1
|
Mikhailova EO. Green Silver Nanoparticles: An Antibacterial Mechanism. Antibiotics (Basel) 2024; 14:5. [PMID: 39858291 PMCID: PMC11762094 DOI: 10.3390/antibiotics14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Silver nanoparticles (AgNPs) are a promising tool in the fight against pathogenic microorganisms. "Green" nanoparticles are especially valuable due to their environmental friendliness and lower energy consumption during production, as well as their ability to minimize the number of toxic by-products. This review focuses on the features of AgNP synthesis using living organisms (bacteria, fungi, plants) and the involvement of various biological compounds in this process. The mechanism of antibacterial activity is also discussed in detail with special attention given to anti-biofilm and anti-quorum sensing activities. The toxicity of silver nanoparticles is considered in light of their further biomedical applications.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
2
|
Gollapudi KK, Dutta SD, Adnan M, Taylor ML, Reddy KVNS, Alle M, Huang X. Dialdehyde cellulose nanofibrils/polyquaternium stabilized ultra-fine silver nanoparticles for synergistic antibacterial therapy. Int J Biol Macromol 2024; 280:135971. [PMID: 39322171 DOI: 10.1016/j.ijbiomac.2024.135971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Dialdehyde cellulose nanofibrils (DACNF) and Polyquaternium-10 (PQ: chloro-2-hydroxy-3-(trimethylamino) propyl polyethylene glycol cellulose) have become increasingly favored as antibacterial substances due to their advantageous characteristics. DACNF exhibits exceptional mechanical properties and biocompatibility, whereas PQ demonstrates a positive charge that enhances its antibacterial activity. Combined in a DACNF/PQ mixture, they provide an excellent template material for preparing and stabilizing ultra-fine (~ 10.3 nm) silver nanoparticles (AgNPs) at room temperature. Here, the dialdehyde group of DACNF functions as a reducing agent, while the quaternary ammonium of PQ and carboxylate groups of DACNF synergistically helped in-situ generation of AgNPs uniformly. The synthesized nanocomposites, namely PQ@AgNPs, AgNPs@DACNF, and AgNPs@DACNF/PQ, were subjected to comprehensive characterization using various advanced analytical techniques. The films containing AgNPs@DACNF and AgNPs@DACNF/PQ, fabricated via vacuum filtration, exhibited excellent mechanical properties of 9.78 ± 0.21 MPa, and demonstrated superior antibacterial activity against both Escherichia coli and Staphylococcus aureus. Additionally, the silver ion leaching from the prepared composite films was well controlled. The fabricated nanocomposites also effectively inhibited bacterial biofilm formation. It was also found to be highly biocompatible and non-toxic to human skin fibroblast cells. Furthermore, the nanocomposites exhibited enhanced migration of human dermal fibroblasts, suggesting their potential in facilitating wound healing processes.
Collapse
Affiliation(s)
- Kranthi Kumar Gollapudi
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India
| | - Sayan Deb Dutta
- Center for Surgical Bioengineering, Department of Surgery, University of California Davis, Sacramento 95817, United States
| | - Md Adnan
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States
| | - Mitchell Lee Taylor
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States
| | - K V N Suresh Reddy
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India.
| | - Madhusudhan Alle
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States.
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States.
| |
Collapse
|
3
|
Almatroudi A. Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics 2024; 16:1232. [PMID: 39339268 PMCID: PMC11435049 DOI: 10.3390/pharmaceutics16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Silver nanoparticles (AgNPs) are leading the way in nanotechnological innovation, combining the captivating properties of silver with the accuracy of nanoscale engineering, thus revolutionizing material science. Three main techniques arise within the alchemical domains of AgNP genesis: chemical, physical, and biological synthesis. Each possesses its distinct form of magic for controlling size, shape, and scalability-key factors necessary for achieving expertise in the practical application of nanoparticles. The story unravels, describing the careful coordination of chemical reduction, the environmentally sensitive charm of green synthesis utilizing plant extracts, and the precise accuracy of physical techniques. AgNPs are highly praised in the field of healthcare for their powerful antibacterial characteristics. These little warriors display a wide-ranging attack against bacteria, fungi, parasites, and viruses. Their critical significance in combating hospital-acquired and surgical site infections is highly praised, serving as a beacon of hope in the fight against the challenging problem of antibiotic resistance. In addition to their ability to kill bacteria, AgNPs are also known to promote tissue regeneration and facilitate wound healing. The field of cancer has also observed the adaptability of AgNPs. The review documents their role as innovative carriers of drugs, specifically designed to target cancer cells with accuracy, minimizing harm to healthy tissues. Additionally, it explores their potential as cancer therapy or anticancer agents capable of disrupting the growth of tumors. In the food business, AgNPs are utilized to enhance the durability of packing materials and coatings by infusing them with their bactericidal properties. This results in improved food safety measures and a significant increase in the duration that products can be stored, thereby tackling the crucial issue of food preservation. This academic analysis recognizes the many difficulties that come with the creation and incorporation of AgNPs. This statement pertains to the evaluation of environmental factors and the effort to enhance synthetic processes. The review predicts future academic pursuits, envisioning progress that will enhance the usefulness of AgNPs and increase their importance from being new to becoming essential within the realms of science and industry. Besides, AgNPs are not only a subject of scholarly interest but also a crucial component in the continuous effort to tackle some of the most urgent health and conservation concerns of contemporary society. This review aims to explore the complex process of AgNP synthesis and highlight their numerous uses, with a special focus on their growing importance in the healthcare and food business sectors. This review invites the scientific community to explore the extensive possibilities of AgNPs in order to fully understand and utilize their potential.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
4
|
Kumar P, Singh A, Sarkar N, Kaushik M. Protein coupled thionine acetate probed silica nanoparticles: An integrated laser-assisted therapeutic approach for treating cancer. Bioorg Chem 2024; 147:107398. [PMID: 38691907 DOI: 10.1016/j.bioorg.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Herein, we report a multifaceted nanoformulation, developed by binding thionine acetate (TA) in silica matrix to form TA loaded silica nanoparticles (STA Nps), which were characterized using various physicochemical techniques. STA NPs were spherical shaped having size 40-50 nm and exhibited good heating efficiency, improved photostability and singlet oxygen production rate than TA alone. In PDT experiment, the rate of degradation for ABDMA was enhanced from 0.1367 min-1 for TA alone to 0.1774 min-1 for STA Nps, depicting an increase in the reactive oxygen species (ROS) generation ability of STA Nps. Further, the cytotoxicity of STA Nps was investigated by carrying out the biophysical studies with Calf thymus DNA (Ct-DNA) and Human Serum Albumin (HSA). The results indicated that the binding of STA Nps to Ct-DNA causes alterations in the double helix structure of DNA and as a result, STA Nps can impart chemotherapeutic effects via targeting DNA. STA Nps showed good binding affinity with HSA without compromising the structure of HSA, which is important for STA Nps sustainable biodistribution and pharmacokinetics. Based on this study, it is suggested that because of the synergistic effect of chemo and phototherapy, STA Nps can be extensively utilized as potential candidates for treating cancer.
Collapse
Affiliation(s)
- Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India; Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India; Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India.
| |
Collapse
|
5
|
Zarate-Escobedo J, Zavaleta-Mancera HA, Soto-Hernández RM, Pérez-Rodríguez P, Vilchis-Nestor AR, Silva-Rojas HV, Trejo-Téllez LI. Long-Lasting Silver Nanoparticles Synthesized with Tagetes erecta and Their Antibacterial Activity against Erwinia amylovora, a Serious Rosaceous Pathogen. PLANTS (BASEL, SWITZERLAND) 2024; 13:981. [PMID: 38611509 PMCID: PMC11013423 DOI: 10.3390/plants13070981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
A rapid, eco-friendly, and simple method for the synthesis of long-lasting (2 years) silver nanoparticles (AgNPs) is reported using aqueous leaf and petal extracts of Tagetes erecta L. The particles were characterized using UV-Visible spectrophotometry and the analytical and crystallographic techniques of transmission electron microscopy (TEM). The longevity of the AgNPs was studied using UV-Vis and high-resolution TEM. The antibacterial activity of the particles against Erwinia amylovora was evaluated using the Kirby-Bauer disk diffusion method. The results were analyzed using ANOVA and Tukey's test (p ≤ 0.05). Both the leaf and petal extracts produced AgNPs, but the leaf extract (1 mL) was long-lasting and quasi-spherical (17.64 ± 8.87 nm), with an absorbance of UV-Vis λmax 433 and a crystalline structure (fcc, 111). Phenols, flavonoids, tannins, and terpenoids which are associated with -OH, C=O, and C=C were identified in the extracts and could act as reducing and stabilizing agents. The best antibacterial activity was obtained with a nanoparticle concentration of 50 mg AgNPs L-1. The main contribution of the present research is to present a sustainable method for producing nanoparticles which are stable for 2 years and with antibacterial activity against E. amylovora, one of most threatening pathogens to pear and apple productions.
Collapse
Affiliation(s)
- Johana Zarate-Escobedo
- Programa de Fisiología Vegetal, Colegio de Postgraduados en Ciencias Agrícolas Campus Montecillo, Montecillo, Texcoco 56264, Estado de México, Mexico;
| | - Hilda Araceli Zavaleta-Mancera
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas Campus Montecillo, Montecillo, Texcoco 56264, Estado de México, Mexico;
| | - Ramón Marcos Soto-Hernández
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas Campus Montecillo, Montecillo, Texcoco 56264, Estado de México, Mexico;
| | - Paulino Pérez-Rodríguez
- Programa de Estadística, Colegio de Postgraduados en Ciencias Agrícolas Campus Montecillo, Montecillo, Texcoco 56264, Estado de México, Mexico;
| | | | - Hilda Victoria Silva-Rojas
- Programa de Semillas, Colegio de Postgraduados en Ciencias Agrícolas Campus Montecillo, Montecillo, Texcoco 56264, Estado de México, Mexico;
| | - Libia Iris Trejo-Téllez
- Laboratorio de Nutrición Vegetal, Programa de Edafología, Colegio de Postgraduados en Ciencias Agrícolas Campus Montecillo, Montecillo, Texcoco 56264, Estado de México, Mexico;
| |
Collapse
|
6
|
Patnaik N, Dey RJ. Label-Free Citrate-Stabilized Silver Nanoparticles-Based, Highly Sensitive, Cost-Effective, and Rapid Visual Method for the Differential Detection of Mycobacterium tuberculosis and Mycobacterium bovis. ACS Infect Dis 2024; 10:426-435. [PMID: 38112513 DOI: 10.1021/acsinfecdis.3c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Tuberculosis poses a global health challenge, and it demands improved diagnostics and therapies. Distinguishing between Mycobacterium tuberculosis (M. tb) and Mycobacterium bovis (M. bovis) infections holds critical "One Health" significance due to the zoonotic nature of these infections and inherent resistance of M. bovis to pyrazinamide, a key part of the directly observed treatment, short-course (DOTS) regimen. Furthermore, most of the currently used molecular detection methods fail to distinguish between the two species. To address this, our study presents an innovative molecular-biosensing strategy. We developed a label-free citrate-stabilized silver nanoparticle aggregation assay that offers sensitive, cost-effective, and swift detection. For molecular detection, genomic markers unique to M. tb and M. bovis were targeted using species-specific primers. In addition to amplifying species-specific regions, these primers also aid the detection of characteristic deletions in each of the mycobacterial species. Post polymerase chain reaction (PCR), we compared two highly sensitive visual detection methods with respect to the traditional agarose gel electrophoresis. The paramagnetic bead-based bridging flocculation assay successfully discriminates M. tb from M. bovis with a sensitivity of ∼40 bacilli. The second strategy exploits citrate-stabilized silver nanoparticles, which aggregate in the absence of amplified dsDNA on the addition of sodium chloride (NaCl). This technique enables the precise, sensitive, and differential detection of as few as ∼4 bacilli. Our study hence advances tuberculosis detection, overcoming the challenges of M. tb and M. bovis differentiation and offering a quicker alternative to time-consuming methods.
Collapse
Affiliation(s)
- Naresh Patnaik
- Department of Biological Sciences, BITS Pilani Hyderabad Campus, Hyderabad, Telangana State 500078, India
| | - Ruchi Jain Dey
- Department of Biological Sciences, BITS Pilani Hyderabad Campus, Hyderabad, Telangana State 500078, India
| |
Collapse
|
7
|
Khurana S, Kukreti S, Kaushik M. Prospecting the cancer therapeutic edge of chitosan-based gold nanoparticles through conformation selective binding to the parallel G-quadruplex formed by short telomeric DNA sequence: A multi-spectroscopic approach. Int J Biol Macromol 2023; 253:126835. [PMID: 37709220 DOI: 10.1016/j.ijbiomac.2023.126835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The biological relevance of G4 structures formed in telomere & oncogenes promoters make them extremely crucial therapeutic target for cancer treatment. Herein, we have synthesized chitosan-based gold nanoparticles (CH-Au NPs) through green method and have investigated their interaction with G4 structures formed by short telomeric sequences to evaluate their potential for targeting G4 structures. Firstly, we have characterized morphological/physical attributes of synthesized CH-Au NPs and salt dependent structural aspects of model G-rich DNA sequence, 12-mer d(T2G4)2 [TETRA] using spectroscopic and biophysical techniques. The molecular interactions between CH-Au NPs and parallel/antiparallel TETRA G4 structures were evaluated using UV-Visible, CD, Fluorescence, CD melting, DLS and Zeta potential studies. The experimental data indicated that CH-Au NPs showed strong binding interactions with Parallel TETRA G4 and provided thermal stabilization to the structure, whereas their interactions with Antiparallel TETRA G4 DNA and Ct-DNA (DNA duplex) were found to be negligible. Further, CH-Au NPs were also investigated for their selectivity aptitude for different G4 structures formed by human telomeric sequences; d(T2AG3)3 [HUM-12] and d(T2AG3)4T [HUM-25]. Our findings suggested that CH-Au NPs exhibited topology specific binding aptitude towards G4 structure, which can be utilized to inhibit/modulate crucial biological functions for potential anticancer activity.
Collapse
Affiliation(s)
- Sonia Khurana
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
8
|
Ungureanu E, Vladescu (Dragomir) A, Parau AC, Mitran V, Cimpean A, Tarcolea M, Vranceanu DM, Cotrut CM. In Vitro Evaluation of Ag- and Sr-Doped Hydroxyapatite Coatings for Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5428. [PMID: 37570133 PMCID: PMC10419960 DOI: 10.3390/ma16155428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Osseointegration plays the most important role in the success of an implant. One of the applications of hydroxyapatite (HAp) is as a coating for metallic implants due to its bioactive nature, which improves osteoconduction. The purpose of this research was to assess the in vitro behavior of HAp undoped and doped with Ag and/or Sr obtained by galvanostatic pulsed electrochemical deposition. The coatings were investigated in terms of chemical bonds, contact angle and surface free energy, electrochemical behavior, in vitro biomineralization in acellular media (SBF and PBS), and biocompatibility with preosteoblasts cells (MC3T3-E1 cell line). The obtained results highlighted the beneficial impact of Ag and/or Sr on the HAp. The FTIR spectra confirmed the presence of hydroxyapatite within all coatings, while in terms of wettability, the contact angle and surface free energy investigations showed that all surfaces were hydrophilic. The in vitro behavior of MC3T3-E1 indicated that the presence of Sr in the HAp coatings as a unique doping agent or in combination with Ag elicited improved cytocompatibility in terms of cell proliferation and osteogenic differentiation. Therefore, the composite HAp-based coatings showed promising potential for bone regeneration applications.
Collapse
Affiliation(s)
- Elena Ungureanu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Alina Vladescu (Dragomir)
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 409 Atomistilor Street, 77125 Magurele, Romania (A.C.P.)
| | - Anca C. Parau
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 409 Atomistilor Street, 77125 Magurele, Romania (A.C.P.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Independentei Street, 050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Independentei Street, 050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Mihai Tarcolea
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Diana M. Vranceanu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Cosmin M. Cotrut
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| |
Collapse
|
9
|
Gao Z, Liu S, Li S, Shao X, Zhang P, Yao Q. Fabrication and Properties of the Multifunctional Rapid Wound Healing Panax notoginseng@Ag Electrospun Fiber Membrane. Molecules 2023; 28:molecules28072972. [PMID: 37049735 PMCID: PMC10096071 DOI: 10.3390/molecules28072972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The Panax notoginseng@Ag core/shell electrospun fiber membrane was prepared by coaxial electrospinning combined with the UV reduction method (254 nm). The prepared Panax notoginseng@Ag core/shell nanofiber membrane has a three-dimensional structure, and its swelling ratio could reach as high as 199.87%. Traditional Chinese medicine Panax notoginseng can reduce inflammation, and the silver nanoparticles have antibacterial effects, which synergistically promote rapid wound healing. The developed Panax notoginseng@Ag core/shell nanofiber membrane can effectively inhibit the growth of the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus. The wound healing experiments in Sprague Dawley mice showed that the wound residual area rate of the Panax notoginseng@Ag core/shell electrospun nanofiber membrane group was only 1.52% on day 9, and the wound of this group basically healed on day 12, while the wound residual area rate of the gauze treatment group (control group) was 16.3% and 10.80% on day 9 and day 12, respectively. The wound of the Panax notoginseng@Ag core/shell electrospun nanofiber membrane group healed faster, which contributed to the application of the nanofiber as Chinese medicine rapid wound healing dressings.
Collapse
Affiliation(s)
| | | | | | | | - Pingping Zhang
- Correspondence: (P.Z.); (Q.Y.); Tel.: +86-0531-82919706 (P.Z.)
| | - Qingqiang Yao
- Correspondence: (P.Z.); (Q.Y.); Tel.: +86-0531-82919706 (P.Z.)
| |
Collapse
|
10
|
Barhoum A, García-Betancourt ML, Jeevanandam J, Hussien EA, Mekkawy SA, Mostafa M, Omran MM, S. Abdalla M, Bechelany M. Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:177. [PMID: 35055196 PMCID: PMC8780156 DOI: 10.3390/nano12020177] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023]
Abstract
Nanomaterials are becoming important materials in several fields and industries thanks to their very reduced size and shape-related features. Scientists think that nanoparticles and nanostructured materials originated during the Big Bang process from meteorites leading to the formation of the universe and Earth. Since 1990, the term nanotechnology became very popular due to advances in imaging technologies that paved the way to specific industrial applications. Currently, nanoparticles and nanostructured materials are synthesized on a large scale and are indispensable for many industries. This fact fosters and supports research in biochemistry, biophysics, and biochemical engineering applications. Recently, nanotechnology has been combined with other sciences to fabricate new forms of nanomaterials that could be used, for instance, for diagnostic tools, drug delivery systems, energy generation/storage, environmental remediation as well as agriculture and food processing. In contrast with traditional materials, specific features can be integrated into nanoparticles, nanostructures, and nanosystems by simply modifying their scale, shape, and composition. This article first summarizes the history of nanomaterials and nanotechnology. Followed by the progress that led to improved synthesis processes to produce different nanoparticles and nanostructures characterized by specific features. The content finally presents various origins and sources of nanomaterials, synthesis strategies, their toxicity, risks, regulations, and self-aggregation.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland
| | | | - Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Eman A. Hussien
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
| | - Sara A. Mekkawy
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Menna Mostafa
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Mohga S. Abdalla
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, 34000 Montpellier, France
| |
Collapse
|
11
|
Probing multifunctional azure B conjugated gold nanoparticles with serum protein binding properties for trimodal photothermal, photodynamic, and chemo therapy: Biophysical and photophysical investigations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112678. [DOI: 10.1016/j.msec.2022.112678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
|
12
|
Sonia, Komal, Kukreti S, Kaushik M. Gold nanoclusters: An ultrasmall platform for multifaceted applications. Talanta 2021; 234:122623. [PMID: 34364432 DOI: 10.1016/j.talanta.2021.122623] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
Gold nanoclusters (Au NCs) with a core size below 2 nm form an exciting class of functional nano-materials with characteristic physical and chemical properties. The properties of Au NCs are more prominent and extremely different from their bulk counterparts. The synthesis of Au NCs is generally assisted by template or ligand, which impart excellent cluster stability and high quantum yield. The tunable and sensitive physicochemical properties of Au NCs open horizons for their advanced applications in various interdisciplinary fields. In this review, we briefly summarize the solution phase synthesis and origin of the characteristic properties of Au NCs. A vast review of recent research work introducing biosensors based on Au NCs has been presented along with their specifications and detection limits. This review also highlights recent progress in the use of Au NCs as bio-imaging probe, enzyme mimic, temperature sensing probe and catalysts. A speculation on present challenges and certain future prospects have also been provided to enlighten the path for advancement of multifaceted applications of Au NCs.
Collapse
Affiliation(s)
- Sonia
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Komal
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
13
|
Khurana S, Kukreti S, Kaushik M. Designing a two-stage colorimetric sensing strategy based on citrate reduced gold nanoparticles: Sequential detection of Sanguinarine (anticancer drug) and visual sensing of DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119039. [PMID: 33080515 DOI: 10.1016/j.saa.2020.119039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Distance dependent optical properties of colloidal gold nanoparticles offer designing of colorimetric sensing modalities for detection of a variety of analytes. Herein, we report a simple and facile colorimetric detection assay for an anti-cancer drug, Sanguinarine (SNG) and Calf Thymus DNA (Ct-DNA) based on citrate reduced gold nanoparticles (CI-Au NPs). The electrostatic interaction between SNG and CI-Au NPs induce aggregation of Au NPs accompanied with visible colour change of colloidal solution. The assay conditions like salt concentration, pH and reaction time had been adjusted to achieve highly sensitive and fast colorimetric response. Furthermore, the optimized CI-Au NPs/SNG sensing system is used for the detection of Ct-DNA based on the mechanism of anti-aggregation of CI-Au NPs. The simultaneous presence of SNG and Ct-DNA prevent aggregation of Au NPs owing to preferential formation of Ct-DNA-SNG intercalation complex and colour of the Au NPs solution tends to remain red, depending on the concentration of Ct-DNA in solution. The degree of aggregation and anti-aggregation of CI-Au NPs was monitored using Transmission electron microscopic (TEM) measurements and UV-Visible spectrophotometry by analysing the ratio of absorptions for aggregated and dispersed Au NPs. The intercalation mode of binding between SNG and Ct-DNA in CI-Au NPs/SNG sensing system was determined by Fluorescence spectral studies and UV-thermal melting studies. The absorption ratio (A627/A525) of Au NPs exhibited a linear correlation with SNG concentrations in the range from 0 to 0.9 μM with detection limit as 0.046 μM. This optical method can determine Ct-DNA as low as 0.36 μM and the calibration is linear for concentration range 0 to 5 μM. The proposed sensing strategy enables detection as well as quantification of SNG & Ct-DNA in real samples with satisfactory results and finds application in drug or DNA monitoring.
Collapse
Affiliation(s)
- Sonia Khurana
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
14
|
Chandraker SK, Lal M, Dhruve P, Singh RP, Shukla R. Cytotoxic, Antimitotic, DNA Binding, Photocatalytic, H 2O 2 Sensing, and Antioxidant Properties of Biofabricated Silver Nanoparticles Using Leaf Extract of Bryophyllum pinnatum (Lam.) Oken. Front Mol Biosci 2021; 7:593040. [PMID: 33585553 PMCID: PMC7876318 DOI: 10.3389/fmolb.2020.593040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Bryophyllum pinnatum is a perennial herb traditionally used in ethnomedicine. In the present report, silver nanoparticles (AgNPs) were synthesized using B. pinnatum leaf extract. BP-AgNPs were confirmed following UV-Vis spectroscopy with SPR peak at 412 nm and further characterized by FTIR, XRD, SEM-EDX, and TEM. Microscopic images confirmed the spherical shape and ~15 nm average size of nanostructures. BP-AgNPs were evaluated for photocatalytic degradation of hazardous dyes (methylene blue and Rhodamine-B) and showed their complete reduction within 100 and 110 min., respectively. BP-AgNPs have emerged as a unique SPR-based novel sensor for the detection of H2O2, which may deliver exciting prospects in clinical and industrial areas. DPPH and ABTS free radical scavenging activity were studied with respective IC50 values of 89 and 259 μg/mL. A strong intercalating interaction of CT-DNA with BP-AgNPs was investigated. Observed chromosomal abnormalities confirm the antimitotic potential of BP-AgNPs in the meristematic root tip. The cytotoxicity of BP-AgNPs against B16F10 (melanoma cell line) and A431 (squamous cell carcinoma cell line), was assessed with respective IC50 values of 59.5 and 96.61 μg/ml after 24 h of treatment. The presented green synthetic approach provides a novel and new door for environmental, industrial, and biomedical applications.
Collapse
Affiliation(s)
- Sandip Kumar Chandraker
- Laboratory of Bio-Resource Technology, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| | - Mishri Lal
- Laboratory of Bio-Resource Technology, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| | - Preeti Dhruve
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P. Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ravindra Shukla
- Laboratory of Bio-Resource Technology, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
15
|
Hoang TTTL, Insin N, Sukpirom N. Catalytic activity of silver nanoparticles anchored on layered double hydroxides and hydroxyapatite. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Yadav N, Singh A, Kaushik M. Hydrothermal synthesis and characterization of magnetic Fe 3O 4 and APTS coated Fe 3O 4 nanoparticles: physicochemical investigations of interaction with DNA. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:68. [PMID: 32705385 DOI: 10.1007/s10856-020-06405-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Magnetic nanoparticles (MNPs) especially iron oxide (Fe3O4) NPs have quite extensively been used for in vivo delivery of biomolecules and drugs because of their high bioconjugation efficiency. In this study, Fe3O4 NPs and (3-Aminopropyl) triethoxysilane (APTS) coated Fe3O4 NPs were synthesized and their interaction with Calf thymus (Ct) DNA has been studied in order to understand their usage in biomedical applications. Hydrothermal method was used for the NPs synthesis. Characterization of NPs was done using techniques like UV-Visible spectroscopy, FTIR spectroscopy, FE-SEM, EDAX, Zeta Sizer and powder XRD. Further, interaction studies of NPs with Ct-DNA were investigated using various physicochemical techniques. In UV-Visible studies, hypochromicity with binding constant 3.2 × 105 M-1 was observed. Binding constants calculated using fluorescence studies were found to be k = 3.2 × 104 M-1, 2.9 × 104 M-1 at 293 and 323 K respectively. Results of UV-Visible and fluorescence studies were in correlation with other techniques like UV-TM and CD. All studies suggested alteration in DNA conformation on interaction with surface engineered Fe3O4 NPs, stabilizing DNA-NPs conjugate via partial intercalation and electrostatic interactions. This study may facilitate our understanding regarding the physicochemical properties and DNA-binding ability of APTS-Fe3O4 NPs for their further application in magnetosensitive biosensing and drug delivery. Iron oxide based magnetic nanoparticles are well known for their excellent bio-conjugation efficiency and therefore APTS-Fe3O4 NPs were synthesized via very simple and benign hydrothermal method. Further, the interaction of APTS-Fe3O4 NPs with calf thymus DNA was studied using various physicochemical techniques to explore their potential in biomedical applications.
Collapse
Affiliation(s)
- Neelam Yadav
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
- Department of Chemistry, University of Delhi, Delhi, India
| | - Amit Singh
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
- Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
17
|
Mahanthappa M, Savanur MA, Yellappa S. Molecular interaction studies of zinc sulphide nanoparticles with DNA and its consequence: a multitechnique approach. LUMINESCENCE 2020; 36:45-56. [DOI: 10.1002/bio.3912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 05/24/2020] [Accepted: 07/05/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Mallappa Mahanthappa
- Department of Chemistry Bangalore University Jnanabharathi Campus Bengaluru India
- Research Resource Centre Visvesvaraya Technological University Belagavi India
- School of Applied Sciences REVA University Bengaluru 560064 India
| | - Mohammed Azharuddin Savanur
- Department of Biochemistry Karnatak University Dharwad India
- Department of Biochemistry Indian Institute of Science Bengaluru India
| | - Shivaraj Yellappa
- Department of Chemistry Bangalore University Jnanabharathi Campus Bengaluru India
| |
Collapse
|
18
|
Mirzaei-Kalar Z, Yavari A, Jouyban A. Increasing DNA binding affinity of doxorubicin by loading on Fe 3O 4 nanoparticles: A multi-spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117985. [PMID: 31901801 DOI: 10.1016/j.saa.2019.117985] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Magnetic Fe3O4 nanoparticles were synthesized successfully by co-precipitation method and characterized using XRD, SEM and EDS analyses. Then doxorubicin (DOX, a known anticancer drug) was loaded onto nanoparticles. In vitro DNA interaction of free DOX and loaded DOX onto Fe3O4 nanoparticles (DOX-Fe3O4) was investigated by DNA-viscosity measurements, UV-visible and fluorescence spectroscopies. The obtained values for binding constant of DOX and DOX-Fe3O4 compounds from UV-visible spectroscopies were 0.04 × 105 and 0.68 × 105 L mol-1, respectively, which confirms DOX-Fe3O4 compound have a stronger interaction with CT-DNA compared to DOX. Considerable changes on viscosity of the compounds recommended that their binding mode with CT-DNA is intercalative binding. Fluorescence intensity of DOX and DOX-Fe3O4 was quenched via static process by regular addition of CT-DNA. Thermodynamic parameters suggest that Van der Waals forces and hydrogen bonding for DOX and electrostatic forces for DOX-Fe3O4 are predominantly responsible for interaction with CT-DNA. Competition fluorescence studies were done by Hoechst 33258 as a well-known groove binder and ethidium bromide (EtBr) as a known intercalator probe. Percentage of displacement for EtBr-DNA complex with DOX and DOX-Fe3O4 was 39% and 61%, and for Hoechst-DNA complex was 9% and 5%, respectively. These results confirmed that both compounds are intercalator binders, although DOX-Fe3O4 with a further 22% displacement is a stronger intercalator binder than DOX. The stronger interaction of DOX-Fe3O4 compared to DOX suggests that the current system can be used as a new and effective way to targeted therapy of anticancer drugs.
Collapse
Affiliation(s)
- Zeinab Mirzaei-Kalar
- Department of Materials Engineering and Nanotechnology, Sabalan University of Advanced Technologies (SUAT), Namin, Iran; Department of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Ardabil, Iran.
| | - Azin Yavari
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-14766, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Synthesis and characterization of hydrothermally synthesized superparamagnetic APTS–ZnFe2O4 nanoparticles: DNA binding studies for exploring biomedical applications. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00953-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Cytotoxic and mutagenic effects of green silver nanoparticles in cancer and normal cells: a brief review. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00293-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
21
|
Chandraker SK, Lal M, Shukla R. DNA-binding, antioxidant, H2O2 sensing and photocatalytic properties of biogenic silver nanoparticles using Ageratum conyzoides L. leaf extract. RSC Adv 2019; 9:23408-23417. [PMID: 35514502 PMCID: PMC9067290 DOI: 10.1039/c9ra03590g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/20/2019] [Indexed: 11/21/2022] Open
Abstract
Green nanotechnology is gaining widespread interest owing to the elimination of harmful reagents and offers a cost-effective synthesis of expected products.
Collapse
Affiliation(s)
- Sandip Kumar Chandraker
- Laboratory of Bio-resource Technology
- Department of Botany
- Indira Gandhi National Tribal University
- India
| | - Mishri Lal
- Laboratory of Bio-resource Technology
- Department of Botany
- Indira Gandhi National Tribal University
- India
| | - Ravindra Shukla
- Laboratory of Bio-resource Technology
- Department of Botany
- Indira Gandhi National Tribal University
- India
| |
Collapse
|