1
|
Gerber T, Nunes A, Moreira BR, Maraschin M. Yerba mate (Ilex paraguariensis A. St.-Hil.) for new therapeutic and nutraceutical interventions: A review of patents issued in the last 20 years (2000-2020). Phytother Res 2023; 37:527-548. [PMID: 36180970 DOI: 10.1002/ptr.7632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
It has been estimated that more than 70% of all drugs approved worldwide between 1981 and 2006 for human health are derived from or structurally similar to natural compounds. The identification of biological matrices containing bioactive compounds with therapeutic and nutraceutical potential is necessary to supply the global market demands. Researches have indicated that the consumption of dry and aqueous extracts of Ilex paraguariensis A. St.-Hil. is safe, providing that plant biomass does not be exposed to smoke over the drying process, avoiding contamination (e.g., ) with polycyclic aromatic hydrocarbon compounds, and can might help avoiding many diseases, with important potential applications in the pharma and nutraceutical industries. A survey was carried out covering the main therapeutic and nutraceutical studies performed on I. paraguariensis extracts and their relationship with the global patents granted in the last 20 years for the products using this specie in their composition. In the PubMed database, by searching for the term "Ilex paraguariensis," an output with 497 scientific publications was found. Each paper was analyzed individually and 26 publications encompassing exclusively therapeutical and nutraceutical approaches of that plant species were selected. For the patent screening regarding Ilex-derived products, the survey considered three patent databases: European Patent Office (EPO) (Espacenet), World Intellectual Property Organization, WIPO), and National Institute of Industrial Property (NIIP-Brazil). The criterion chosen to select the patents in the databases was the inclusion of the terms "Ilex paraguariensis" and "yerba mate" in the title and/or in the abstract, considering the patents issued from 2000 to 2020. Additionally, only patents with therapeutic and nutraceutical potential were considered on the survey. The screening and selection of the documents were performed independently by two researchers and the information cross-checked at the end. This review contributes to show the state of the art over the last 20 years on the knowledge about the therapeutical and nutraceutical usages of the yerba mate, associated to a certain number of issued patents. The patent survey afforded 62 relevant documents covering products based on Ilex paraguariensis biomass. Considering the number of patents issued, most of them are related to the pharmaceutical area (30), followed by food supplements and beverages (17), cosmetics (10) and, finally, nutraceuticals (5). A detailed analysis of the patents issued showed that most are related to pharmaceutical grade products, generally, marketed as oral and injectable compositions for treatments of obesity, insulin resistance, hyperlipemia and diabetes mellitus, arteriosclerosis, neurological diseases, and SARS-Cov-2, for example. In this work, a curious fact is that there are few patents for food, cosmetics, and nutraceuticals products containing yerba mate. Therefore, it seems to be relevant to take into account the potential of that species as source of bioactive compounds for the development of new products not only intended to the pharma sector. In this sense, 26 reports were identified showing possibilities and trendiness in developing new yerba mate based products, such as packaging, biopesticides, antiseptics, and food supply, expanding the possibilities of technological applications of this plant species.
Collapse
Affiliation(s)
- Thaise Gerber
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Aline Nunes
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bruna R Moreira
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
2
|
Dini I, Laneri S. The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules 2021; 26:molecules26133921. [PMID: 34206931 PMCID: PMC8271805 DOI: 10.3390/molecules26133921] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
Nowadays, much attention is paid to issues such as ecology and sustainability. Many consumers choose “green cosmetics”, which are environmentally friendly creams, makeup, and beauty products, hoping that they are not harmful to health and reduce pollution. Moreover, the repeated mini-lock downs during the COVID-19 pandemic have fueled the awareness that body beauty is linked to well-being, both external and internal. As a result, consumer preferences for makeup have declined, while those for skincare products have increased. Nutricosmetics, which combines the benefits derived from food supplementation with the advantages of cosmetic treatments to improve the beauty of our body, respond to the new market demands. Food chemistry and cosmetic chemistry come together to promote both inside and outside well-being. A nutricosmetic optimizes the intake of nutritional microelements to meet the needs of the skin and skin appendages, improving their conditions and delaying aging, thus helping to protect the skin from the aging action of environmental factors. Numerous studies in the literature show a significant correlation between the adequate intake of these supplements, improved skin quality (both aesthetic and histological), and the acceleration of wound-healing. This review revised the main foods and bioactive molecules used in nutricosmetic formulations, their cosmetic effects, and the analytical techniques that allow the dosage of the active ingredients in the food.
Collapse
|
3
|
Therapeutic Effects of Dipterocarpus tuberculatus with High Antioxidative Activity Against UV-Induced Photoaging of NHDF Cells and Nude Mice. Antioxidants (Basel) 2021; 10:antiox10050791. [PMID: 34067673 PMCID: PMC8157063 DOI: 10.3390/antiox10050791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
To investigate the therapeutic effects of methanol extracts of Dipterocarpus tuberculatus Roxb. (MED) against UV-induced photoaging, we assessed for alterations in the antioxidant activity, anti-apoptotic effects, ECM modulation, skin appearances, and anti-inflammatory response in normal human dermal fibroblast (NHDF) cells and nude mice orally treated with MED. High levels of tannin content and high free radical scavenging activity to DPPH were determined in MED, while seven active components, namely, gallic acid, bergenin, ellagic acid, ε-viniferin, asiatic acid, oleanolic acid, and 2α-hydroxyursolic acid, were identified using LC–MS analyses. UV-induced alterations in the NO concentration, SOD activity, and Nrf2 expression were remarkably recovered in MED-treated NHDF cells. Moreover, the decreased number of apoptotic cells and G2/M phase arrest were observed in the UV + MED-treated groups. Similar recoveries were detected for β-galactosidase, MMP-2/9 expression, and intracellular elastase activity. Furthermore, MED treatment induced suppression of the COX-2-induced iNOS mediated pathway, expression of inflammatory cytokines, and inflammasome activation in UV-radiated NHDF cells. The anti-photoaging effects observed in NHDF cells were subsequently evaluated and validated in UV + MED-treated nude mice through skin phenotypes and histopathological structure analyses. Taken together, these results indicate that MED exerts therapeutic effects against UV-induced photoaging and has the potential for future development as a treatment for photoaging.
Collapse
|
4
|
Antioxidant Properties of Plant-Derived Phenolic Compounds and Their Effect on Skin Fibroblast Cells. Antioxidants (Basel) 2021; 10:antiox10050726. [PMID: 34063059 PMCID: PMC8147979 DOI: 10.3390/antiox10050726] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Plants are rich sources of a diverse range of chemicals, many of which have significant metabolic activity. One large group of secondary compounds are the phenolics, which act as inter alia potent reactive oxygen scavengers in cells, including fibroblasts. These common dermis residue cells play a crucial role in the production of extracellular matrix components, such as collagen, and maintaining the integrity of connective tissue. Chronic wounds or skin exposure to UV-irradiation disrupt fibroblast function by the generation of reactive oxygen species, which may damage cell components and modify various signaling pathways. The resulting imbalance may be reversed by the antioxidant activity of plant-derived phenolic compounds. This paper reviews the current state of knowledge on the impact of phenolics on fibroblast functionality under oxidative stress conditions. It examines a range of compounds in extracts from various species, as well as single specific plant-derived compounds. Phenolics are a good candidate for eliminating the causes of skin damage including wounds and aging and acting as skin care agents.
Collapse
|
5
|
Bajgai J, Lee KJ, Rahman MH, Fadriquela A, Kim CS. Role of Molecular Hydrogen in Skin Diseases and its Impact in Beauty. Curr Pharm Des 2021; 27:737-746. [PMID: 32981497 DOI: 10.2174/1381612826666200925124235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
In today's society, healthy skin and a beautiful appearance are considered the foundation of general well-being. The skin is the largest organ of the body and plays an important role in protecting it against various hazards such as environmental, physical, chemical, and biological hazards. These factors include mediators that lead to oxidation reactions that produce reactive oxygen/nitrogen species and additional oxidants in the skin cells. An increase in oxidants beyond the antioxidant capacity of its defense system causes oxidative stress and chronic inflammation in the body. This response can cause further disruption of collagen fibers and hinder the functioning of skin cells that may result in the development of various skin diseases including psoriasis, atopic dermatitis, and aging. In this review, we summarized the present information related to the role of oxidative stress in the pathogenesis of dermatological disorders, and its impact on physical beauty and the daily lives of patients. We also discussed how molecular hydrogen exhibits a therapeutic effect against skin diseases via its effects on oxidative stress. Furthermore, findings from this summary review indicate that molecular hydrogen might be an effective treatment modality for the prevention and treatment of skin-related illnesses.
Collapse
Affiliation(s)
- Johny Bajgai
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| | - Kyu-Jae Lee
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| | - Md Habibur Rahman
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| | - Ailyn Fadriquela
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| | - Cheol-Su Kim
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| |
Collapse
|
6
|
Hernandez DF, Cervantes EL, Luna-Vital DA, Mojica L. Food-derived bioactive compounds with anti-aging potential for nutricosmetic and cosmeceutical products. Crit Rev Food Sci Nutr 2020; 61:3740-3755. [PMID: 32772550 DOI: 10.1080/10408398.2020.1805407] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Besides providing essential nutrients for humans, food contains bioactive compounds that exert diverse biological activities such as anti-microbial, anti-cancerogenic, anti-viral, anti-inflammatory and antioxidant. The cosmetic industry is interested in natural bioactive compounds for their use in nutricosmetic and cosmeceutical products. These products aimed to reduce skin aging, inflammation or provide photoprotection against UV radiation. As a result, nutricosmetics and cosmeceuticals are becoming innovative self-care products in the beauty market. These products contain phytochemicals as active compounds obtained from fruits, vegetables, legumes, medicinal herbs and plants with anti-aging potential. This review summarizes the information within the last 5 years related to bioactive compounds present in fruits, vegetables, herbs and spices commonly used for human consumption. Their antioxidant and biological potential for modulating molecular markers involved in the aging process, as well as their mechanism of action. Diverse natural foods and their byproducts could be used as a source of bioactive compounds for developing cosmeceutical and nutricosmetic products.
Collapse
Affiliation(s)
- David Fonseca Hernandez
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| | - Eugenia Lugo Cervantes
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, Department of Bioengineering and Science, Puebla, Puebla, Mexico
| | - Luis Mojica
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| |
Collapse
|
7
|
Peng Z, Hu X, Li X, Jiang X, Deng L, Hu Y, Bai W. Protective effects of cyanidin‐3‐
O
‐glucoside on UVB‐induced chronic skin photodamage in mice via alleviating oxidative damage and anti‐inflammation. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ziyao Peng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety Jinan University Guangzhou China
| | - Xiaolong Hu
- Department of Dermatology Shenzhen FuYong People's Hospital Shenzhen China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety Jinan University Guangzhou China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety Jinan University Guangzhou China
| | - Liehua Deng
- Department of Dermatology, The First Affiliated Hospital Jinan University Guangzhou China
| | - Yunfeng Hu
- Department of Dermatology, The First Affiliated Hospital Jinan University Guangzhou China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Molecular Rapid Detection for Food Safety Jinan University Guangzhou China
| |
Collapse
|
8
|
Machado ML, Arantes LP, da Silveira TL, Zamberlan DC, Cordeiro LM, Obetine FBB, da Silva AF, da Cruz IBM, Soares FAA, Oliveira RDP. Ilex paraguariensis extract provides increased resistance against oxidative stress and protection against Amyloid beta-induced toxicity compared to caffeine in Caenorhabditis elegans. Nutr Neurosci 2019; 24:697-709. [PMID: 31595831 DOI: 10.1080/1028415x.2019.1671694] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ilex paraguariensis is a plant from South America, used to prepare a tea-like beverage rich in caffeine and polyphenols with antioxidant proprieties. Caffeine consumption is associated with a lower risk of age-associated neuropathologies, besides several extracts that have antioxidant proprieties are known to be neuroprotective, and oxidative stress strongly correlates with Aβ-toxicity. This study aims to investigate the neuroprotective effects of the Ilex paraguariensis hydroalcoholic extract (IPHE) and to evaluate if caffeine agent present in IPHE exerts neuroprotective effects in an amyloid beta-peptide (Aβ)-induced toxicity in Caenorhabditis elegans. The wild-type and CL2006 worms were treated with IPHE (2 and 4 mg/mL) or caffeine (200 and 400 μM) since larval stage 1 (L1) until they achieved the required age for each assay. IPHE and caffeine increased the lifespan and appeared to act directly by reactive oxygen species (ROS) scavenger in both wild-type and CL2006 worms, also conferred resistance against oxidative stress in wild-type animals. Furthermore, both treatments delayed Aβ-induced paralysis and decreased AChE activity in CL2006. The protective effect of IPHE against Aβ-induced paralysis was found to be dependent on heat shock factor hsf-1 and FOXO-family transcription factor daf-16, which are respectively involved in aging-related processes and chaperone synthesis, while that of caffeine was dependent only on daf-16. Mechanistically, IPHE and caffeine decreased the levels of Aβ mRNA in the CL2006 worms; however, only IPHE induced expression of the heat shock chaperonin hsp-16.2, involved in protein homeostasis. The results were overall better when treated with IPHE than with caffeine.
Collapse
Affiliation(s)
- Marina Lopes Machado
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Leticia Priscilla Arantes
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Tássia Limana da Silveira
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daniele Coradini Zamberlan
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Larissa Marafiga Cordeiro
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Fabiane Baptista Bicca Obetine
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Aline Franzen da Silva
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Felix Alexandre Antunes Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Riva de Paula Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
9
|
de Lima Cherubim DJ, Buzanello Martins CV, Oliveira Fariña L, da Silva de Lucca RA. Polyphenols as natural antioxidants in cosmetics applications. J Cosmet Dermatol 2019; 19:33-37. [PMID: 31389656 DOI: 10.1111/jocd.13093] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Currently, there is a great interest in cosmetics prepared on natural resources bases and this may restrict the use of synthetic substances. Plants play a relevant role as a source of biologically active natural products with cosmetic and dermatological importance. According to this context, polyphenolic extracts are highlighted because they have proven antioxidant, anti-inflammatory, anti-aging, antimicrobial, and supporting activity in solar photoprotection. AIMS The purpose this study were reviewed at reporting the antioxidant activity of phenolic compounds, mainly applied to dermatological therapy, and highlighting the action mechanisms and structure-activity relationship. METHODOLOGY In September 2017, we performed a literature search in PubMed and Scielo for scientific researches, antioxidant studies, and systemic reviews. The search terms we used were "PHYTOCOSMETICS" AND "ANTIOXIDANT ACTIVITY" OR "PHENOLIC COMPOUNDS" (from 2000). As inclusion criteria were used relevant original articles, scientific research in the area of interest, and crucial reference articles. Exclusion criteria were: duplicate publications, non-relevant articles and not published in English. RESULTS The potential cosmetic application of phenolic compounds as natural antioxidants has been attributed to the chemical structure of these compounds, which to interfere in different phases of the oxidation mechanism. CONCLUSION The use of phenolic extracts emerges as a viable alternative for cosmetic application, ensuring a commitment to sustainability. However, it is of crucial importance to evaluate the toxicity risks of raw materials and finished products.
Collapse
Affiliation(s)
| | | | - Luciana Oliveira Fariña
- Medical and Pharmaceutical Sciences Center, Western Paraná State University, Cascavel, Brazil
| | - Rosemeire Aparecida da Silva de Lucca
- Medical and Pharmaceutical Sciences Center, Western Paraná State University, Cascavel, Brazil.,Engineering and Exact Sciences Center, Western Paraná State University, Toledo, Brasil
| |
Collapse
|
10
|
Inhibition of Prostate Cancer Cells by 4,5-Dicaffeoylquinic Acid through Cell Cycle Arrest. Prostate Cancer 2019; 2019:4520645. [PMID: 31263600 PMCID: PMC6556292 DOI: 10.1155/2019/4520645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 01/23/2023] Open
Abstract
Prostate cancer is a major cause of cancer-related mortality in men. Even though current therapeutic management has contributed to reducing mortality, additional intervention strategies are warranted to further improve the outcomes. To this end, we have investigated the efficacy of dicaffeoylquinic acids, ingredients in Yerba Mate (Ilex paraguariensis), an evergreen cultivated in South America, the leaves of which are used to prepare a tea/coffee-like drink. Of the various analogs tested, 4,5-dicaffeoylquinic acid (4,5-diCQA) was the most active molecule against DU-145 prostate cancer cells with a 50% inhibitory concentration (IC50) of 5 μM. 4,5-diCQA was active both under normoxic and hypoxic conditions. The effect of 72-hour treatment on DU-145 cells persisted for an extended time period as assessed by clonogenic assay. Mechanistic studies revealed that the toxic effect was not due to induction of programmed cell death but through cell cycle arrest at S phase. Additionally, 4,5-diCQA did not impact PI3K/MAPK signaling pathway nor did it affect the depolarization of the mitochondrial membrane. 4,5-diCQA-induced accumulation of cells in the S-phase also seems to negatively impact Bcl-2 expression. 4,5-diCQA also exhibited inhibitory activity on LNCaP and PC-3 prostate cancer cells suggesting that it has therapeutic potential on a broad range of prostate cancers. Taken together, the novel inhibitory activity and mechanism of action of 4,5-diCQA opens up potential therapeutic options for using this molecule as monotherapy as well as in combinatorial therapies for the clinical management of prostate cancer.
Collapse
|
11
|
Development of Caco-2 cells-based gene reporter assays and evaluation of herb-drug interactions involving CYP3A4 and CYP2D6 gene expression. Chem Biol Interact 2019; 303:79-89. [PMID: 30772286 DOI: 10.1016/j.cbi.2019.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/03/2019] [Accepted: 01/25/2019] [Indexed: 01/03/2023]
Abstract
The indiscriminate use of medicinal plants and herbal medicinal products concomitantly with conventional drugs may result in herb-drug interactions that may lead to fluctuations in drug bioavailability, therapeutic failure, and/or toxic effects. CYP450 enzymes play an important role in drug biotransformation and herb-drug interactions. Thus, the aim of this study was to develop and apply Caco-2 cells-based gene reporter assays to study in vitro the potential occurrence of CYP3A4 and CYP2D6 gene expression modulation by standardized extracts of selected medicinal plants. Reporter cell lines developed showed a significant increase in CYP3A4 and CYP2D6 reporter fluorescent emission, 4 and 16-fold respectively, when compared to the controls. The standardized extracts of Cecropia glaziovii, Bauhinia forficata and Echinacea sp. significantly increased CYP3A4 reporter fluorescence, and those of Ilex paraguariensis, Bauhinia forficata and Echinacea sp. significantly decreased CYP2D6 reporter fluorescence in Caco-2 cells-based gene reporter assays. The data obtained suggest that CYP3A4 and CYP2D6 gene expression seem to be modulated by the extracts tested. In addition, the reporter cell lines developed are functional assays that could be used to study drug-drug and herb-drug interactions during the research and development of new drugs.
Collapse
|