1
|
Collins VG, Kanodia C, Yahya QB, Liistro M, Kaliaperumal C. 5-Aminolevulinic acid (5-ALA) in paediatric brain tumour surgery-a systematic review and exploration of fluorophore alternatives. Childs Nerv Syst 2025; 41:150. [PMID: 40178625 DOI: 10.1007/s00381-025-06810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE Paediatric brain tumours represent the most common solid malignancies in children, with extent of resection being a critical prognostic factor. Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) is well-established for adult high-grade gliomas, but its efficacy and safety in paediatric populations remain unclear. This systematic review evaluates the utility of 5-ALA fluorescence-guided surgery in paediatric brain tumours and explores alternative fluorophores. METHODS A systematic review was conducted according to PRISMA guidelines, analysing studies from MEDLINE and EMBASE published up to October 2024. Data on patient demographics, tumour fluorescence patterns, surgical outcomes, and adverse effects were extracted. Statistical analyses assessed fluorescence differences across tumour types and administration parameters. RESULTS Twenty-three studies, including 281 paediatric patients (mean age, 10 years), were analysed. The most common tumours included pilocytic astrocytomas (n = 45), medulloblastomas (n = 45), glioblastomas (n = 35), and ependymomas (n = 27). Strong fluorescence was observed more frequently in high-grade gliomas compared to low-grade gliomas (p < 0.00001), non-glioma tumours (p < 0.00001), and high-grade non-glioma tumours (p = 0.000485). Adverse effects were mostly transient; rare complications included transaminitis and dermatologic reactions. CONCLUSION 5-ALA fluorescence-guided surgery shows promise in the resection of high-grade gliomas in paediatric patients, improving intraoperative visualisation. However, limited fluorescence in low-grade and non-glioma tumours underscores the need for tumour-specific approaches. Emerging alternatives, such as fluorescein sodium and tozuleristide, offer potential advantages. Future research should focus on optimising 5-ALA dosing, refining timing protocols, and conducting robust prospective trials to establish efficacy and safety in paediatric populations.
Collapse
Affiliation(s)
- Victoria G Collins
- Department of Neurosurgery, Royal Hospital for Children and Young People, Edinburgh, UK.
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
- Ninewells Hospital, Dundee, UK.
| | - Charvi Kanodia
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | | | - Marianna Liistro
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Chandrasekaran Kaliaperumal
- Department of Neurosurgery, Royal Hospital for Children and Young People, Edinburgh, UK
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Wang C, Yu Y, Wang Y, Yu J, Zhang C. Utility and Safety of 5-ALA Guided Surgery in Pediatric Brain Tumors: A Systematic Review. Cancers (Basel) 2024; 16:3677. [PMID: 39518115 PMCID: PMC11545419 DOI: 10.3390/cancers16213677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background: 5-Aminolevulinic acid-guided surgery for adult gliomas has been approved by the European Medicines Agency and the US Food and Drug Administration, becoming a reliable tool for improving gross total resection rates and patient outcomes. This has led several medical centers to explore the off-label use of 5-ALA in the resection of pediatric brain tumors, assessing its efficacy and safety across various tumor types. However, given the differences between children and adults, the appropriateness of 5-ALA use in pediatric populations has not yet been fully established. Methods: We collected eligible publications from Embase, Scopus, PubMed, and Proquest, ultimately selecting 27 studies. Data extraction and retrospective analysis of 249 surgical cases were conducted to determine the current efficacy and safety of 5-ALA in pediatric brain tumors. The fluorescence rate and utility stratified by several clinical features, including WHO grade, tumor classification, and tumor location, were analyzed. Results: Most studies suggest that 5-ALA can enhance tumor identification in high-grade tumors, including glioblastomas and anaplastic astrocytomas. Changes in survival or recurrence rates associated with 5-ALA-guided resection have not been reported. None of the cases reported significant postoperative complications related to the use of 5-ALA. Conclusions: 5-ALA can aid in the resection of high-grade gliomas in pediatric patients. The efficacy of 5-ALA in low-grade gliomas and other tumors may require enhancement with additional tools or modified administration protocols. The safety of 5-ALA has reached a preliminary consensus, although further randomized controlled trials and data on survival and molecular characteristics are needed.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (C.W.); (J.Y.)
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (C.W.); (J.Y.)
| | - Yafei Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (C.W.); (J.Y.)
| | - Jiahua Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (C.W.); (J.Y.)
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (C.W.); (J.Y.)
| |
Collapse
|
3
|
Ebrahimi S, Khaleghi Ghadiri M, Stummer W, Gorji A. Enhancing 5-ALA-PDT efficacy against resistant tumor cells: Strategies and advances. Life Sci 2024; 351:122808. [PMID: 38852796 DOI: 10.1016/j.lfs.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
As a precursor of protoporphyrin IX (PpIX), an endogenous pro-apoptotic and fluorescent molecule, 5-Aminolevulinic acid (5-ALA) has gained substantial attention for its potential in fluorescence-guided surgery as well as photodynamic therapy (PDT). Moreover, 5-ALA-PDT has been suggested as a promising chemo-radio sensitization therapy for various cancers. However, insufficient 5-ALA-induced PpIX fluorescence and the induction of multiple resistance mechanisms may hinder the 5-ALA-PDT clinical outcome. Reduced efficacy and resistance to 5-ALA-PDT can result from genomic alterations, tumor heterogeneity, hypoxia, activation of pathways related to cell surveillance, production of nitric oxide, and most importantly, deregulated 5-ALA transporter proteins and heme biosynthesis enzymes. Understanding the resistance regulatory mechanisms of 5-ALA-PDT may allow the development of effective personalized cancer therapy. Here, we described the mechanisms underlying resistance to 5-ALA-PTD across various tumor types and explored potential strategies to overcome this resistance. Furthermore, we discussed future approaches that may enhance the efficacy of treatments using 5-ALA-PDT.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran
| | | | - Walter Stummer
- Department of Neurosurgery, Münster University, 48149 Münster, Germany
| | - Ali Gorji
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran.
| |
Collapse
|
4
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
5
|
Hsia T, Small JL, Yekula A, Batool SM, Escobedo AK, Ekanayake E, You DG, Lee H, Carter BS, Balaj L. Systematic Review of Photodynamic Therapy in Gliomas. Cancers (Basel) 2023; 15:3918. [PMID: 37568734 PMCID: PMC10417382 DOI: 10.3390/cancers15153918] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Over the last 20 years, gliomas have made up over 89% of malignant CNS tumor cases in the American population (NIH SEER). Within this, glioblastoma is the most common subtype, comprising 57% of all glioma cases. Being highly aggressive, this deadly disease is known for its high genetic and phenotypic heterogeneity, rendering a complicated disease course. The current standard of care consists of maximally safe tumor resection concurrent with chemoradiotherapy. However, despite advances in technology and therapeutic modalities, rates of disease recurrence are still high and survivability remains low. Given the delicate nature of the tumor location, remaining margins following resection often initiate disease recurrence. Photodynamic therapy (PDT) is a therapeutic modality that, following the administration of a non-toxic photosensitizer, induces tumor-specific anti-cancer effects after localized, wavelength-specific illumination. Its effect against malignant glioma has been studied extensively over the last 30 years, in pre-clinical and clinical trials. Here, we provide a comprehensive review of the three generations of photosensitizers alongside their mechanisms of action, limitations, and future directions.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 554414, USA
| | - Syeda M. Batool
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ana K. Escobedo
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emil Ekanayake
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Dick M, Jamal H, Liu YR, Celli JP, Lilge L. On the need for standardized reporting of photophysical parameters of in vitro photodynamic therapy studies. Photodiagnosis Photodyn Ther 2022; 41:103263. [PMID: 36587862 DOI: 10.1016/j.pdpdt.2022.103263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
In vitro dose escalation experiments are one of the first gatekeepers in therapeutic evaluation and development. This also holds for evaluating novel photosensitizers (PS) and Photodynamic Therapy (PDT) co-therapies as needed to provide dose response guidelines before engaging in further pre-clinical studies. The dose needed to achieve 50% cell kill (LD50) is a standard metric to report the potency of a therapeutic agents that is widely accepted for single-drug therapies. In reporting results of PDT experiments, which involve delivery of both drug and light, it is inherently more complicated to identify such a convenient dose response metric that actually captures the larger space of treatment parameters. In addition to ubiquitous sources of biological variability that apply broadly in biomedical research, PDT treatment efficacy is determined by multiple key parameters that may or may not have been documented, including PS concentration and light fluence, where the latter is itself a function of the spectral properties of the light source used (often not described), not to mention dose rate, fractionation and other parameters that potentially vary between individual studies. It is impossible to compare results between two study when, for example one reports LD50 PS concentration without providing essential light dosimetry details. Motivated by this challenge in comparing outcomes and establishing reproducibility of in vitro PDT studies, we endeavored to perform a meta-analysis of the reporting of PDT results by converting, where possible, the disparately reported experimental details into a consistent metric that could be used to compare across studies. In this context we adopt here the number of photons absorbed by photosensitizers per unit volume to affect a 50% decline in cell survival as a standardized metric. By choosing this metric one can acknowledge the quantum-based generation of cytotoxins. While this metric does not cover every possible source of variability between any two studies, for a PS with known optical properties, this does encapsulate PS concentration as well as irradiance and spectral properties of light delivered. For the sake of focus we adopt this approach for study of reported results with two photosensitizers, Protoporphyrin IX, either synthesized in the cells by aminolevulinic acid or administered exogenously, and Chlorin e6. A literature search was performed to identify in vitro studies with these two photosensitizers and collect necessary information to calculate the absorbed photon LD50 threshold for each study. Only approximately 1/10 of the manuscripts reporting on in vitro studies provide the minimum required information to calculate the threshold values. While the majority of the determined threshold values are within a factor of 10, the range of threshold values spanned close to 7 orders of magnitude for both photosensitizers. To contrast with single-agent therapies, a similar exercise was performed for chemotherapeutic drugs targeting cellular mitosis or tyrosine kinase inhibitors resulted in an LD50 or IC50 range of 1-2 orders of magnitude, with LD50 or IC50 values for a single cell line being within a factor of 5. This review underscores challenges in the reporting of in vitro PDT efficacy. In many cases it takes considerable effort to extract the necessary methodology information to make meaningful comparison between PDT studies. Only when results between studies can be compared is it possible to begin to assess reproducibility which, as shown here, can be a major issue. Hence, guidelines need to be developed and enforced through the peer review process for meaningful reporting of preclinical PDT results in order for the most promising sensitizers and co-therapies to be identified and translated into the clinic.
Collapse
Affiliation(s)
- Madison Dick
- Princess Margaret Cancer Centre at University Health Network, Toronto, Ontario, Canada
| | - Hunain Jamal
- Princess Margaret Cancer Centre at University Health Network, Toronto, Ontario, Canada
| | - Yi Ran Liu
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jonathan P Celli
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Lothar Lilge
- Princess Margaret Cancer Centre at University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
A Thiosemicarbazone Derivative as a Booster in Photodynamic Therapy-A Way to Improve the Therapeutic Effect. Int J Mol Sci 2022; 23:ijms232315370. [PMID: 36499695 PMCID: PMC9735942 DOI: 10.3390/ijms232315370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy is one of the most patient friendly and promising anticancer therapies. The active ingredient is irradiated protoporphyrin IX, which is produced in the body that transfers energy to the oxygen-triggering phototoxic reaction. This effect could be enhanced by using iron chelators, which inhibit the final step of heme biosynthesis, thereby increasing the protoporphyrin IX concentration. In the presented work, we studied thiosemicarbazone derivative, which is a universal enhancer of the phototoxic effect. We examined several genes that are involved in the transport of the heme substrates and heme itself. The results indicate that despite an elevated level of ABCG2, which is responsible for the PpIX efflux, its concentration in a cell is sufficient to trigger a photodynamic reaction. This effect was not observed for 5-ALA alone. The analyzed cell lines differed in the scale of the effect and a correlation with the PpIX accumulation was observed. Additionally, an increased activation of the iron transporter MFNR1 was also detected, which indicated that the regulation of iron transport is essential in PDT.
Collapse
|
8
|
Chen ZH, Zhang XH, Lin FH, Li C, Jin JT, Zhou ZH, Zhu SH, Cheng ZQ, Zhong S, He ZQ, Duan H, Wen X, Wang J, Mou YG. The application of fluorescein sodium for the resection of medulloblastoma. J Neurooncol 2022; 158:463-470. [PMID: 35657459 PMCID: PMC9256568 DOI: 10.1007/s11060-022-04035-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
Introduction Surgical resection of medulloblastoma (MB) remains a challenge. At present, a variety of tracers have been used for intraoperative tumor visualization. However, there are few reports on the intraoperative visualization of MB. Hence, we reported our experience of applying fluorescein sodium (FS) in MB surgery. Methods We retrospectively analyzed the clinical information of patients with MB confirmed by surgery and pathology from January 2016 to December 2020 from Sun Yat-sen University Cancer Center. A total of 62 patients were enrolled, of which 27 received intraoperative FS and 35 did not. The intraoperative dose of FS was 3 mg/kg. Results Among the 62 patients, 42 were males, and twenty were females. The age of onset in the FS group was 9.588 ± 7.322, which in the non-fluorescein sodium group was 13.469 ± 10.968, p = 0.198. We did not find significant differences in tumor location, tumor size, tumor resection, tumor histology, and preoperative symptoms (hydrocephalus, headache, vomit, balance disorder) between the groups. There was no significant difference in the postoperative symptoms (hydrocephalus, headache, vomiting, balance disorder, and cerebellar mutism). However, patients in the FS group had a relatively low incidence of balance disorder and cerebellar mutism. There was definite fluorescence of tumor in all cases of the FS group, and even the tiny metastatic lesion was visible. No case had side effects related to the use of FS. Conclusions FS is safe and effective in MB surgery. Whether the application of FS for surgery can reduce complications remains to be studied in the future.
Collapse
Affiliation(s)
- Zheng-he Chen
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Xiang-heng Zhang
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Fu-hua Lin
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Chang Li
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Jie-tian Jin
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Zhi-huan Zhou
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Si-han Zhu
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Zhu-qing Cheng
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Sheng Zhong
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Zhen-qiang He
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Hao Duan
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Xia Wen
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Jian Wang
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Yong-gao Mou
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| |
Collapse
|
9
|
Fontana LC, Pinto JG, Vitorio GDS, Ferreira I, Pacheco-Soares C, Mamone LA, Strixino JF. Photodynamic effect of protoporphyrin IX in gliosarcoma 9l/lacZ cell line. Photodiagnosis Photodyn Ther 2021; 37:102669. [PMID: 34863947 DOI: 10.1016/j.pdpdt.2021.102669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Photodynamic Therapy (PDT) is an oncologic treatment, producing reactive oxygen species (ROS) to induce the death of cancer cells. This study aimed to evaluate the action of PDT on gliosarcoma cells, using protoporphyrin IX as PS by incubation with the precursor aminolevulinic acid (ALA). An LED device was used with a light dose of 10 J/cm². The success of the therapy proved to be dependent on the concentration of ALA, and an incubation time of 4 h required for an effective response. Cell death was prevalent due to necrosis when assessed 18 h post-PDT. ALA proved to be an option to PDT in cells of the 9 L/lacZ, with the protocol tested.
Collapse
Affiliation(s)
- Letícia Corrêa Fontana
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo
| | - Juliana Guerra Pinto
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo
| | - Gabrielle Dos Santos Vitorio
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo
| | - Isabelle Ferreira
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo
| | - Cristina Pacheco-Soares
- Laboratory of Cellular Dynamics - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo
| | - Leandro Ariel Mamone
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - Juliana Ferreira Strixino
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo.
| |
Collapse
|
10
|
Selective Microfluidic Capture and Detection of Prostate Cancer Cells from Urine without Digital Rectal Examination. Cancers (Basel) 2021; 13:cancers13215544. [PMID: 34771706 PMCID: PMC8583121 DOI: 10.3390/cancers13215544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Prostate cancer is the second most common cancer and the fifth leading cause of cancer death in men worldwide. The current diagnosis methods for prostate cancer are invasive and costly. In particular, digital rectal examination (DRE) or prostate massage adds considerable discomfort to patients, reduces compliance to cancer screening schedules, and raises the cost of the diagnostic procedure. New technologies are urgently needed for the effective and yet noninvasive detection of these conditions. This manuscript describes streamlined biotechnology for the noninvasive detection of prostate cancer from malignant cells shed in urine. For the first time, a whole-cell immunocapture approach combined with photodynamic diagnostic principles is used in a device to detect whole cancer cells from unprocessed patient urine samples collected without prior DRE. Abstract Urine-based biomarkers have shown suitable diagnostic potential for prostate cancer (PCa) detection. Yet, until now, prostatic massage remains required prior to urine sampling. Here, we test a potential diagnostic approach using voided urine collected without prior digital rectal examination (DRE). In this study, we evaluated the diagnostic performance of a microfluidic-based platform that combines the principle of photodynamic diagnostic with immunocapture for the detection of PCa cells. The functionality and sensitivity of this platform were validated using both cultured cells and PCa patient urine samples. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) demonstrated this platform had a detection limit of fewer than 10 cells per 60 µL and successfully validated the presence of a PCa biomarker in the urine of cancer patients without prior DRE. This biosensing platform exhibits a sensitivity of 72.4% and a specificity of 71.4%, in suitable agreement with qRT-PCR data. The results of this study constitute a stepping stone in the future development of noninvasive prostate cancer diagnostic technologies that do not require DRE.
Collapse
|
11
|
Gull HH, Karadag C, Senger B, Sorg RV, Möller P, Mellert K, Steiger HJ, Hänggi D, Cornelius JF. Ciprofloxacin enhances phototoxicity of 5-aminolevulinic acid mediated photodynamic treatment for chordoma cell lines. Photodiagnosis Photodyn Ther 2021; 35:102346. [PMID: 34038764 DOI: 10.1016/j.pdpdt.2021.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/21/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Chordoma are uncommon aggressive tumors of the skeleton. Surgical resection is often subtotal and adjuvant treatment possibilities are limited as chordomas are highly chemo- and radioresistant. In the present study we examined the impact of 5-ALA PDT on different human chordoma cell lines. Furthermore, we investigated the variation of two parameters: (1.) 5-ALA incubation time and (2.) supplemental use of ciprofloxacin as iron chelator. METHODS Experiments were realized in vitro with three different human chordoma cell lines: U-CH2, U-CH2B and U-CH14. After pre-incubation for 24 h with various concentrations of ciprofloxacin (1.5 - 5.0 μg/ml), different amounts of 5-ALA (15 - 50 μg/ml) were applied to the cells either for a brief (4 h) or a long (6 h) incubation time. Subsequently cells were exposed to photodynamic radiation. Cell viability was exploited by WST-1 assay. Thus, for each of the three cell lines, two drug combinations (ciprofloxacin plus 5-ALA and 5-ALA only) and two incubation times (short, 4 h and long, 6 h) were tested. Negative control groups were also examined. RESULTS Supplemental use of ciprofloxacin led to increased cell death in each of the cell lines. Different 5-ALA incubation times (4 h vs. 6 h) showed no significant differences in cell viability except for U-CH2. CONCLUSION Ciprofloxacin as an ordinary applied antibiotic, enhanced the effect of 5-ALA PDT on different human chordoma cell lines in vitro. The impact was dependent on the dose of ciprofloxacin-5-ALA. There were no notable differences for the tested 5-ALA incubation times. In human chordoma cell lines 5-ALA PDT may effectively be amended by ciprofloxacin.
Collapse
Affiliation(s)
- Hanah Hadice Gull
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurosurgery and Spine Surgery, University Hospital of Essen, Germany.
| | - Cihat Karadag
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Brigitte Senger
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital, Ulm, Germany
| | - Kevin Mellert
- Institute of Pathology, University Hospital, Ulm, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
12
|
Li A, Liang C, Xu L, Wang Y, Liu W, Zhang K, Liu J, Shi J. Boosting 5-ALA-based photodynamic therapy by a liposomal nanomedicine through intracellular iron ion regulation. Acta Pharm Sin B 2021; 11:1329-1340. [PMID: 34094837 PMCID: PMC8148057 DOI: 10.1016/j.apsb.2021.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/08/2020] [Accepted: 11/21/2020] [Indexed: 01/10/2023] Open
Abstract
5-Aminolevulinic acid (5-ALA) has been approved for clinical photodynamic therapy (PDT) due to its negligible photosensitive toxicity. However, the curative effect of 5-ALA is restricted by intracellular biotransformation inactivation of 5-ALA and potential DNA repair of tumor cells. Inspired by the crucial function of iron ions in 5-ALA transformation and DNA repair, a liposomal nanomedicine (MFLs@5-ALA/DFO) with intracellular iron ion regulation property was developed for boosting the PDT of 5-ALA, which was prepared by co-encapsulating 5-ALA and DFO (deferoxamine, a special iron chelator) into the membrane fusion liposomes (MFLs). MFLs@5-ALA/DFO showed an improved pharmaceutical behavior and rapidly fused with tumor cell membrane for 5-ALA and DFO co-delivery. MFLs@5-ALA/DFO could efficiently reduce iron ion, thus blocking the biotransformation of photosensitive protoporphyrin IX (PpIX) to heme, realizing significant accumulation of photosensitivity. Meanwhile, the activity of DNA repair enzyme was also inhibited with the reduction of iron ion, resulting in the aggravated DNA damage in tumor cells. Our findings showed MFLs@5-ALA/DFO had potential to be applied for enhanced PDT of 5-ALA.
Collapse
Key Words
- 5-ALA, 5-aminolevulinic acid
- 5-Aminolevulinic acid
- ALKBH2
- Biotransformation interference
- CH, cholesterol
- CLs, custom liposomes
- Ce6, chlorine e6
- DFO, deferoxamine
- DNA repair inhibition
- DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine
- DOPE, dioleoyl phosphatidy lethanolamine
- DPPC, dipalmitoyl-sn-glycero-3-phosphocholine
- Drug delivery
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- Iron ion regulation
- LMPA, low melting point agarose
- MFLs, membrane fusion liposomes
- Membrane fusion liposomes
- NMPA, normal melting point agarose
- PDT, photodynamic therapy
- PS, photosensitizers
- Photodynamic therapy
- PpIX, protoporphyrin IX
- ROS, reactive oxygen species
- SM, sphingomyelin
- TUNEL, terminal deoxynucleotidyl trans-ferase dUTP nick end labeling
- calcein-AM/PI, calcein-AM/ propidiumiodide
Collapse
|
13
|
Chan KM, Gleadle J, Li J, Michl TD, Vasilev K, MacGregor M. Improving hexaminolevulinate enabled cancer cell detection in liquid biopsy immunosensors. Sci Rep 2021; 11:7283. [PMID: 33790357 PMCID: PMC8012578 DOI: 10.1038/s41598-021-86649-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Hexaminolevulinate (HAL) induced Protoporphyrin IX (PpIX) fluorescence is commonly used to differentiate cancer cells from normal cells in vivo, as for instance in blue light cystoscopy for bladder cancer diagnosis. A detailed approach is here provided to use this diagnostic principle ex vivo in an immunosensor device, towards enabling non-invasive cancer diagnostic from body fluids, such as urine. Several factors susceptible to affect the applicability of HAL-assisted diagnosis in body fluids were tested. These included the cell viability and its impact on PpIX fluorescence, the storage condition and shelf life of HAL premix reagent, light exposure (360–450 nm wavelengths) and its corresponding effect on both intensity and bleaching of the PpIX fluorescence as a function of the microscopy imaging conditions. There was no significant decrease in the viability of bladder cancer cells after 6 h at 4 °C (student’s t-test: p > 0.05). The cellular PpIX fluorescence decreased in a time-dependent manner when cancer cells were kept at 4 °C for extended period of time, though this didn’t significantly reduce the fluorescence intensity contrast between cancer and non-cancer cells kept in the same condition for 6 h. HAL premix reagent kept in long term storage at 4 °C induced stronger PpIX fluorescence than reagent kept in the − 20 °C freezer. The PpIX fluorescence was negatively affected by repeated light exposure but increased with illumination intensity and exposure time. Though this applied to both healthy and cancer cell lines, and therefore did not statistically improved the differentiation between cell types. This study revealed important experimental settings that need to be carefully considered to benefit from the analytical potential of HAL induced fluorescence when used in technologies for the diagnosis of cancer from body fluids.
Collapse
Affiliation(s)
- Kit Man Chan
- Department of Engineering, UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Jonathan Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jordan Li
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Thomas Danny Michl
- Department of Engineering, UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Krasimir Vasilev
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Melanie MacGregor
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
14
|
Traylor JI, Pernik MN, Sternisha AC, McBrayer SK, Abdullah KG. Molecular and Metabolic Mechanisms Underlying Selective 5-Aminolevulinic Acid-Induced Fluorescence in Gliomas. Cancers (Basel) 2021; 13:cancers13030580. [PMID: 33540759 PMCID: PMC7867275 DOI: 10.3390/cancers13030580] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary 5-aminolevulinic acid (5-ALA) is a medication that produces fluorescence in certain cancers, which enables surgeons to visualize tumor margins during surgery. Gliomas are brain tumors that can be difficult to fully resect due to their infiltrative nature. In this review we explored what is known about the mechanism of 5-ALA, recent discoveries that increase our understanding of that mechanism, and potential targets to increase fluorescence in lower grade gliomas. Abstract 5-aminolevulinic acid (5-ALA) is a porphyrin precursor in the heme synthesis pathway. When supplied exogenously, certain cancers consume 5-ALA and convert it to the fluorogenic metabolite protoporphyrin IX (PpIX), causing tumor-specific tissue fluorescence. Preoperative administration of 5-ALA is used to aid neurosurgical resection of high-grade gliomas such as glioblastoma, allowing for increased extent of resection and progression free survival for these patients. A subset of gliomas, especially low-grade tumors, do not accumulate PpIX intracellularly or readily fluoresce upon 5-ALA administration, making gross total resection difficult to achieve in diffuse lesions. We review existing literature on 5-ALA metabolism and PpIX accumulation to explore potential mechanisms of 5-ALA-induced glioma tissue fluorescence. Targeting the heme synthesis pathway and understanding its dysregulation in malignant tissues could aid the development of adjunct therapies to increase intraoperative fluorescence after 5-ALA treatment.
Collapse
Affiliation(s)
- Jeffrey I. Traylor
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.)
| | - Mark N. Pernik
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.)
| | - Alex C. Sternisha
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Correspondence: (S.K.M.); (K.G.A.); Tel.: +1-(214)-648-3730 (S.K.M.); +1-(214)-645-2300 (K.G.A.)
| | - Kalil G. Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.)
- Correspondence: (S.K.M.); (K.G.A.); Tel.: +1-(214)-648-3730 (S.K.M.); +1-(214)-645-2300 (K.G.A.)
| |
Collapse
|
15
|
Eibl T, Hammer A, Yakubov E, Blechschmidt C, Kalisch A, Steiner HH. Medulloblastoma in adults - reviewing the literature from a surgeon's point of view. Aging (Albany NY) 2021; 13:3146-3160. [PMID: 33497354 PMCID: PMC7880386 DOI: 10.18632/aging.202568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Medulloblastoma is a common primary brain tumor in children but it is a rare cancer in adult patients. We reviewed the literature, searching PubMed for articles on this rare tumor entity, with a focus on tumor biology, advanced neurosurgical opportunities for safe tumor resection, and multimodal treatment options. Adult medulloblastoma occurs at a rate of 0.6 per one million people per year. There is a slight disparity between male and female patients, and patients with a fair skin tone are more likely to have a medulloblastoma. Patients present with cerebellar signs and signs of elevated intracranial pressure. Diagnostic efforts should consist of cerebral MRI and MRI of the spinal axis. Cerebrospinal fluid should be investigated to look for tumor dissemination. Medulloblastoma tumors can be classified as classic, desmoplastic, anaplastic, and large cell, according to the WHO tumor classification. Molecular subgroups include WNT, SHH, group 3, and group 4 tumors. Further molecular analyses suggest that there are several subgroups within the four existing subgroups, with significant differences in patient age, frequency of metastatic spread, and patient survival. As molecular markers have started to play an increasing role in determining treatment strategies and prognosis, their importance has increased rapidly. Treatment options include microsurgical tumor resection and radiotherapy and, in addition, chemotherapy that respects the tumor biology of individual patients offers targeted therapeutic approaches. For neurosurgeons, intraoperative imaging and tumor fluorescence may improve resection rates. Disseminated disease, residual tumor after surgery, lower radiation dose, and low Karnofsky performance status are all suggestive of a poor outcome. Extraneural spread occurs only in very few cases. The reported 5-year-survival rates range between 60% and 80% for all adult medulloblastoma patients.
Collapse
Affiliation(s)
- Thomas Eibl
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg 90471, Bavaria, Germany
| | - Alexander Hammer
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg 90471, Bavaria, Germany
| | - Eduard Yakubov
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg 90471, Bavaria, Germany
| | - Cristiane Blechschmidt
- Department of Neuropathology, Paracelsus Medical University, Nuremberg 90471, Bavaria, Germany
| | - Alexander Kalisch
- Department of Oncology, Paracelsus Medical University, Nuremberg 90471, Bavaria, Germany
| | - Hans-Herbert Steiner
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg 90471, Bavaria, Germany
| |
Collapse
|
16
|
Khot MI, Downey CL, Armstrong G, Svavarsdottir HS, Jarral F, Andrew H, Jayne DG. The role of ABCG2 in modulating responses to anti-cancer photodynamic therapy. Photodiagnosis Photodyn Ther 2019; 29:101579. [PMID: 31639455 DOI: 10.1016/j.pdpdt.2019.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023]
Abstract
The ATP-binding cassette (ABC) superfamily G member 2 (ABCG2) transmembrane protein transporter is known for conferring resistance to treatment in cancers. Photodynamic therapy (PDT) is a promising anti-cancer method involving the use of light-activated photosensitisers to precisely induce oxidative stress and cell death in cancers. ABCG2 can efflux photosensitisers from out of cells, reducing the capacity of PDT and limiting the efficacy of treatment. Many studies have attempted to elucidate the relationship between the expression of ABCG2 in cancers, its effect on the cellular retention of photosensitisers and its impact on PDT. This review looks at the studies which investigate the effect of ABCG2 on a range of different photosensitisers in different pre-clinical models of cancer. This work also evaluates the approaches that are being investigated to address the role of ABCG2 in PDT with an outlook on potential clinical validation.
Collapse
Affiliation(s)
- M Ibrahim Khot
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK.
| | - Candice L Downey
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - Gemma Armstrong
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | | | - Fazain Jarral
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - Helen Andrew
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - David G Jayne
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| |
Collapse
|
17
|
Chelakkot VS, Som J, Yoshioka E, Rice CP, Rutihinda SG, Hirasawa K. Systemic MEK inhibition enhances the efficacy of 5-aminolevulinic acid-photodynamic therapy. Br J Cancer 2019; 121:758-767. [PMID: 31551581 PMCID: PMC6889170 DOI: 10.1038/s41416-019-0586-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Protoporphyrin IX (PpIX) gets accumulated preferentially in 5-aminolevulinic acid (5-ALA)-treated cancer cells. Photodynamic therapy (PDT) utilises the accumulated PpIX to trigger cell death by light-induced generation of reactive oxygen species (ROS). We previously demonstrated that oncogenic Ras/MEK decreases PpIX accumulation in cancer cells. Here, we investigated whether combined therapy with a MEK inhibitor would improve 5-ALA-PDT efficacy. METHODS Cancer cells and mice models of cancer were treated with 5-ALA-PDT, MEK inhibitor or both MEK inhibitor and 5-ALA-PDT, and treatment efficacies were evaluated. RESULTS Ras/MEK negatively regulates the cellular sensitivity to 5-ALA-PDT as cancer cells pre-treated with a MEK inhibitor were killed more efficiently by 5-ALA-PDT. MEK inhibition promoted 5-ALA-PDT-induced ROS generation and programmed cell death. Furthermore, the combination of 5-ALA-PDT and a systemic MEK inhibitor significantly suppressed tumour growth compared with either monotherapy in mouse models of cancer. Remarkably, 44% of mice bearing human colon tumours showed a complete response with the combined treatment. CONCLUSION We demonstrate a novel strategy to promote 5-ALA-PDT efficacy by targeting a cell signalling pathway regulating its sensitivity. This preclinical study provides a strong basis for utilising MEK inhibitors, which are approved for treating cancers, to enhance 5-ALA-PDT efficacy in the clinic.
Collapse
Affiliation(s)
- Vipin Shankar Chelakkot
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Jayoti Som
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Ema Yoshioka
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Chantel P Rice
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Suzette G Rutihinda
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Kensuke Hirasawa
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
18
|
Schwake M, Schipmann S, Müther M, Köchling M, Brentrup A, Stummer W. 5-ALA fluorescence-guided surgery in pediatric brain tumors-a systematic review. Acta Neurochir (Wien) 2019; 161:1099-1108. [PMID: 30989383 DOI: 10.1007/s00701-019-03898-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND 5-Aminolevulinic acid (5-ALA)-guided resection of gliomas in adults enables better differentiation between tumor and normal brain tissue, allowing a higher degree of resection, and improves patient outcomes. In recent years, several reports have emerged regarding the use of 5-ALA in other brain tumor entities, including pediatric brains tumors. Since gross total resection (GTR) of many brain tumors in children is crucial and the role of 5-ALA-guided resection of these tumors is not clear, we sought to perform a comprehensive literature review on this topic. METHODS A systematic literature review of EMBASE and MEDLINE/PubMed databases revealed 19 eligible publications encompassing 175 5-ALA-guided operations on pediatric brain tumors. To prevent bias, publications were revised independently by two authors. RESULTS We found that 5-ALA-guided resection enabled the surgeons to identify the tumor more easily and was considered helpful mainly in cases of glioblastoma (GBM, 21/27, 78%), anaplastic ependymoma WHO grade III (10/14, 71%), and anaplastic astrocytoma (4/6, 67%). In contrast, cases of pilocytic astrocytomas (PAs) and medulloblastomas 5-ALA-guided surgery did not show consistent fluorescent signals and 5-ALA was considered helpful only in 12% and 22% of cases, respectively. Accumulation of fluorescent porphyrins seems to depend on WHO tumor grading. One important finding is that when 5-ALA-guided resections were considered helpful, the degree of resection was higher than is cases where it was not helpful. The rate of adverse events related to 5-ALA was negligible, especially new postoperative sequelae. CONCLUSION 5-ALA could play a role in resection of pediatric brain tumors. However, further prospective clinical trials are needed.
Collapse
|