1
|
Carlsen FM, Westberg I, Johansen IE, Andreasson E, Petersen BL. Strategies and Protocols for Optimized Genome Editing in Potato. CRISPR J 2025; 8:37-50. [PMID: 39628447 DOI: 10.1089/crispr.2024.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
The potato family includes a highly diverse cultivar repertoire and has a high potential for nutritional yield improvement and refinement but must in line with other crops be adapted to biotic and abiotic stresses, for example, accelerated by climate change and environmental demands. The combination of pluripotency, high ploidy, and relative ease of protoplast isolation, transformation, and regeneration together with clonal propagation through tubers makes potato highly suitable for precise genetic engineering. Most potato varieties are tetraploid having a very high prevalence of length polymorphisms and small nucleotide polymorphisms between alleles, often complicating CRISPR-Cas editing designs and strategies. CRISPR-Cas editing in potato can be divided into (i) characterization of target area and in silico-aided editing design, (ii) isolation and editing of protoplast cells, and (iii) the subsequent explant regeneration from single protoplast cells. Implementation of efficient CRISPR-Cas editing relies on efficient editing at the protoplast (cell pool) level and on robust high-throughput editing scoring methods at the cell pool and explant level. Gene and chromatin structure are additional features to optionally consider. Strategies and solutions for addressing key steps in genome editing of potato, including light conditions and schemes for reduced exposure to hormones during explant regeneration, which is often linked to somaclonal variation, are highlighted.
Collapse
Affiliation(s)
- Frida Meijer Carlsen
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ida Westberg
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ida Elisabeth Johansen
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Bent Larsen Petersen
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
2
|
Lauria G, Ceccanti C, Lo Piccolo E, El Horri H, Guidi L, Lawson T, Landi M. "Metabolight": how light spectra shape plant growth, development and metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14587. [PMID: 39482564 DOI: 10.1111/ppl.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 11/03/2024]
Abstract
Innovations in light technologies (i.e. Light Emitting Diodes; LED) and cover films with specific optical features (e.g. photo-selective, light-extracting) have revolutionized crop production in both protected environments and open fields. The possibility to modulate the light spectra, thereby enriching/depleting cultivated plants with targeted wavebands has attracted increasing interest from both basic and applicative research. Indeed, the light environment not only influences plant biomass production but is also a pivotal factor in shaping plant size, development and metabolism. In the last decade, the strict interdependence between specific wavebands and the accumulation of targeted secondary metabolites has been exploited to improve the quality of horticultural products. Innovation in LED lighting has also marked the improvement of streetlamp illumination, thereby posing new questions about the possible influence of light pollution on urban tree metabolism. In this case, it is urgent and challenging to propose new, less-impacting solutions by modulating streetlamp spectra in order to preserve the ecosystem services provided by urban trees. The present review critically summarizes the main recent findings related to the morpho-anatomical, physiological, and biochemical changes induced by light spectra management via different techniques in crops as well as in non-cultivated species. This review explores the following topics: (1) plant growth in monochromatic environments, (2) the use of greenhouse light supplementation, (3) the application of covering films with different properties, and (4) the drawbacks of streetlamp illumination on urban trees. Additionally, it proposes new perspectives offered by in planta photomodulation.
Collapse
Affiliation(s)
- Giulia Lauria
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Costanza Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Ermes Lo Piccolo
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Hafsa El Horri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Khan IU, Jamil Y, Shams F, Farsi S, Humayun M, Hussain A, Ahmad A, Iqbal A, Alrefaei AF, Ali S. Unlocking the in vitro and in vivo antioxidant and anti-inflammatory activities of polysaccharide fractions from Lepidium sativum seed-coat mucilage. Heliyon 2024; 10:e36797. [PMID: 39319123 PMCID: PMC11419874 DOI: 10.1016/j.heliyon.2024.e36797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Inflammation coupled with oxidative stress contribute to the pathogenicity of various clinical disorders. Oxidative stress arises from an imbalance between production of reactive oxygen species (ROS) and antioxidant defense system, leading to cellular damages. The study investigated the antioxidant and anti-inflammatory effects of polysaccharides isolated from Lepidium sativum seed-coat mucilage. The water-soluble polysaccharides were extracted from mucilage and fractionated using gel permeation chromatography. The radical scavenging potential of various fractions was determined using DPPH, H2O2, and lipid peroxidation assays. The most effective EC50 was recorded for F53 (57.41 ± 1.34 μg/mL), followed by F20 (69.19 ± 0.61 μg/mL) and F52 (75.06 ± 0.45 μg/mL). In vitro anti-inflammatory effect was determined through human membrane stabilization assay while the in vivo effect was evaluated using a carrageenan-induced paw edema in mouse model where F53 demonstrated significant (P = 0.05) anti-inflammatory potential (92.60 % compared to diclofenac sodium 91.46 %). GC-MS analysis revealed the presence of galacturonic acid and glucuronic acid as main acidic monosaccharides along with varying quantities of rhamnose, arabinose, and maltose as prominent neutral monosaccharides. The study concludes that cress seed mucilage contains potent antioxidant and anti-inflammatory polysaccharides. Further studies on the mode of action of these polysaccharides could provide deeper insights into their potential use as antioxidant and anti-inflammatory agents.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yusra Jamil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Fareeha Shams
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Salman Farsi
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Humayun
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan Khyber Pakhtunkhwa, Pakistan
| | | | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Republic of Korea
| |
Collapse
|
4
|
Salem A, Abdelhedi O, Ben Taheur F, Mansour C, Safta Skhiri S, Sebai H, Jridi M, Zouari N, Fakhfakh N. Novel garden cress-fish gelatin based ointment: Improvement of skin wound healing in rats through modulation of anti-inflammatory and antioxidant states. Heliyon 2024; 10:e33048. [PMID: 39022005 PMCID: PMC11253254 DOI: 10.1016/j.heliyon.2024.e33048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
This study aimed to investigate the ability of aqueous extract of Lepidium sativum seeds (LSE) to improve the wound healing process in rat models. The gelatin, extracted from the skin of smooth-hound shark using citric acid, was used as a support material for ointment. Animals were divided into four groups of six rats each: an untreated control group, a control group treated with Moist Exposed Burn Ointment (MEBO), a treated group with gelatin gel, and a treated group with gelatin gel fortified with 20 mg/mL LSE. Phenolics profile analysis showed that the major compounds in LSE were catechin (125 μg/g) and quinic acid (105 μg/g). In vitro antioxidant tests showed that LSE has interesting activities to scavenge ABTS•+ radicals (IC50 = 0.22 mg/mL) and inhibit the oxidation of linoleic acid. A significant decline in the antioxidant enzymes activities and an increase in the level of thiobarbituric acid reactive substances (TBARS) and inflammatory markers was observed within the injured tissues of the untreated rats compared to rats treated with MEBO. Interestingly, when the wounded tissue was treated with gelatin gel a remarkable reversal of this trend occurred. Further, by enrichment of gelatin gel with LSE, the levels of CAT, GPx and SOD activities significantly increased by 35, 126, and 212 %, respectively, whereas the TBARS level was reduced by 31 %. These results were consistent with the wound contraction percentage and histological analysis, which suggest the potential effect of LSE-enriched gelatin gels to regenerate damaged tissues.
Collapse
Affiliation(s)
- Ali Salem
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Ola Abdelhedi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Fadia Ben Taheur
- High Institute of Applied Biology of Medenine, University of Gabes, 4119, Medenine, Tunisia
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Chalbia Mansour
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Sihem Safta Skhiri
- University of Monastir, ABCDF Laboratory, Faculty of Dental Medicine, Monastir, 5000, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Nacim Zouari
- High Institute of Applied Biology of Medenine, University of Gabes, 4119, Medenine, Tunisia
| | - Nahed Fakhfakh
- High Institute of Applied Biology of Medenine, University of Gabes, 4119, Medenine, Tunisia
| |
Collapse
|
5
|
Grzegorczyk-Karolak I, Ejsmont W, Kiss AK, Tabaka P, Starbała W, Krzemińska M. Improvement of Bioactive Polyphenol Accumulation in Callus of Salvia atropatana Bunge. Molecules 2024; 29:2626. [PMID: 38893502 PMCID: PMC11173501 DOI: 10.3390/molecules29112626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Callus cultures of the Iranian medicinal plant Salvia atropatana were initiated from three-week-old seedlings on Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA) and various cytokinins. Although all tested hormonal variants of the medium and explant enabled callus induction, the most promising growth was noted for N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU)-induced calli. Three lines obtained on this medium (cotyledon line-CL, hypocotyl line-HL, and root line-RL) were preselected for further studies. Phenolic compounds in the callus tissues were identified using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry) and quantified with HPLC (high-performance liquid chromatography). All lines exhibited intensive growth and contained twelve phenolic acid derivatives, with rosmarinic acid predominating. The cotyledon-derived callus line displayed the highest growth index values and polyphenol content; this was exposed to different light-emitting diodes (LED) for improving biomass accumulation and secondary metabolite yield. Under LED treatments, all callus lines exhibited enhanced RA and total phenolic content compared to fluorescent light, with the highest levels observed for white (48.5-50.2 mg/g dry weight) and blue (51.4-53.9 mg/g dry weight) LEDs. The selected callus demonstrated strong antioxidant potential in vitro based on the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) tests. Our findings confirm that the S. atropatana callus system is suitable for enhanced rosmarinic acid production; the selected optimized culture provide high-quality plant-derived products.
Collapse
Affiliation(s)
- Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland; (W.E.); (W.S.); (M.K.)
| | - Wiktoria Ejsmont
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland; (W.E.); (W.S.); (M.K.)
| | - Anna Karolina Kiss
- Department of Pharmaceutical Biology, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Przemyslaw Tabaka
- Institute of Electrical Power Engineering, Lodz University of Technology, 90-537 Lodz, Poland;
| | - Wiktoria Starbała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland; (W.E.); (W.S.); (M.K.)
| | - Marta Krzemińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland; (W.E.); (W.S.); (M.K.)
| |
Collapse
|
6
|
Szűcs Z, Cziáky Z, Volánszki L, Máthé C, Vasas G, Gonda S. Production of Polyphenolic Natural Products by Bract-Derived Tissue Cultures of Three Medicinal Tilia spp.: A Comparative Untargeted Metabolomics Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1288. [PMID: 38794359 PMCID: PMC11124948 DOI: 10.3390/plants13101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Medicinal plant tissue cultures are potential sources of bioactive compounds. In this study, we report the chemical characterization of the callus cultures of three medicinal Tilia spp. (Tilia cordata, Tilia vulgaris and Tilia tomentosa), along with the comparison to bracts and flowers of the same species. Our aim was to show that calli of Tilia spp. are good alternatives to the calli of T. americana for the production of polyphenols and are better sources of a subset of polyphenolic metabolites, compared to the original organs. Calli were initiated from young bracts and grown on woody plant medium containing 1 mg L-1 2,4-D and 0.1 mg L-1 BAP. For chemical characterization, a quality-controlled untargeted metabolomics approach and the quantification of several bioactive compounds was performed with the use of LC-ESI-MS/MS. While bracts and flowers contained flavonoid glycosides (astragalin, isoquercitrin) as major polyphenols, calli of all species contained catechins, coumarins (fraxin, esculin and scopoletin) and flavane aglyca. T. tomentosa calli contained 5397 µg g DW-1 catechin, 201 µg g DW-1 esculin, 218 µg g DW-1 taxifolin and 273 µg g DW-1 eriodictyol, while calli from other species contained lower amounts. T. cordata and T. tomentosa flowers were rich in isoquercitrin, containing 8134 and 6385 µg g DW-1, respectively. The currently tested species contained many of the bioactive metabolites described from T. americana. The production of catechin was shown to be comparable to the most efficient tissue cultures reported. Flowers and bracts contained flavonoid glycosides, including tiliroside, resembling bioactive fractions of T. americana. In addition, untargeted metabolomics has shown fingerprint-like differences among species, highlighting possible chemotaxonomic and quality control applications, especially for bracts.
Collapse
Affiliation(s)
- Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
- Healthcare Industry Institute, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Sóstói út 31/b, 4400 Nyíregyháza, Hungary;
| | - László Volánszki
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Csaba Máthé
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
- Balaton Limnological Research Institute, HUN-REN (Hungarian Research Network), Klebelsberg K. u. 3, 8237 Tihany, Hungary
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
| |
Collapse
|
7
|
Strieth D, Kollmen J, Stiefelmaier J, Mehring A, Ulber R. Co-cultures from Plants and Cyanobacteria: A New Way for Production Systems in Agriculture and Bioprocess Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:83-117. [PMID: 38286901 DOI: 10.1007/10_2023_247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.
Collapse
Affiliation(s)
- D Strieth
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany.
| | - J Kollmen
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - J Stiefelmaier
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - A Mehring
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - R Ulber
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
8
|
Medison MB, Pan R, Peng Y, Medison RG, Shalmani A, Yang X, Zhang W. Identification of HQT gene family and their potential function in CGA synthesis and abiotic stresses tolerance in vegetable sweet potato. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:361-376. [PMID: 37033766 PMCID: PMC10073390 DOI: 10.1007/s12298-023-01299-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Hydroxycinnamate-CoA quinate hydroxycinnamoyl transferase (HQT) enzyme affect plant secondary metabolism and are crucial for growth and development. To date, limited research on the genome-wide analysis of HQT family genes and their regulatory roles in chlorogenic acid (CGA) accumulation in leafy vegetable sweet potato is available. Here, a total of 58 HQT family genes in the sweet potato genome (named IbHQT) were identified and analyzed. We studied the chromosomal distribution, phylogenetic relationship, motifs distribution, collinearity, and cis-acting element analysis of HQT family genes. This study used two sweet potato varieties, high CGA content Fushu 7-6-14-7 (HC), and low CGA content Fushu 7-6 (LC). Based on the phylogenetic analysis, clade A was unique among the identified four clades as it contained HQT genes from various species. The chromosomal location and collinearity analysis revealed that tandem gene duplication may promote the IbHQT gene expansion and expression. The expression patterns and profile analysis showed changes in gene expression levels at different developmental stages and under cold, drought, and salt stress conditions. The expression analysis verified by qRT-PCR revealed that IbHQT genes were highly expressed in the HC variety leaves than in the LC variety. Furthermore, cloning and gene function analysis unveiled that IbHQT family genes are involved in the biosynthesis and accumulation of CGA in sweet-potato. This study expands our understanding of the regulatory role of HQT genes in sweet-potato and lays a foundation for further functional characterization and genetic breeding by engineering targeted HQT candidate genes in various sweet-potato varieties and other species. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01299-4.
Collapse
Affiliation(s)
- Milca Banda Medison
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| | - Ying Peng
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| | - Rudoviko Galileya Medison
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100 China
| | - XinSun Yang
- Institute of Food Crops/Hubei Engineering and Technology Research Centre of Sweet Potato/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
9
|
Bajwa MN, Khanum M, Zaman G, Ullah MA, Farooq U, Waqas M, Ahmad N, Hano C, Abbasi BH. Effect of Wide-Spectrum Monochromatic Lights on Growth, Phytochemistry, Nutraceuticals, and Antioxidant Potential of In Vitro Callus Cultures of Moringa oleifera. Molecules 2023; 28:1497. [PMID: 36771159 PMCID: PMC9921732 DOI: 10.3390/molecules28031497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
Moringa oleifera, also called miracle tree, is a pharmaceutically important plant with a multitude of nutritional, medicinal, and therapeutic attributes. In the current study, an in-vitro-based elicitation approach was used to enhance the commercially viable bioactive compounds in an in vitro callus culture of M. oleifera. The callus culture was established and exposed to different monochromatic lights to assess the potentially interactive effects on biomass productions, biosynthesis of pharmaceutically valuable secondary metabolites, and antioxidant activity. Optimum biomass production (16.7 g/L dry weight), total phenolic contents (TPC: 18.03 mg/g), and flavonoid contents (TFC: 15.02 mg/g) were recorded in callus cultures placed under continuous white light (24 h), and of other light treatments. The highest antioxidant activity, i.e., ABTS (550.69 TEAC µM) and FRAP (365.37 TEAC µM), were also noted under white light (24 h). The analysis of phytochemicals confirmed the significant impact of white light exposures on the enhanced biosynthesis of plant secondary metabolites. The enhanced levels of secondary metabolites, i.e., kaempferol (1016.04 µg/g DW), neochlorogenic acid (998.38 µg/g DW), quercetin (959.92 µg/g DW), and minor compounds including luteolin, apigenin, and p-coumaric acid were observed as being highest in continuous white light (24 h with respect to the control (photoperiod). Similarly, blue light enhanced the chlorogenic acid accumulation. This study shows that differential spectral lights demonstrate a good approach for the enhancement of nutraceuticals along with novel pharmacologically important metabolites and antioxidants in the in vitro callus culture of M. oleifera.
Collapse
Affiliation(s)
| | - Mehnaz Khanum
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Gouhar Zaman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Asad Ullah
- School of Agriculture and Food Sciences, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia
| | - Umar Farooq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nisar Ahmad
- Center for Biotechnology and Microbiology (CB&M), University of Swat, Swat 19200, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orleans, INRAE USC1328, F28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Pakistan Academy of Sciences, Islamabad 44000, Pakistan
| |
Collapse
|
10
|
HEKMATSHOAR Y, ÖZKAN T, RAHBAR SAADAT Y. Evidence for Health-Promoting Properties of Lepidium sativum L.: An Updated Comprehensive Review. Turk J Pharm Sci 2022; 19:714-723. [PMID: 36544402 PMCID: PMC9780570 DOI: 10.4274/tjps.galenos.2021.07504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
Lepidium sativum L. is a common herb distributed worldwide, used as a food ingredient and therapeutic agent in traditional medicine for treating health-related disorders. L. sativum and its extracts have been described to possess numerous biological activities including antimicrobial, antidiabetic, antioxidant, antidiarrheal, anticancer, and numerous health-promoting effects in in vivo and in vitro studies. The purpose of this review is to summarize the findings describing important biological functions and therapeutic effects of L. sativum in various cell lines and animal models. In this review, the English-language articles were gathered from electronic databases including Web of Science, PubMed and Google Scholar with no time limit applied to any database. The search terms used in this review include, "Lepidium sativum L." and/or "chemical composition", "health benefits", "antimicrobial", "antioxidant", "anticancer", "diuretic", "nephro-protection", "antidiarrheal", "antidiabetic", "anti-asthmatic", "neuroprotection", "metabolic", "bone fracture", and "reproductive performance". Additional and eligible studies were collected from reference lists of appropriate articles. The information presented will be helpful to attract more interest toward medicinal plants by defining and developing novel clinical applications and new drug formulations in the future. Pre-clinical studies showed that L. sativum possesses potent health-promoting effects involving various molecular mechanisms. Taken all together, data suggested that identified herbal plants such as L. sativum, can be exploited as nutritional and therapeutic agents to combat various ailments. Despite much research in this field, further comprehensive in vitro/in vivo studies and clinical trials are needed to identify the mechanisms underlying the biological and therapeutic activities of L. sativum.
Collapse
Affiliation(s)
- Yalda HEKMATSHOAR
- University of Missouri, School of Medicine, Department of Child Health, Columbia, USA
- Altınbaş University, School of Medicine, Medical Biology Department, İstanbul, Türkiye
| | - Tülin ÖZKAN
- University of Missouri, School of Medicine, Department of Child Health, Columbia, USA
- Ankara University, Faculty of Medicine, Department of Medical Biology, Ankara, Türkiye
| | | |
Collapse
|
11
|
Light Quality-Mediated Influence of Morphogenesis in Micropropagated Horticultural Crops: A Comprehensive Overview. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4615079. [PMID: 36506916 PMCID: PMC9734009 DOI: 10.1155/2022/4615079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 12/04/2022]
Abstract
In plants, light quality plays significant roles in photomorphogenesis and photosynthesis. Efficient in vitro plant propagation techniques involve tailoring of various environmental cues and culture media according to the plant species. Plant tissue culture consists of several applications in scientific research, agriculture, biotechnology, and commercial industrial purposes. Utilization of light to enhance the quality of the in vitro raised plants have been evidenced by numerous researchers in plant tissue culture. The advent of light-emitting diode- (LED-) based artificial lighting systems in plant tissue culture for micropropagation has enhanced callus induction, shoot and root organogenesis, and acclimatization of in vitro propagated plants. Plants tend to perceive the light spectra present in the photosynthetically active region (PAR) ranging from 400 to 700 nm; this includes blue and red light wavelengths. Although the influence of spectral quality is being investigated in diverse plant species, particularly, its importance in in vitro propagated horticultural crops is gaining notable interest among researchers. In recent days, the application of LEDs provides better amenability according to the plant species of interest for efficient plant regeneration. Considering the growing necessity and emerging applications of LED supplemental lights for propagation of plants in in vitro, the present review summarizes the outcomes of various research studies dealing with LEDs in plant tissue culture. Moreover, the present endeavor has provided a comprehensive overview on the effects of LEDs in the morphogenesis of plants cultured in vitro.
Collapse
|
12
|
Lai CC, Pan H, Zhang J, Wang Q, Que QX, Pan R, Lai ZX, Lai GT. Light Quality Modulates Growth, Triggers Differential Accumulation of Phenolic Compounds, and Changes the Total Antioxidant Capacity in the Red Callus of Vitis davidii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13264-13278. [PMID: 36216360 DOI: 10.1021/acs.jafc.2c04620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Light quality is one of the key elicitors that directly affect plant cell growth and biosynthesis of secondary metabolites. In this study, the red callus of spine grape was cultured under nine light qualities (namely, dark, white, red, yellow, blue, green, purple, warm-yellow, and warm-white light). The effects of different light qualities were studied on callus growth, accumulation of phenolic compounds, and total antioxidant capacity of the red callus of spine grape. The results showed that blue and purple light induced increased red coloration in the callus, whereas yellow light induced the greatest callus proliferation. Among all of the light quality treatments, darkness treatment downregulated the contents of phenolic compounds, whereas blue light was the treatment most conducive to the accumulation of total phenolics. White, blue, and purple light induced increased anthocyanin accumulation. Mixed-wavelength light was beneficial to the accumulation of flavonoids. Blue and purple light were conducive to the accumulation of proanthocyanidins. A further study showed that cyanidin 3-glucoside (Cy3G) and peonidin 3-glucoside (P3G) were the main anthocyanin components in the callus, and blue, purple, and white light treatments promoted their accumulation, whereas flavan-3-ols and flavonols were the main components of non-anthocyanin phenolics, and their accumulation changed in response to not only light quality but also culture duration. The total antioxidant capacity of the callus cultures changed significantly in response to different light qualities. These results will provide evidence for an abiotic elicitor strategy to stimulate callus growth and enhance the accumulation of the main phenolic compounds in the red callus of spine grape.
Collapse
Affiliation(s)
- Cheng-Chun Lai
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350003, Fujian, China
| | - Hong Pan
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jing Zhang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qi Wang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350003, Fujian, China
| | - Qiu-Xia Que
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Ruo Pan
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhong-Xiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Gong-Ti Lai
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350003, Fujian, China
| |
Collapse
|
13
|
Comparative Analysis of Various Plant-Growth-Regulator Treatments on Biomass Accumulation, Bioactive Phytochemical Production, and Biological Activity of Solanum virginianum L. Callus Culture Extracts. COSMETICS 2022. [DOI: 10.3390/cosmetics9040071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Solanum virginianum L. (Solanum xanthocarpum) is an important therapeutic plant due to the presence of medicinally useful plant-derived compounds. S. virginianum has been shown to have anticancer, antioxidant, antibacterial, antiaging, and anti-inflammatory properties. This plant is becoming endangered due to overexploitation and the loss of its native habitat. The purpose of this research is to develop an ideal technique for the maximum biomass and phytochemical accumulation in S. virginianum leaf-induced in vitro cultures, as well as to evaluate their potential antiaging, anti-inflammatory, and antioxidant abilities. Leaf explants were grown on media (Murashige and Skoog (MS)) that were supplemented with various concentrations and combinations of plant hormones (TDZ, BAP, NAA, and TDZ + NAA) for this purpose. When compared with the other hormones, TDZ demonstrated the best response for callus induction, biomass accumulation, phytochemical synthesis, and biological activities. However, with 5 mg/L of TDZ, the optimal biomass production (FW: 251.48 g/L and DW: 13.59 g/L) was estimated. The highest total phenolic level (10.22 ± 0.44 mg/g DW) was found in 5 mg/L of TDZ, whereas the highest flavonoid contents (1.65 ± 0.11 mg/g DW) were found in 10 mg/L of TDZ. The results of the HPLC revealed that the highest production of coumarins (scopoletin: 4.34 ± 0.20 mg/g DW and esculetin: 0.87 ± 0.040 mg/g DW) was determined for 10 mg/L of TDZ, whereas the highest accumulations of caffeic acid (0.56 ± 0.021 mg/g DW) and methyl caffeate (18.62 ± 0.60 mg/g DW) were shown by 5 mg/L of TDZ. The determination of these phytochemicals (phenolics and coumarins) estimates that the results of our study on biological assays, such as antioxidant, anti-inflammatory, and antiaging assays, are useful for future cosmetic applications.
Collapse
|
14
|
Benayad O, Bouhrim M, Tiji S, Kharchoufa L, Addi M, Drouet S, Hano C, Lorenzo JM, Bendaha H, Bnouham M, Mimouni M. Phytochemical Profile, α-Glucosidase, and α-Amylase Inhibition Potential and Toxicity Evaluation of Extracts from Citrus aurantium (L) Peel, a Valuable By-Product from Northeastern Morocco. Biomolecules 2021; 11:1555. [PMID: 34827553 PMCID: PMC8615658 DOI: 10.3390/biom11111555] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Due to the high volume of peel produced, Citrus by-product processing could be a significant source of phenolic compounds, in addition to essential oil. Citrus fruit residues, which are usually dumped as waste in the environment, could be used as a source of nutraceuticals. Citrus aurantium (L), also known as sour or bitter orange, is a member of the Rutaceae family and is the result of interspecific hybridization between Citrus reticulata and Citrus maxima. The purpose of this study is to chemically and biologically evaluate the peel of C. aurantium, which is considered a solid waste destined for abandonment. To achieve more complete extraction of the phytochemicals, we used a sequential extraction process with Soxhlet using the increasing polarity of solvents (i.e., cyclohexane, chloroform, ethyl acetate, acetone, and ethanol-water mixture). Essential oil (EO) from the Citrus peel, which was present at 1.12%, was also prepared by hydrodistillation for comparison. Various phytochemical assays were used to determine the qualitative chemical composition, which was subsequently characterized using GC-MS and HPLC-DAD. The inhibitory effects of C. aurantium peel extract on two enzymes, intestinal α-glucosidase and pancreatic α-amylase, were measured in vitro to determine their potential hypoglycemic and antidiabetic actions. Each extract had a significantly different phytochemical composition. According to GC-MS analyses, which allow the identification of 19 compounds, d-limonene is the most abundant compound in both EO and cyclohexane extract, at 35.17% and 36.15% (w/w). This comparison with hydrodistillation shows the value of the sequential process in extracting this valuable terpene in large quantities while also allowing for the subsequent extraction of other bioactive substances. On the contrary, linoleic acid is abundant (54.35% (w/w)) in ethyl acetate extract (EAE) with a lower amount of d-limonene. HPLC-DAD analysis allows the identification of 11 phytochemicals, with naringenin being the most abundant flavanone, detected in acetone extract (ACE) (23.94% (w/w)), ethanol-water extract mixture (EWE) (28.71% (w/w)), and chloroform extract (CFE) (30.20% (w/w)). Several extracts significantly inhibited α-amylase and/or α-glycosidase in vitro. At a dose of 332 g/mL, ACE, CFE, and EWE inhibited the two enzymes by approximately 98%. There were strong significant correlations between naringenin and α-glucosidase inhibition and between gallic acid and α-amylase inhibition. Molecular docking experiments further verified this. Finally, oral administration of C. aurantium extracts at a dose of 2000 mg/kg did not cause any effect on mice mortality or signs of acute toxicity, indicating that it is non-toxic at these doses. These findings suggest that C. aurantium peels could be a valuable by-product by providing a rich source of non-toxic phytoconstituents, particularly those with potential antidiabetic action that needs to be confirmed in vivo.
Collapse
Affiliation(s)
- Ouijdane Benayad
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (S.T.); (H.B.); (M.M.)
| | - Mohamed Bouhrim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (M.B.); (L.K.); (M.B.)
| | - Salima Tiji
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (S.T.); (H.B.); (M.M.)
| | - Loubna Kharchoufa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (M.B.); (L.K.); (M.B.)
| | - Mohamed Addi
- Laboratoire dʼAmélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco;
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Hasnae Bendaha
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (S.T.); (H.B.); (M.M.)
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (M.B.); (L.K.); (M.B.)
| | - Mostafa Mimouni
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences Oujda (FSO), University Mohammed First (UMP), Oujda 60000, Morocco; (S.T.); (H.B.); (M.M.)
| |
Collapse
|
15
|
Ullah MA, Gul FZ, Khan T, Bajwa MN, Drouet S, Tungmunnithum D, Giglioli-Guivarc'h N, Liu C, Hano C, Abbasi BH. Differential induction of antioxidant and anti-inflammatory phytochemicals in agitated micro-shoot cultures of Ajuga integrifolia Buch. Ham. ex D.Don with biotic elicitors. AMB Express 2021; 11:137. [PMID: 34661766 PMCID: PMC8523646 DOI: 10.1186/s13568-021-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
Ajuga integrifolia Buch. Ham. ex D.Don, a member of Lamiaceae family is pharmaceutically an active perennial herb widely spread in China, Afghanistan and Pakistan Himalayan region. The application of biotic elicitors is a promising approach to cover limitations of in vitro cell technology and challenges faced by pharmaceuticals industry for bulk up production. The current study involved the induction of agitated micro-shoot cultures with the aim to investigate the growth-promoting as well as phytochemicals enhancement role of yeast extract (YE) and pectin (PE). The results showed that both elicitors induced a considerable physiological response. Biomass accumulation was observed maximum (DW: 18.3 g/L) against PE (10 mg/L) compared to YE and control. Eleven secondary phytocompounds were quantified using high-performance liquid chromatography. PE (50 mg/L) was found to be effective in elicitation of rosmarinic acid (680.20 µg/g), chlorogenic acid (294.12 µg/g), apigenin (579.61 µg/g) and quercetin (596.89 µg/g). However, maximum caffeic acid (359.52 µg/g) and luteolin (546.12 µg/g accumulation was noted in PE (1 mg/L) treatment. Harpagide, aucubin, harpagoside and 8-O-acetyl-harpagoside production was suppressed by both elicitors except for YE (100 mg/L). Catalpol accumulation in micro-shoot cultures was also downregulated except in response to YE (50 and 100 mg/L). Antioxidant activity and anti-inflammatory activity remained higher under PE (50 mg/L) and YE (100 mg/L) respectively. Therefore, results suggested that Ajuga integrifolia micro-shoot cultures treated with yeast extract and pectin might be an efficient bio-factory to produce commercially potent specific secondary metabolites.
Collapse
Affiliation(s)
- Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus, Brisbane, 4343, Australia
| | - Faiza Zareen Gul
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Taimoor Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Sultanate of Oman
| | - Muhammad Naeem Bajwa
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | | - Chunzhao Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France.
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
16
|
Linking the Phytochemicals and the α-Glucosidase and α-Amylase Enzyme Inhibitory Effects of Nigella sativa Seed Extracts. Foods 2021; 10:foods10081818. [PMID: 34441595 PMCID: PMC8393492 DOI: 10.3390/foods10081818] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Nigella sativa L. (Ranunculaceae), commonly referred to as black seeds or black cumin, is used in popular medicine (herbal) all over the world for the treatment and prevention of several diseases, including diabetes. This study aims to investigate the inhibitory effect of N. sativa extracts and fractions against the activities of intestinal α-glucosidase and pancreatic α-amylase in vitro, and to explain the inhibitory effect of these fractions against these enzymes by identifying their active compounds responsible for this effect and determine their modes of inhibition. To do so, N. sativa hexane and acetone extracts were prepared and analyzed by GC-MS and HPLC-DAD, respectively. The hexane extract was further fractioned into eight different fractions, while the acetone extract generated eleven fractions. The extracts as well as the resulting fractions were characterized and evaluated for their potential in vitro antidiabetic activity using intestinal α-glucosidase and pancreatic α-amylase inhibitory assays in vitro. Hexane extract and fractions were less active than acetone extract and fractions. In the case of intestinal α-glucosidase activity, the acetone fraction SA3 had a high inhibitory effect on intestinal α-glucosidase activity with 72.26 ± 1.42%, comparable to the effect of acarbose (70.90 ± 1.12%). For the pancreatic α-amylase enzymatic inhibitory assay, the acetone fractions showed an inhibitory capacity close to that for acarbose. In particular, the SA2 fraction had an inhibitory effect of 67.70 ± 0.58% and was rich in apigenin and gallic acid. From these fractions, apigenin, (-)-catechin, and gallic acid were further characterized for their inhibitory actions. IC50 and inhibition mode were determined by analyzing enzyme kinetic parameters and by molecular modeling. Interestingly, (-)-catechin showed a possible synergistic effect with acarbose toward α-glucosidase enzyme inhibition, whereas apigenin showed an additive effect with acarbose toward α-amylase enzymatic inhibition. Furthermore, we studied the toxicity of N. sativa hexane and acetone extracts as well as that of acetone fractions. The result of acute toxicity evaluation demonstrated that N. sativa extracts were nontoxic up to a concentration of 10 g/kg, except for fraction SA3. Taken together, these results indicate that N. sativa extracts and/or derived compounds could constitute promising nutraceuticals for the prevention and treatment of type 2 diabetes mellitus.
Collapse
|
17
|
Scarlet Flax Linum grandiflorum (L.) In Vitro Cultures as a New Source of Antioxidant and Anti-Inflammatory Lignans. Molecules 2021; 26:molecules26154511. [PMID: 34361665 PMCID: PMC8348589 DOI: 10.3390/molecules26154511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
In vitro cultures of scarlet flax (Linum grandiflorum L.), an important ornamental flax, have been established as a new possible valuable resource of lignans and neolignans for antioxidant and anti-inflammatory applications. The callogenic potential at different concentrations of α-naphthalene acetic acid (NAA) and thidiazuron (TDZ), alone or in combinations, was evaluated using both L. grandiflorum hypocotyl and cotyledon explants. A higher callus induction frequency was observed on NAA than TDZ, especially for hypocotyl explants, with a maximum frequency (i.e., 95.2%) on 1.0 mg/L of NAA. The presence of NAA (1.0 mg/L) in conjunction with TDZ tended to increase the frequency of callogenesis relative to TDZ alone, but never reached the values observed with NAA alone, thereby indicating the lack of synergy between these two plant growth regulators (PGRs). Similarly, in terms of biomass, NAA was more effective than TDZ, with a maximum accumulation of biomass registered for medium supplemented with 1.0 mg/L of NAA using hypocotyls as initial explants (DW: 13.1 g). However, for biomass, a synergy between the two PGRs was observed, particularly for cotyledon-derived explants and for the lowest concentrations of TDZ. The influence of these two PGRs on callogenesis and biomass is discussed. The HPLC analysis confirmed the presence of lignans (secoisolariciresinol (SECO) and lariciresinol (LARI) and neolignan (dehydrodiconiferyl alcohol [DCA]) naturally accumulated in their glycoside forms. Furthermore, the antioxidant activities performed for both hypocotyl- and cotyledon-derived cultures were also found maximal (DPPH: 89.5%, FRAP 866: µM TEAC, ABTS: 456 µM TEAC) in hypocotyl-derived callus cultures as compared with callus obtained from cotyledon explants. Moreover, the anti-inflammatory activities revealed high inhibition (COX-1: 47.4% and COX-2: 51.1%) for extract of hypocotyl-derived callus cultures at 2.5 mg/L TDZ. The anti-inflammatory action against COX-1 and COX-2 was supported by the IC50 values. This report provides a viable approach for enhanced biomass accumulation and efficient production of (neo)lignans in L. grandiflorum callus cultures.
Collapse
|
18
|
The Protective Function and Modification of Secondary Metabolite Accumulation in Response to Light Stress in Dracocephalum forrestii Shoots. Int J Mol Sci 2021; 22:ijms22157965. [PMID: 34360728 PMCID: PMC8347274 DOI: 10.3390/ijms22157965] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/17/2023] Open
Abstract
The aim of this work was to determine the effect of stress conditions caused by different light sources, i.e., blue LED (λ = 430 nm), red LED (λ = 670 nm), blue and red LED (70%:30%) and white LED (430–670 nm) on the growth and morphology of cultivated in vitro Dracocephalum forrestii shoot culture. It also examines the effects on bioactive phenolic compound production and photosynthetic pigment content, as well as on antioxidant enzyme activity (CAT, SOD, POD) and antioxidant properties. The most beneficial proliferation effect was observed under white LEDs (7.1 ± 2.1 shoots per explant). The white and blue lights stimulated the highest fresh weight gain, while red light induced the highest dry weight gain. The total phenolic acid content ranged from 13.824 ± 1.181 to 20.018 ± 801 mg g DW−1 depending on light conditions. The highest content of rosmarinic acid was found in the control shoots (cultivated under fluorescent lamps), followed by culture grown under red light. All LED treatments, especially red and blue, increased salvianolic acid B content, and blue increased apigenin p-coumarylrhamnoside biosynthesis. The greatest ferric reduction activity was observed in shoots cultivated under red light, followed by blue; this is associated with the presence of the highest total phenol content, especially phenolic acids. Similarly, the highest DPPH radical scavenging potential was observed under red light followed by blue. This study proves that LEDs have emerged as significant support for directed in vitro propagation, taking advantage of specific stress responses on various light spectra. This study also showed how stress induced by different LED light spectra increases in Dracocephalum forrestii the synthesis of pharmacologically-active compounds. Hence, light stress may turn out to be a simpler alternative to metabolic engineering for improving the production of secondary metabolites of therapeutic value.
Collapse
|
19
|
Jung WS, Chung IM, Hwang MH, Kim SH, Yu CY, Ghimire BK. Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants. Molecules 2021; 26:1477. [PMID: 33803168 PMCID: PMC7963184 DOI: 10.3390/molecules26051477] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Light is a key factor that affects phytochemical synthesis and accumulation in plants. Due to limitations of the environment or cultivated land, there is an urgent need to develop indoor cultivation systems to obtain higher yields with increased phytochemical concentrations using convenient light sources. Light-emitting diodes (LEDs) have several advantages, including consumption of lesser power, longer half-life, higher efficacy, and wider variation in the spectral wavelength than traditional light sources; therefore, these devices are preferred for in vitro culture and indoor plant growth. Moreover, LED irradiation of seedlings enhances plant biomass, nutrient and secondary metabolite levels, and antioxidant properties. Specifically, red and blue LED irradiation exerts strong effects on photosynthesis, stomatal functioning, phototropism, photomorphogenesis, and photosynthetic pigment levels. Additionally, ex vitro plantlet development and acclimatization can be enhanced by regulating the spectral properties of LEDs. Applying an appropriate LED spectral wavelength significantly increases antioxidant enzyme activity in plants, thereby enhancing the cell defense system and providing protection from oxidative damage. Since different plant species respond differently to lighting in the cultivation environment, it is necessary to evaluate specific wavebands before large-scale LED application for controlled in vitro plant growth. This review focuses on the most recent advances and applications of LEDs for in vitro culture organogenesis. The mechanisms underlying the production of different phytochemicals, including phenolics, flavonoids, carotenoids, anthocyanins, and antioxidant enzymes, have also been discussed.
Collapse
Affiliation(s)
- Woo-Suk Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Myeong Ha Hwang
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; (M.H.H.); (C.Y.Y.)
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Chang Yeon Yu
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; (M.H.H.); (C.Y.Y.)
| | - Bimal Kumar Ghimire
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| |
Collapse
|
20
|
Zafar H, Gul FZ, Mannan A, Zia M. ZnO NPs reveal distinction in toxicity under different spectral lights: An in vitro experiment on Brassica nigra (Linn.) Koch. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Usman H, Ullah MA, Jan H, Siddiquah A, Drouet S, Anjum S, Giglioli-Guviarc’h N, Hano C, Abbasi BH. Interactive Effects of Wide-Spectrum Monochromatic Lights on Phytochemical Production, Antioxidant and Biological Activities of Solanum xanthocarpum Callus Cultures. Molecules 2020; 25:E2201. [PMID: 32397194 PMCID: PMC7248882 DOI: 10.3390/molecules25092201] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Solanum xanthocarpum is considered an important traditional medicinal herb because of its unique antioxidant, and anti-diabetic, anti-aging, and anti-inflammatory potential. Because of the over exploitation linked to its medicinal properties as well as destruction of its natural habitat, S. xanthocarpum is now becoming endangered and its supply is limited. Plant in vitro culture and elicitation are attractive alternative strategies to produce biomass and stimulate biosynthesis of medicinally important phytochemicals. Here, we investigated the potential influence of seven different monochromatic light treatments on biomass and secondary metabolites accumulation in callus culture of S. xanthocarpum as well as associated biological activities of the corresponding extracts. Among different light treatments, highest biomass accumulation was observed in white light-treated callus culture. Optimum accumulation of total flavonoid contents (TFC) and total phenolic contents (TPC) were observed in callus culture kept under continuous white and blue light respectively than control. Quantification of phytochemicals through HPLC revealed that optimum production of caffeic acid (0.57 ± 0.06 mg/g DW), methyl-caffeate (17.19 mg/g ± 1.79 DW), scopoletin (2.28 ± 0.13 mg/g DW), and esculetin (0.68 ± 0.07 mg/g DW) was observed under blue light callus cultures. Compared to the classic photoperiod condition, caffeic acid, methyl-caffeate, scopoletin, and esculetin were accumulated 1.7, 2.5, 1.1, and 1.09-folds higher, respectively. Moreover, high in vitro cell free antioxidant, anti-diabetic, anti-aging, and anti-inflammatory activities were closely associated with the production of these secondary metabolites. These results clearly showed the interest to apply multispectral light as elicitor of in vitro callus cultures S. xanthocarpum to promote the production of important phytochemicals, and allow us to propose this system as an alternative for the collection of this endangered species from the wild.
Collapse
Affiliation(s)
- Hazrat Usman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Aisha Siddiquah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Unversité ď, CEDEX 2, 45067 Orléans, France;
- COSMACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 4506 Orléans, France
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan;
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Unversité ď, CEDEX 2, 45067 Orléans, France;
- COSMACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 4506 Orléans, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| |
Collapse
|
22
|
Bachar SC, Bachar R, Jannat K, Jahan R, Rahmatullah M. Hepatoprotective natural products. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020:207-249. [DOI: 10.1016/bs.armc.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Ullah MA, Tungmunnithum D, Garros L, Drouet S, Hano C, Abbasi BH. Effect of Ultraviolet-C Radiation and Melatonin Stress on Biosynthesis of Antioxidant and Antidiabetic Metabolites Produced in In Vitro Callus Cultures of Lepidium sativum L. Int J Mol Sci 2019; 20:E1787. [PMID: 30978911 PMCID: PMC6479895 DOI: 10.3390/ijms20071787] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Lepidium sativum L. is a rich source of polyphenols that have huge medicinal and pharmaceutical applications. In the current study, an effective abiotic elicitation strategy was designed for enhanced biosynthesis of polyphenols in callus culture of L. sativum. Callus was exposed to UV-C radiations for different time intervals and various concentrations of melatonin. Secondary metabolites were quantified by using high-performance liquid chromatography (HPLC). Results indicated the total secondary metabolite accumulation of nine quantified compounds was almost three fold higher (36.36 mg/g dry weight (DW)) in melatonin (20 μM) treated cultures, whereas, in response to UV-C (60 min), a 2.5 fold increase (32.33 mg/g DW) was recorded compared to control (13.94 mg/g DW). Metabolic profiling revealed the presence of three major phytochemicals, i.e., chlorogenic acid, kaemferol, and quercetin, in callus culture of L. sativum. Furthermore, antioxidant, antidiabetic, and enzymatic activities of callus cultures were significantly enhanced. Maximum antidiabetic activities (α-glucosidase: 57.84%; α-amylase: 62.66%) were recorded in melatonin (20 μM) treated callus cultures. Overall, melatonin proved to be an effect elicitor compared to UV-C and a positive correlation in these biological activities and phytochemical accumulation was observed. The present study provides a better comparison of both elicitors and their role in the initiation of physiological pathways for enhanced metabolites biosynthesis in vitro callus culture of L. sativum.
Collapse
Affiliation(s)
- Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand.
| | - Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- Institut de Chimie Organique et Analytique (ICOA) UMR7311, Université d'Orléans-CNRS, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans CEDEX 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans CEDEX 2, France.
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37000 Tours, France.
| |
Collapse
|