1
|
Parmar S, Lodowski P, Kozlowski PM. Photochemical Mechanism of Co-C Bond Activation via Triplet Energy Transfer in Ethyl(aqua)cobaloxime. J Phys Chem A 2024; 128:7747-7760. [PMID: 39254153 DOI: 10.1021/acs.jpca.4c02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The photochemical decomposition of ethyl(aqua)cobaloxime, [EtCoIII(dmgH)2H2O], a vitamin B12 derivative model complex, was investigated to understand the mechanism of the Co-CEt bond scission induced by light. Upon irradiation of [EtCoIII(dmgH)2H2O], the Co-CEt bond undergoes homolytic scission, resulting in Et/Co(II) radical pair (RP) formation in a similar fashion observed in alkylcobalamins. The [EtCoIII(dmgH)2H2O] complex acts as a potent quencher of a wide variety of excited states in the presence of organic molecules such as benzophenone. It has been proposed that the reaction mechanism involves Dexter energy transfer, resulting in the bond dissociation process. Two issues associated with the proposed mechanism have been investigated, namely, (i) how the energy transfer occurs from benzophenone to cobaloxime and (ii) how the Co-CEt bond is activated and cleaved. Both TD-DFT and CASSCF/NEVPT2 methods have been applied to show the feasibility of the energy transfer reaction via the triplet pathway from photocatalyst to substrate.
Collapse
Affiliation(s)
- Saurav Parmar
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Piotr Lodowski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, Katowice 40-006, Poland
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
2
|
Mackintosh MJ, Lodowski P, Kozlowski PM. Photoproduct formation in coenzyme B 12-dependent CarH photoreceptor via a triplet pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112751. [PMID: 37441852 DOI: 10.1016/j.jphotobiol.2023.112751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
CarH is a cobalamin-based photoreceptor which has attracted significant interest due to its complex mechanism involving its organometallic coenzyme-B12 chromophore. While several experimental and computational studies have sought to understand CarH's mechanism of action, there are still many aspects of the mechanism which remain unclear. While light is needed to activate the Co-C5' bond, it is not entirely clear whether reaction pathway involves singlet or triplet diradical states. A recent experimental study implicated triplet pathway and importance of intersystem crossing (ISC) as a viable mechanistic route for photoproduct formation in CarH. Herein, a combined quantum mechanics/molecular mechanics approach (QM/MM) was used to explore the involvement of triplet states in CarH. Two possibilities were explored. The first possibility involved photo-induced homolytic cleavage of the Co-C5' where the radical pair (RP) would deactivate to a triplet state (T0) on the ground state potential energy surface (PES). However, a pathway for the formation of the photoproduct, 4',5'-anhydroadenosine (anhAdo), on the triplet ground state PES was not energetically feasible. The second possibility involved exploring a manifold of low-lying triplet excited states computed using TD-DFT within the QM/MM framework. Viable crossings of triplet excited states with singlet excited states were identified using semiclassical Landau-Zener theory and the effectiveness of spin-orbit coupling by El-Sayed rules. Several candidates along both the Co-NIm potential energy curve (PEC) and Co-C5'/Co-NIm PES were identified, which appear to corroborate experimental findings and implicate the possible role of triplet states in CarH.
Collapse
Affiliation(s)
- Megan J Mackintosh
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Piotr Lodowski
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States.
| |
Collapse
|
3
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
4
|
Deng WH, Liao RZ. Sequential C-H Methylation Catalyzed by the B 12 -Dependent SAM Enzyme TokK: Comprehensive Theoretical Study of Selectivities. Chemistry 2023; 29:e202202995. [PMID: 36321632 DOI: 10.1002/chem.202202995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022]
Abstract
TokK is a B12 -dependent radical SAM enzyme involved in the biosynthesis of the β-lactam antibiotic asparenomycin A. It can catalyze three methylations on different sp3 -hybridized carbon positions to introduce an isopropyl side chain at the β-lactam ring of pantetheinylated carbapenem. Herein, we report a quantum chemical study of the reaction mechanism of TokK. A stepwise ''push-pull'' radical relay mechanism is proposed for each methylation: a 5'-deoxyadenosine radical first abstracts a hydrogen atom from the substrate in the active site, then methylcobalamin directionally donates a methyl group to the substrate. More importantly, calculations were able to uncover the origin of observed chemoselectivity and stereoselectivity for the first methylation and regioselectivity for the following two methylations. Further detailed distortion/interaction analysis can help to unravel the main factors controlling the selectivities. Our findings of sequential methylations by TokK could have profound implications for studying other B12 -dependent radical SAM enzymes.
Collapse
Affiliation(s)
- Wen-Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
5
|
Toda MJ, Lodowski P, Mamun AA, Kozlowski PM. Photoproduct formation in coenzyme B 12-dependent CarH via a singlet pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112471. [PMID: 35644067 DOI: 10.1016/j.jphotobiol.2022.112471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The CarH photoreceptor exploits of the light-sensing ability of coenzyme B12 ( adenosylcobalamin = AdoCbl) to perform its catalytic function, which includes large-scale structural changes to regulate transcription. In daylight, transcription is activated in CarH via the photo-cleavage of the Co-C5' bond of coenzyme B12. Subsequently, the photoproduct, 4',5'-anhydroadenosine (anhAdo) is formed inducing dissociation of the CarH tetramer from DNA. Several experimental studies have proposed that hydridocoblamin (HCbl) may be formed in process with anhAdo. The photolytic cleavage of the Co-C5' bond of AdoCbl was previously investigated using photochemical techniques and the involvement of both singlet and triplet excited states were explored. Herein, QM/MM calculations were employed to probe (1) the photolytic processes which may involve singlet excited states, (2) the mechanism of anhAdo formation, and (3) whether HCbl is a viable intermediate in CarH. Time-dependent density functional theory (TD-DFT) calculations indicate that the mechanism of photodissociation of the Ado ligand involves the ligand field (LF) portion of the lowest singlet excited state (S1) potential energy surface (PES). This is followed by deactivation to a point on the S0 PES where the Co-C5' bond remains broken. This species corresponds to a singlet diradical intermediate. From this point, the PES for anhAdo formation was explored, using the Co-C5' and Co-C4' bond distances as active coordinates, and a local minimum representing anhAdo and HCbl formation was found. The transition state (TS) for the formation of the Co-H bond of HCbl was located and its identity was confirmed by a single imaginary frequency of i1592 cm-1. Comparisons to experimental studies and the potential role of rotation around the N-glycosidic bond of the Ado ligand were discussed.
Collapse
Affiliation(s)
- Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Piotr Lodowski
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Abdullah Al Mamun
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States.
| |
Collapse
|
6
|
Toda MJ, Ghosh AP, Parmar S, Kozlowski PM. Computational investigations of B 12-dependent enzymatic reactions. Methods Enzymol 2022; 669:119-150. [PMID: 35644169 DOI: 10.1016/bs.mie.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nature employs two biologically active forms of vitamin B12, adenosylcobalamin (or coenzyme B12) and methylcobalamin, as cofactors in molecular transformations both in bacteria and mammals. Computational chemistry, guided by experimental data, has been used to explore fundamental characteristics of these enzymatic reactions. In particular, the quantum mechanics/molecular mechanics (QM/MM) method has proven to be a powerful tool in elucidating important characteristics of B12-dependent enzymatic reactions. Herein, we will present a brief tutorial in conducting QM/MM calculations for B12 enzymatic reactions. We will summarize recent contributions that target the use of QM/MM calculations in both photochemical and enzymatic reactions including AdoCbl-dependent ethanolamine ammonia lyase, glutamate mutase, and photoreceptor CarH.
Collapse
Affiliation(s)
- Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Arghya P Ghosh
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Saurav Parmar
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
7
|
Ghosh AP, Lodowski P, Kozlowski PM. Aerobic photolysis of methylcobalamin: unraveling the photoreaction mechanism. Phys Chem Chem Phys 2022; 24:6093-6106. [PMID: 35212341 DOI: 10.1039/d1cp02013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photo-reactivity of cobalamins (Cbls) is influenced by the nature of axial ligands and the cofactor's environment. While the biologically active forms of Cbls with alkyl axial ligands, such as methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), are considered to be photolytically active, in contrast, the non-alkyl Cbls are photostable. In addition to these, the photolytic properties of Cbls can also be modulated in the presence of molecular oxygen, i.e., under aerobic conditions. Herein, the photoreaction of the MeCbl in the presence of oxygen has been explored using density functional theory (DFT) and time-dependent DFT (TD-DFT). The first stage of the aerobic photoreaction is the activation of the Co-C bond and the formation of the ligand field (LF) electronic state through the displacement of axial bonds. Once the photoreaction reaches the LF excited state, three processes can occur: namely the formation of OO-CH3 through the reaction of CH3 with molecular oxygen, de-activation of the {Im⋯[CoII(corrin)]⋯CH3}+ sub-system from the LF electronic state by changing the electronic configuration from (dyz)1(dz2)2 to (dyz)2(dz2)1 and the formation of the deactivation complex (DC) complex via the recombination of OO-CH3 species with the de-excited [CoII(corrin)] system. In the proposed mechanism, the deactivation of the [CoII(corrin)] subsystem may coexist with the formation of OO-CH3, followed by immediate relaxation of the subsystems in the ground state. Moreover, the formation of the OO-CH3 species followed by the formation of the {[CoIII(corrin)]-OO-CH3}+ complex stabilizes the system compared to the reactant complex.
Collapse
Affiliation(s)
- Arghya Pratim Ghosh
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Piotr Lodowski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
8
|
Ghosh AP, Toda MJ, Kozlowski PM. Photolytic properties of B 12-dependent enzymes: A theoretical perspective. VITAMINS AND HORMONES 2022; 119:185-220. [PMID: 35337619 DOI: 10.1016/bs.vh.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biologically active vitamin B12 derivates, methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), are ubiquitous organometallic cofactors. In addition to their key roles in enzymatic catalysis, B12 cofactors have complex photolytic properties which have been the target of experimental and theoretical studies. With the recent discovery of B12-dependent photoreceptors, there is an increased need to elucidate the underlying photochemical mechanisms of these systems. This book chapter summarizes the photolytic properties of MeCbl- and AdoCbl-dependent enzymes with particular emphasis on the effect of the environment of the cofactor on the excited state processes. These systems include isolated MeCbl and AdoCbl as well as the enzymes, ethanolamine ammonia-lyase (EAL), glutamate mutase (GLM), methionine synthase (MetH), and photoreceptor CarH. Central to determining the photodissociation mechanism of each system is the analysis of the lowest singlet excited state (S1) potential energy surface (PES). Time-dependent density functional theory (TD-DFT), employing BP86/TZVPP, is widely used to construct such PESs. Regardless of the environment, the topology of the S1 PES of AdoCbl or MeCbl is marked by characteristic features, namely the metal-to-ligand charge transfer (MLCT) and ligand field (LF) regions. Conversely, the relative energetics of these electronic states are affected by the environment. Applications and outlooks for Cbl photochemistry are also discussed.
Collapse
Affiliation(s)
- Arghya Pratim Ghosh
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
9
|
Cooper CL, Panitz N, Edwards TA, Goyal P. Role of the CarH photoreceptor protein environment in the modulation of cobalamin photochemistry. Biophys J 2021; 120:3688-3696. [PMID: 34310939 DOI: 10.1016/j.bpj.2021.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/17/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
The photochemistry of cobalamins has recently been found to have biological importance, with the discovery of bacterial photoreceptor proteins, such as CarH and AerR. CarH and AerR, are involved in the light regulation of carotenoid biosynthesis and bacteriochlorophyll biosynthesis, respectively, in bacteria. Experimental transient absorption spectroscopic studies have indicated unusual photochemical behavior of 5'-deoxy-5'-adenosylcobalamin (AdoCbl) in CarH, with excited-state charge separation between cobalt and adenosyl and possible heterolytic cleavage of the Co-adenosyl bond, as opposed to the homolytic cleavage observed in aqueous solution and in many AdoCbl-based enzymes. We employ molecular dynamics and hybrid quantum mechanical/molecular mechanical calculations to obtain a microscopic understanding of the modulation of the excited electronic states of AdoCbl by the CarH protein environment, in contrast to aqueous solution and AdoCbl-based enzymes. Our results indicate a progressive stabilization of the electronic states involving charge transfer (CT) from cobalt/corrin to adenine on changing the environment from gas phase to water to solvated CarH. The solvent exposure of the adenosyl ligand in CarH, the π-stacking interaction between a tryptophan and the adenine moiety, and the hydrogen-bonding interaction between a glutamate and the lower axial ligand of cobalt are found to contribute to the stabilization of the states involving CT to adenine. The combination of these three factors, the latter two of which can be experimentally tested via mutagenesis studies, is absent in an aqueous solvent environment and in AdoCbl-based enzymes. The favored CT from metal and/or corrin to adenine in CarH may promote heterolytic cleavage of the cobalt-adenosyl bond proposed by experimental studies. Overall, this work provides novel, to our knowledge, physical insights into the mechanism of CarH function and directions for future experimental investigations. The fundamental understanding of the mechanism of CarH functioning will serve the development of optogenetic tools based on the new class of B12-dependent photoreceptors.
Collapse
Affiliation(s)
- Courtney L Cooper
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York
| | - Naftali Panitz
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York
| | - Travyse A Edwards
- Department of Physics, State University of New York at Binghamton, Binghamton, New York
| | - Puja Goyal
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York.
| |
Collapse
|
10
|
Spataru T. The complete electronic structure and mechanism of the methionine synthase process as determined by the MCSCF method. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Toda MJ, Lodowski P, Thurman TM, Kozlowski PM. Light Mediated Properties of a Thiolato-Derivative of Vitamin B 12. Inorg Chem 2020; 59:17200-17212. [PMID: 33211475 DOI: 10.1021/acs.inorgchem.0c02414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vitamin B12 derivatives (Cbls = cobalamins) exhibit photolytic properties upon excitation with light. These properties can be modulated by several factors including the nature of the axial ligands. Upon excitation, homolytic cleavage of the organometallic bond to the upper axial ligand takes place in photolabile Cbls. The photosensitive nature of Cbls has made them potential candidates for light-activated drug delivery. The addition of a fluorophore to the nucleotide loop of thiolato Cbls has been shown to shift the region of photohomolysis to within the optical window of tissue (600-900 nm). With this possibility, there is a need to analyze photolytic properties of unique Cbls which contain a Co-S bond. Herein, the photodissociation of one such Cbl, namely, N-acetylcysteinylcobalamin (NACCbl), is analyzed based on density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The S0 and S1 potential energy surfaces (PESs), as a function of axial bond lengths, were computed to determine the mechanism of photodissociation. Like other Cbls, the S1 PES contains metal-to-ligand charge transfer (MLCT) and ligand field (LF) regions, but there are some unique differences. Interestingly, the S1 PES of NACCbl contains three distinct minima regions opening several possibilities for the mechanism of radical pair (RP) formation. The mild photoresponsiveness, observed experimentally, can be attributed to the small gap in energy between the S1 and S0 PESs. Compared to other Cbls, the gap shown for NACCbl is neither exactly in line with the alkyl Cbls nor the nonalkyl Cbls.
Collapse
Affiliation(s)
- Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Todd M Thurman
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
12
|
Toda MJ, Mamun AA, Lodowski P, Kozlowski PM. Why is CarH photolytically active in comparison to other B12-dependent enzymes? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111919. [DOI: 10.1016/j.jphotobiol.2020.111919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022]
|
13
|
Ghosh AP, Lodowski P, Bazarganpour A, Leks M, Kozlowski PM. Aerobic photolysis of methylcobalamin: structural and electronic properties of the Cbl-O-O-CH 3 intermediate. Dalton Trans 2020; 49:4114-4124. [PMID: 32142090 DOI: 10.1039/c9dt03740c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photolysis of methylcobalamin (MeCbl) in the presence of molecular oxygen (O2) has been investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT). The key step involves the formation of the Cbl-O-O-CH3 intermediate as a result of triplet O2 insertion in the Co-C bond in the presence of light. Analysis of low-lying excited states shows that the presence of light is only needed to activate the Co-C bond via the formation of the ligand field (LF) state. The insertion of O2, as well as the change in the spin state, takes place in the ground state. The analysis of the structural and electronic properties of the Cbl-O-O-CH3 intermediate is presented and possible decomposition also discussed.
Collapse
Affiliation(s)
- Arghya Pratim Ghosh
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | | | |
Collapse
|
14
|
Miller NA, Michocki LB, Konar A, Alonso-Mori R, Deb A, Glownia JM, Sofferman DL, Song S, Kozlowski PM, Kubarych KJ, Penner-Hahn JE, Sension RJ. Ultrafast XANES Monitors Femtosecond Sequential Structural Evolution in Photoexcited Coenzyme B 12. J Phys Chem B 2020; 124:199-209. [PMID: 31850761 DOI: 10.1021/acs.jpcb.9b09286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polarized X-ray absorption near-edge structure (XANES) at the Co K-edge and broadband UV-vis transient absorption are used to monitor the sequential evolution of the excited-state structure of coenzyme B12 (adenosylcobalamin) over the first picosecond following excitation. The initial state is characterized by sub-100 fs sequential changes around the central cobalt. These are polarized first in the y-direction orthogonal to the transition dipole and 50 fs later in the x-direction along the transition dipole. Expansion of the axial bonds follows on a ca. 200 fs time scale as the molecule moves out of the Franck-Condon active region of the potential energy surface. On the same 200 fs time scale there are electronic changes that result in the loss of stimulated emission and the appearance of a strong absorption at 340 nm. These measurements provide a cobalt-centered movie of the excited molecule as it evolves to the local excited-state minimum.
Collapse
Affiliation(s)
- Nicholas A Miller
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Lindsay B Michocki
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Arkaprabha Konar
- Department of Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Aniruddha Deb
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - James M Glownia
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Danielle L Sofferman
- Program in Applied Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States
| | - Sanghoon Song
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Pawel M Kozlowski
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | - Kevin J Kubarych
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - James E Penner-Hahn
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Roseanne J Sension
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| |
Collapse
|
15
|
Fernandes HS, Teixeira CSS, Sousa SF, Cerqueira NMFSA. Formation of Unstable and very Reactive Chemical Species Catalyzed by Metalloenzymes: A Mechanistic Overview. Molecules 2019; 24:E2462. [PMID: 31277490 PMCID: PMC6651669 DOI: 10.3390/molecules24132462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022] Open
Abstract
Nature has tailored a wide range of metalloenzymes that play a vast array of functions in all living organisms and from which their survival and evolution depends on. These enzymes catalyze some of the most important biological processes in nature, such as photosynthesis, respiration, water oxidation, molecular oxygen reduction, and nitrogen fixation. They are also among the most proficient catalysts in terms of their activity, selectivity, and ability to operate at mild conditions of temperature, pH, and pressure. In the absence of these enzymes, these reactions would proceed very slowly, if at all, suggesting that these enzymes made the way for the emergence of life as we know today. In this review, the structure and catalytic mechanism of a selection of diverse metalloenzymes that are involved in the production of highly reactive and unstable species, such as hydroxide anions, hydrides, radical species, and superoxide molecules are analyzed. The formation of such reaction intermediates is very difficult to occur under biological conditions and only a rationalized selection of a particular metal ion, coordinated to a very specific group of ligands, and immersed in specific proteins allows these reactions to proceed. Interestingly, different metal coordination spheres can be used to produce the same reactive and unstable species, although through a different chemistry. A selection of hand-picked examples of different metalloenzymes illustrating this diversity is provided and the participation of different metal ions in similar reactions (but involving different mechanism) is discussed.
Collapse
Affiliation(s)
- Henrique S Fernandes
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carla S Silva Teixeira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Sérgio F Sousa
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno M F S A Cerqueira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
16
|
Mamun AA, Toda MJ, Lodowski P, Kozlowski PM. Photolytic Cleavage of Co–C Bond in Coenzyme B12-Dependent Glutamate Mutase. J Phys Chem B 2019; 123:2585-2598. [DOI: 10.1021/acs.jpcb.8b07547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abdullah Al Mamun
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan J. Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
17
|
Mamun AA, Toda MJ, Kozlowski PM. Can photolysis of the Co C bond in coenzyme B12-dependent enzymes be used to mimic the native reaction? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 191:175-184. [DOI: 10.1016/j.jphotobiol.2018.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
18
|
Ghosh AP, Mamun AA, Kozlowski PM. How does the mutation in the cap domain of methylcobalamin-dependent methionine synthase influence the photoactivation of the Co–C bond? Phys Chem Chem Phys 2019; 21:20628-20640. [DOI: 10.1039/c9cp01849b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The topology of the S1 PES is modulated by introducing a mutation at the F708 position. The mutation influences the photoactivation of the Co–C bond by decreasing the rate of geminate recombination and altering the rate of radical pair formation.
Collapse
|