1
|
Beretta G, Sangalli M, Sezenna E, Tofalos AE, Franzetti A, Saponaro S. Microbial electrochemical Cr(VI) reduction in a soil continuous flow system. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2033-2049. [PMID: 38953765 DOI: 10.1002/ieam.4972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Microbial electrochemical technologies represent innovative approaches to contaminated soil and groundwater remediation and provide a flexible framework for removing organic and inorganic contaminants by integrating electrochemical and biological techniques. To simulate in situ microbial electrochemical treatment of groundwater plumes, this study investigates Cr(VI) reduction within a bioelectrochemical continuous flow (BECF) system equipped with soil-buried electrodes, comparing it to abiotic and open-circuit controls. Continuous-flow systems were tested with two chromium-contaminated solutions (20-50 mg Cr(VI)/L). Additional nutrients, buffers, or organic substrates were introduced during the tests in the systems. With an initial Cr(VI) concentration of 20 mg/L, 1.00 mg Cr(VI)/(L day) bioelectrochemical removal rate in the BECF system was observed, corresponding to 99.5% removal within nine days. At the end of the test with 50 mg Cr(VI)/L (156 days), the residual Cr(VI) dissolved concentration was two orders of magnitude lower than that in the open circuit control, achieving 99.9% bioelectrochemical removal in the BECF. Bacteria belonging to the orders Solirubrobacteriales, Gaiellales, Bacillales, Gemmatimonadales, and Propionibacteriales characterized the bacterial communities identified in soil samples; differently, Burkholderiales, Mycobacteriales, Cytophagales, Rhizobiales, and Caulobacterales characterized the planktonic bacterial communities. The complexity of the microbial community structure suggests the involvement of different microorganisms and strategies in the bioelectrochemical removal of chromium. In the absence of organic carbon, microbial electrochemical removal of hexavalent chromium was found to be the most efficient way to remove Cr(VI), and it may represent an innovative and sustainable approach for soil and groundwater remediation. Integr Environ Assess Manag 2024;20:2033-2049. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Gabriele Beretta
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| | - Michela Sangalli
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| | - Elena Sezenna
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| | - Anna Espinoza Tofalos
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
- Environmental Research and Innovation (ERIN) Department, Institute of Science and Technology (LIST), Luxembourg, Luxembourg
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Sabrina Saponaro
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
2
|
Won C, Yim SS. Emerging methylation-based approaches in microbiome engineering. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:96. [PMID: 38987811 PMCID: PMC11238421 DOI: 10.1186/s13068-024-02529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Bacterial epigenetics, particularly through DNA methylation, exerts significant influence over various biological processes such as DNA replication, uptake, and gene regulation in bacteria. In this review, we explore recent advances in characterizing bacterial epigenomes, accompanied by emerging strategies that harness bacterial epigenetics to elucidate and engineer diverse bacterial species with precision and effectiveness. Furthermore, we delve into the potential of epigenetic modifications to steer microbial functions and influence community dynamics, offering promising opportunities for understanding and modulating microbiomes. Additionally, we investigate the extensive diversity of DNA methyltransferases and emphasize their potential utility in the context of the human microbiome. In summary, this review highlights the potential of DNA methylation as a powerful toolkit for engineering microbiomes.
Collapse
Affiliation(s)
- Changhee Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sung Sun Yim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, Republic of Korea.
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea.
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Grimm D, Guy N, Lengyel G, Franks J, Maltman C. Gordonia metallireducens sp. nov., a tellurite- and selenite-resistant bacterium isolated from the sediment of an acid mine drainage stream. Int J Syst Evol Microbiol 2023; 73. [PMID: 37990983 DOI: 10.1099/ijsem.0.006176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
A polyphasic taxonomic study was carried out on strain TSed Te1T, isolated from sediment of a stream contaminated with acid drainage from a coal mine. The bacterium forms pink-pigmented colonies and has a rod-coccus growth cycle, which also includes some coryneform arrangements. This bacterium is capable of growing in the presence of up to 750 μg ml-1 tellurite and 5000 μg ml-1 selenite, reducing each to elemental form. Nearly complete 16S rRNA gene sequence analysis associated the strain with Gordonia, with 99.5 and 99.3 % similarity to Gordonia namibiensis and Gordonia rubripertincta, respectively. Computation of the average nucleotide identity and digital DNA-DNA hybridization comparisons with the closest phylogenetic neighbour of TSed Te1T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The dominant fatty acids were C16 : 0, C18 : 1, C16 : 1 and tuberculostearic acid. The DNA G+C content was 67.6 mol%. Major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside, while MK-9(H2) was the only menaquinone found. Mycolic acids of C56-C60 were present. Whole-cell hydrolysates contained meso-diaminopimelic acid along with arabinose and galactose as the major cell-wall sugars. On the basis of the results obtained in this study, the bacterium was assigned to the genus Gordonia and represents a new species with the name Gordonia metallireducens sp. nov. The type strain is TSed Te1T (=NRRL B-65678T=DSM 114093T).
Collapse
Affiliation(s)
- David Grimm
- Department of Microbiology, Miami University College of Arts and Science, Oxford, Ohio 45056, USA
| | - Nathan Guy
- Department of Chemistry, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - George Lengyel
- Department of Chemistry, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Chris Maltman
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania 16057, USA
| |
Collapse
|
4
|
Ceylani T, Teker HT, Keskin S, Samgane G, Acikgoz E, Gurbanov R. The rejuvenating influence of young plasma on aged intestine. J Cell Mol Med 2023; 27:2804-2816. [PMID: 37610839 PMCID: PMC10494294 DOI: 10.1111/jcmm.17926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023] Open
Abstract
This study aims to investigate the effects of plasma exchange on the biomolecular profiles and histology of ileum and colon tissues in young and aged Sprague-Dawley male rats. Fourier transform infrared (FTIR) spectroscopy, linear discriminant analysis and support vector machine (SVM) techniques were employed to analyse the lipid, protein, and nucleic acid indices in young and aged rats. Following the application of young plasma, aged rats demonstrated biomolecular profiles similar to those of their younger counterparts. Histopathological and immunohistochemical assessments showed that young plasma had a protective effect on the intestinal tissues of aged rats, increasing cell density and reducing inflammation. Additionally, the expression levels of key inflammatory mediators tumour necrosis factor-alpha and cyclooxygenase-2 significantly decreased after young plasma administration. These findings underscore the therapeutic potential of young plasma for mitigating age-related changes and inflammation in the intestinal tract. They highlight the critical role of plasma composition in the ageing process and suggest the need for further research to explore how different regions of the intestines respond to plasma exchange. Such understanding could facilitate the development of innovative therapies targeting the gastrointestinal system, enhancing overall health during ageing.
Collapse
Affiliation(s)
- Taha Ceylani
- Department of Molecular Biology and GeneticsMuş Alparslan University MuşMuşTurkey
- Department of Food Quality Control and AnalysisMuş Alparslan University MuşMuşTurkey
| | - Hikmet Taner Teker
- Department of Molecular BiologyAnkara Medipol University AnkaraAnkaraTurkey
| | - Seda Keskin
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Gizem Samgane
- Department BiotechnologyInstitute of Graduate Education, Bilecik Şeyh Edebali University BilecikBilecikTurkey
| | - Eda Acikgoz
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Rafig Gurbanov
- Department of BioengineeringBilecik Şeyh Edebali University BilecikBilecikTurkey
- Central Research Laboratory (BARUM)Bilecik Seyh Edebali University BilecikBilecikTurkey
| |
Collapse
|
5
|
Satari L, Iglesias A, Porcar M. The Microbiome of Things: Appliances, Machines, and Devices Hosting Artificial Niche-Adapted Microbial Communities. Microorganisms 2023; 11:1507. [PMID: 37375009 PMCID: PMC10304627 DOI: 10.3390/microorganisms11061507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
As it is the case with natural substrates, artificial surfaces of man-made devices are home to a myriad of microbial species. Artificial products are not necessarily characterized by human-associated microbiomes; instead, they can present original microbial populations shaped by specific environmental-often extreme-selection pressures. This review provides a detailed insight into the microbial ecology of a range of artificial devices, machines, and appliances, which we argue are specific microbial niches that do not necessarily fit in the "build environment" microbiome definition. Instead, we propose here the Microbiome of Things (MoT) concept analogous to the Internet of Things (IoT) because we believe it may be useful to shed light on human-made, but not necessarily human-related, unexplored microbial niches.
Collapse
Affiliation(s)
- Leila Satari
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Alba Iglesias
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
- Darwin Bioprospecting Excellence SL., Parc Científic, Universitat de València, 46980 Paterna, Spain
| |
Collapse
|
6
|
Non-growth inhibitory doses of dimethyl sulfoxide alter gene expression and epigenetic pattern of bacteria. Appl Microbiol Biotechnol 2022; 107:299-312. [DOI: 10.1007/s00253-022-12296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
|
7
|
Ceylani T, Teker HT, Samgane G, Gurbanov R. Intermittent fasting-induced biomolecular modifications in rat tissues detected by ATR-FTIR spectroscopy and machine learning algorithms. Anal Biochem 2022; 654:114825. [DOI: 10.1016/j.ab.2022.114825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022]
|
8
|
Dogan A, Gurbanov R, Severcan M, Severcan F. CoronaVac (Sinovac) COVID-19 vaccine-induced molecular changes in healthy human serum by infrared spectroscopy coupled with chemometrics. Turk J Biol 2021; 45:549-558. [PMID: 34803453 PMCID: PMC8573849 DOI: 10.3906/biy-2105-65] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022] Open
Abstract
From the beginning of the COVID-19 coronavirus pandemic in December of 2019, the disease has infected millions of people worldwide and caused hundreds of thousands of deaths. Since then, several vaccines have been developed. One of those vaccines is inactivated CoronaVac-Sinovac COVID-19 vaccine. In this proof of concept study, we first aimed to determine CoronaVac-induced biomolecular changes in healthy human serum using infrared spectroscopy. Our second aim was to see whether the vaccinated group can be separated or not from the non-vaccinated group by applying chemometric techniques to spectral data. The results revealed that the vaccine administration induced significant changes in some functional groups belonging to lipids, proteins and nucleic acids. In addition, the non-vaccinated and vaccinated groups were successfully separated from each other by principal component analysis (PCA) and linear discriminant analysis (LDA). This proof-of-concept study will encourage future studies on CoronaVac as well as other vaccines and will lead to make a comparison between different vaccines to establish a better understanding of the vaccination outcomes on serum biomolecules.
Collapse
Affiliation(s)
- Ayca Dogan
- Department of Physiology, Faculty of Medicine, Altinbaş University, İstanbul Turkey
| | - Rafig Gurbanov
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, Bilecik Turkey
| | - Mete Severcan
- Department of Electrical and Electronics Engineering, Faculty of Engineering and Natural Sciences, Altınbaş University, İstanbul Turkey
| | - Feride Severcan
- Department of Biophysics, Faculty of Medicine, Altınbaş University, İstanbul Turkey
| |
Collapse
|
9
|
Nogueira MS, Leal LB, Marcarini WD, Pimentel RL, Muller M, Vassallo PF, Campos LCG, Dos Santos L, Luiz WB, Mill JG, Barauna VG, de Carvalho LFDCES. Rapid diagnosis of COVID-19 using FT-IR ATR spectroscopy and machine learning. Sci Rep 2021; 11:15409. [PMID: 34635702 PMCID: PMC8505540 DOI: 10.1038/s41598-021-93511-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Early diagnosis of COVID-19 in suspected patients is essential for contagion control and damage reduction strategies. We investigated the applicability of attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy associated with machine learning in oropharyngeal swab suspension fluid to predict COVID-19 positive samples. The study included samples of 243 patients from two Brazilian States. Samples were transported by using different viral transport mediums (liquid 1 or 2). Clinical COVID-19 diagnosis was performed by the RT-PCR. We built a classification model based on partial least squares (PLS) associated with cosine k-nearest neighbours (KNN). Our analysis led to 84% and 87% sensitivity, 66% and 64% specificity, and 76.9% and 78.4% accuracy for samples of liquids 1 and 2, respectively. Based on this proof-of-concept study, we believe this method could offer a simple, label-free, cost-effective solution for high-throughput screening of suspect patients for COVID-19 in health care centres and emergency departments.
Collapse
Affiliation(s)
- Marcelo Saito Nogueira
- Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork, T12R5CP, Ireland.
| | - Leonardo Barbosa Leal
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Wena Dantas Marcarini
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil.,Faculdade Vale do Cricaré, São Matheus, Brazil
| | - Raquel Lemos Pimentel
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Matheus Muller
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | | | | | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Wilson Barros Luiz
- Department of Biological Science, Santa Cruz State University, Ilhéus, BA, Brazil
| | - José Geraldo Mill
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Valerio Garrone Barauna
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | | |
Collapse
|
10
|
Nogueira MS, Leal LB, Marcarini WD, Pimentel RL, Muller M, Vassallo PF, Campos LCG, Dos Santos L, Luiz WB, Mill JG, Barauna VG, de Carvalho LFDCES. Rapid diagnosis of COVID-19 using FT-IR ATR spectroscopy and machine learning. Sci Rep 2021. [PMID: 34635702 DOI: 10.1038/s41598-021-93511-] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023] Open
Abstract
Early diagnosis of COVID-19 in suspected patients is essential for contagion control and damage reduction strategies. We investigated the applicability of attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy associated with machine learning in oropharyngeal swab suspension fluid to predict COVID-19 positive samples. The study included samples of 243 patients from two Brazilian States. Samples were transported by using different viral transport mediums (liquid 1 or 2). Clinical COVID-19 diagnosis was performed by the RT-PCR. We built a classification model based on partial least squares (PLS) associated with cosine k-nearest neighbours (KNN). Our analysis led to 84% and 87% sensitivity, 66% and 64% specificity, and 76.9% and 78.4% accuracy for samples of liquids 1 and 2, respectively. Based on this proof-of-concept study, we believe this method could offer a simple, label-free, cost-effective solution for high-throughput screening of suspect patients for COVID-19 in health care centres and emergency departments.
Collapse
Affiliation(s)
- Marcelo Saito Nogueira
- Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork, T12R5CP, Ireland.
| | - Leonardo Barbosa Leal
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Wena Dantas Marcarini
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Faculdade Vale do Cricaré, São Matheus, Brazil
| | - Raquel Lemos Pimentel
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Matheus Muller
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | | | | | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Wilson Barros Luiz
- Department of Biological Science, Santa Cruz State University, Ilhéus, BA, Brazil
| | - José Geraldo Mill
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Valerio Garrone Barauna
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | | |
Collapse
|
11
|
Gurbanov R, Karadağ H, Karaçam S, Samgane G. Tapioca Starch Modulates Cellular Events in Oral Probiotic Streptococcus salivarius Strains. Probiotics Antimicrob Proteins 2021; 13:195-207. [PMID: 32601954 DOI: 10.1007/s12602-020-09678-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Considering the implications of microbiota in health, scientists are in search of microbiota-oriented strategies for the effective prevention and/or treatment of a wide variety of serious diseases. A microbiota comprises diverse microorganisms with either probiotic or pathogenic properties. The fermentation of prebiotic carbohydrates by probiotic bacteria can affect host metabolism. Therefore, understanding the prebiotic-mediated metabolic modulations in probiotics is crucial to develop functional foods for the improvement of disturbed microbiota. Studies have emphasized the importance of prebiotics in probiotic therapies for mucosal diseases and highlighted the need for extensive research on oral bacteria. In the present study, the cellular events have been studied in batch cultures of probiotic Streptococcus salivarius exposed to the natural prebiotic, tapioca starch (TS). TS modulated the keystone metabolic events in Streptococcus salivarius in a dose-dependent manner. Besides increasing the live cell counts and altering the colony morphologies, TS affected the protein metabolism in terms of cellular expression and conformational changes in protein secondary structures. After treatment with TS, the nucleic acid synthesis increased and B-DNA was more than A- and Z-DNA, together with the diminished fatty acids and increased polysaccharide synthesis. The study results can be considered for the assessment of functional foods and probiotics in oral health.
Collapse
Affiliation(s)
- Rafig Gurbanov
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | - Hazel Karadağ
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Sevinç Karaçam
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Gizem Samgane
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
12
|
Akcha F, Barranger A, Bachère E. Genotoxic and epigenetic effects of diuron in the Pacific oyster: in vitro evidence of interaction between DNA damage and DNA methylation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8266-8280. [PMID: 33052562 DOI: 10.1007/s11356-020-11021-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Recently, research has contributed to better knowledge on the occurrence of pesticides in coastal water by identifying frequently detected substances, their concentration range and their acute and chronic toxicity for organisms. Pesticide pollution is of particular concern in France due to important agricultural activities and presence of several exoreic catchment areas that vehicle pesticides up to coastal waters, impacting non-target marine species. Several ecotoxicology questions remain to be addressed concerning the long-term effects of chronic pesticide exposure and the mechanisms involved in adaptation to chemical stress. In the present study, we brought new insights on the genetic and epigenetic effects of the herbicide diuron in oyster genitors. During gametogenesis, we exposed Crassostrea gigas to environmentally realistic herbicide concentrations (0.2-0.3 μg L-1 during two 7-day periods at half-course and end of gametogenesis). Diuron exposure was shown to decrease global DNA methylation and total methyltransferase activity in whole oyster tissue; this is consistent with the previous observation of a significant decrease in DNMT1 gene expression. Diuron effect seemed to be tissue-specific; hypermethylation was detected in the digestive gland, whereas diuron exposure had no effect on gill and gonad tissue. The genotoxicity of diuron was confirmed by the detection of one adduct in gonad DNA. By using in vitro approaches and human DNMT1 (DNMT1 has not been purified yet in bivalves), the presence of DNA lesions (adduct, 8-oxodGuo) was shown to interfere with DNMT1 activity, indicating a complex interaction between DNA damage and DNA methylation. Based on our results, we propose mechanisms to explain the effect of diuron exposure on DNA methylation, a widespread epigenetic mark.
Collapse
Affiliation(s)
- Farida Akcha
- Ifremer, Ecotoxicology Laboratory, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes Cedex 03, France.
| | - Audrey Barranger
- Ifremer, Ecotoxicology Laboratory, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes Cedex 03, France
| | - Evelyne Bachère
- Ifremer, UMR 5244, IHPE Interactions Hosts Pathogens Environment, UPVD, CNRS, University of Montpellier, CC 80, 34095, Montpellier, France
| |
Collapse
|
13
|
Tunçer S, Gurbanov R. A novel approach for the discrimination of culture medium from Vascular Endothelial Growth Factor (VEGF) overexpressing colorectal cancer cells. TURKISH JOURNAL OF BIOCHEMISTRY 2020. [DOI: 10.1515/tjb-2020-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
The expression level of Vascular Endothelial Growth Factor (VEGF) is assumed as a prognostic marker for several tumor types, including colorectal cancer. Therefore, the determination of pre- and post-therapy levels of VEGF appears to have great value in the assessment of tumor prognosis. Enzyme-Linked Immunosorbent Assay (ELISA) is commonly used for the determination of serum or plasma VEGF levels, but the method is costly and time-consuming. In this study, we aimed to describe a rapid and cost-effective analysis method to discriminate VEGF overexpressing colorectal cancer-derived conditioned medium (CM).
Methods
Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy, combined with Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), was used to differentiate VEGF overexpressing colorectal cancer cell line CM from CM obtained from the corresponding control cells which express and secrete relatively lower amount of VEGF.
Results
Samples belong to VEGF overexpressing colorectal cancer cells were clearly distinguished from the control group with very high PC scores as PC1 + PC2 = 96%. Besides, a 100% accurate distinction between these two groups was achieved by the LDA analysis.
Conclusions
ATR-FTIR spectroscopy combined with pattern recognition techniques was able to discriminate CM of VEGF overexpressing colorectal cancer cells with high efficiency and accuracy.
Collapse
Affiliation(s)
- Sinem Tunçer
- Bilecik Seyh Edebali Universitesi , Vocational School of Health Services Department of Medical Laboratory Techniques , Pelitözü Mah. Fatih Sultan Mehmet Bulvarı No:27, Merkez , Bilecik , Turkey
- Bilecik Seyh Edebali Universitesi , Biotechnology Application and Research Center , Pelitözü Mah. Fatih Sultan Mehmet Bulvarı No:27, Merkez , Bilecik , Turkey
| | - Rafig Gurbanov
- Bilecik Seyh Edebali Universitesi , Department of Molecular Biology and Genetics , Bilecik , Turkey
- Bilecik Seyh Edebali Universitesi , Biotechnology Application and Research Center , Bilecik , Turkey
| |
Collapse
|
14
|
Gupta AD, Kavitha E, Singh S, Karthikeyan S. Toxicity mechanism of Cu 2+ ion individually and in combination with Zn 2+ ion in characterizing the molecular changes of Staphylococcus aureus studied using FTIR coupled with chemometric analysis. J Biol Phys 2020; 46:395-414. [PMID: 33237339 PMCID: PMC7719146 DOI: 10.1007/s10867-020-09560-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022] Open
Abstract
Copper and zinc have a high binding affinity with a Staphylococcus aureus bacterial community. This causes a change in the biomolecular composition of S. aureus. Our study aims at understanding the resistance mechanism of Cu and Zn either or in various combinations using FTIR and chemometric techniques. Zn toxicity resulted in a significant change in lipid content (3100-2800 cm-1) compared to Cu. A significant decrease in protein content is observed for Cu treatment in the amide region. The bio-concentration factor shows a higher value for Cu compared to Zn. The increase in band area of carbohydrates moieties 1059 cm-1 shows the secretion of EPS due to Cu toxicity. A significant change in nucleic acid compositions was noted in the region1200-900 cm-1 due to Zn treatment. Secondary structural change in protein shows β sheet formation. The result of the finding shows Cu has greater toxicity than Zn. Further toxicity effects were greatly enhanced for metal mixtures ratio (Cu:2Zn). This shows Zn exhibits synergism effect with Cu. The obtained ROC (receiver operating characteristic) curve area gives good reliability of the experiments. The study attempts to understand the mechanism of toxicity removal of Cu and Zn metal mixtures by bacterial population using FTIR coupled with chemometric techniques. Graphical abstract.
Collapse
Affiliation(s)
- Annika Durve Gupta
- Department of Biotechnology, B. K. Birla College, Kalyan, Maharashtra, 421304, India
| | - Esakimuthu Kavitha
- Department of Physics, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, 600095, India
| | - Shikha Singh
- Department of Biotechnology, B. K. Birla College, Kalyan, Maharashtra, 421304, India
| | - Sivakumaran Karthikeyan
- Department of Physics, Dr. Ambedkar Government Arts College, Chennai, Tamil Nadu, 600039, India.
| |
Collapse
|
15
|
Cell-free supernatant of Streptococcus salivarius M18 impairs the pathogenic properties of Pseudomonas aeruginosa and Klebsiella pneumonia. Arch Microbiol 2020; 202:2825-2840. [PMID: 32747998 DOI: 10.1007/s00203-020-02005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
M18 strain of Streptococcus salivarius is a bacterial replacement probiotic that has been suggested for use in the oral cavity. Here, we have shown that S. salivarius M18 cell-free supernatant reduced the growth of the two most common human pathogens Pseudomonas aeruginosa and Klebsiella pneumonia and sensitized the pathogenic bacteria to antibiotic. Besides, the supernatant inhibited biofilm formation of P. aeruginosa drastically. For pinpointing the biomolecular changes that occurred in P. aeruginosa incubated with the probiotic supernatant, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used. Unsupervised learning algorithms, principal component analysis (PCA) and hierarchical cluster analysis (HCA), and intensity analyses of individual spectral bands exhibited comprehensive alterations in the polysaccharide and lipid contents and compositions of P. aeruginosa cultivated with S. salivarius M18 cell-free supernatant. These results indicate that S. salivarius M18 has the potential for the prevention or alleviation of different pathogen-induced infections along with the infections of oral pathogens.
Collapse
|