutive months and examined bone turnover, bone mass, and bone density. We also analyzed the structure and function of gut microbiota in the rats. Infrared supplementation significantly reduced the abundance of Saccharibacteria and increased the abundance of Clostridiaceae 1 and Erysipelotrichaceae bacteria. Our results indicate that changes in the gut microbiome correlate well with bone mass and bone metabolism. Our work demonstrates that infrared supplementation can have a positive effect on rat bone metabolism by affecting gut microbiota. Our findings will be important considerations in the future design of healthy lighting environments that prevent or possibly ameliorate osteoporosis.
Collapse
Affiliation(s)
- Yueying Lu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China.
| | - Jianlou Yang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China
| | - Chen Dong
- Laboratory of Sport Nutrition and Intelligent Cooking, Shandong Sport University, Jinan 250102,China.
| | - Yuming Fu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China.
| | - Hong Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
10
|
Low energy irradiation of narrow-range UV-LED prevents osteosarcopenia associated with vitamin D deficiency in senescence-accelerated mouse prone 6. Sci Rep 2020; 10:11892. [PMID: 32681041 PMCID: PMC7368004 DOI: 10.1038/s41598-020-68641-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Deficiency of vitamin D is an important cause of osteosarcopenia. The purpose of this study is to examine the effects of low energy narrow-range UV-LED on osteosarcopenia in animal models of senescence-accelerated mouse prone 6 (SAMP6). Preliminary experiments specified the minimum irradiance intensity and dose efficacy for vitamin D production (316 nm, 0.16 mW/cm2, 1,000 J/m2). we set a total of 4 groups (n = 8 per group); vitamin D-repletion without UV irradiation (Vit.D+UV-), vitamin D-repletion with UV irradiation (Vit.D+UV +), vitamin D-deficiency without UV irradiation, (Vit.D-UV-), and vitamin D-deficiency with UV irradiation (Vit.D-UV +). Serum levels of 25(OH)D at 28 and 36 weeks of age were increased in Vit.D-UV+ group as compared with Vit.D-UV- group. Trabecular bone mineral density on micro-CT was higher in Vit.D-UV+ group than in Vit.D-UV- group at 36 weeks of age. In the histological assay, fewer osteoclasts were observed in Vit.D-UV+ group than in Vit.D-UV- group. Grip strength and muscle mass were higher in Vit.D-UV+ group than in Vit.D-UV- group at 36 weeks of age. Signs of severe damage induced by UV irradiation was not found in skin histology. Low energy narrow-range UV irradiation may improve osteosarcopenia associated with vitamin D deficiency in SAMP6.
Collapse
|
11
|
Zuchuat J, Maldonado Y, Botteri J, Decco O. In vivo effect of UV-photofunctionalization of CoCrMo in processes of guided bone regeneration and tissue engineering. J Biomed Mater Res A 2020; 109:31-41. [PMID: 32418271 DOI: 10.1002/jbm.a.37004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 12/20/2022]
Abstract
Photofunctionalization of implant materials with ultraviolet (UV) radiation have been subject of study in the last two decades, and previous research on CoCrMo discs have showed good results in terms of bioactivity and the findings of apatite-like crystals in vitro. In the current study, CoCrMo domes were photofunctionalized with UV radiation of 254 nm on their internal faces during 24 hr; they were implanted in rabbit tibia and remained for 3, 4, and 6 weeks. The potential to induce bone formation beneath the dome-shaped membranes was evaluated through morphometric, histologic, and density measurements; and the results were compared with those obtained under control untreated domes. Higher density values were observed for irradiated domes at 3 weeks, whereas higher volumes were obtained under photofunctionalized domes for longer periods (4 and 6 weeks). Histologically, woven bone was formed by endochondral ossification in all cases; differences in the architecture and size of the trabeculae and in the number of osteoblasts were noted between irradiated and non-irradiated samples. The UV radiation of 254 nm generated a larger bone volume fraction compared to that found in the absence of UVC radiation and induced an increase of density in the early stages of healing, leading to a better initial bone quality and improved osseointegration.
Collapse
Affiliation(s)
- Jésica Zuchuat
- Bioimplants Laboratory, Faculty of Engineering, National University of Entre Rios, Oro Verde, Entre Rios, Argentina.,National Scientific and Technical Research Council-CONICET, Buenos Aires, Argentina
| | - Ysaí Maldonado
- Imaging Service, Sanatorio Adventista Del Plata, 25 De Mayo 255, Villa Libertador General San Martín, Entre Ríos, Argentina
| | - Julián Botteri
- Bioimplants Laboratory, Faculty of Engineering, National University of Entre Rios, Oro Verde, Entre Rios, Argentina
| | - Oscar Decco
- Bioimplants Laboratory, Faculty of Engineering, National University of Entre Rios, Oro Verde, Entre Rios, Argentina
| |
Collapse
|
12
|
Effects of ultraviolet irradiation with a LED device on bone metabolism associated with vitamin D deficiency in senescence-accelerated mouse P6. Heliyon 2020; 6:e03499. [PMID: 32140604 PMCID: PMC7052073 DOI: 10.1016/j.heliyon.2020.e03499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/13/2019] [Accepted: 02/24/2020] [Indexed: 12/31/2022] Open
Abstract
Aims This study investigated effects of narrow-range ultraviolet irradiation (UVR) by a new UV–LED device on vitamin D supply and changes of bone in senescence-accelerated mouse P6 (SAMP6) with vitamin D deficiency. Main methods We used female SAMP6 mice as a senile osteoporotic model. We set a total of 3 groups (n = 4 per group); D-UVR+ group (vitamin D deficient–dietary and UVR), D- (vitamin D deficient–dietary), and D+ groups (vitamin D contained–dietary). Mice in the D-UVR + group were UV–irradiated (305nm) with 1 kJ/m2 twice a week for 12 weeks from 20 to 32 weeks of age. Serum 25(OH)D, 1,25(OH)2D, and micro–computed tomography (CT) were assessed over time. Mechanical test, and histological assay were performed for femurs removed at 32 weeks of age. Key findings UVR increased both serum 25(OH)D and 1,25(OH)2D levels at 4 and 8 weeks–UVR in the D-UVR+ group compared with that in the D- group (P < 0.05, respectively). Relative levels of trabecular bone mineral density in micro–CT were higher in the D-UVR+ group than in the D- group at 8 weeks–UVR (P = 0.048). The ultimate load was significantly higher in the D-UVR+ group than in the D- group (P = 0.036). In histological assay, fewer osteoclasts and less immature bone (/mature bone) could be observed in the D-UVR+ group than in the D- group, significantly. Significance UVR may have possibility to improve bone metabolism associated with vitamin D deficiency in SAMP6 mice.
Collapse
|