1
|
Kast RE, Kast AP, Arnhold J, Capanni F, Sanabria LNM, Bader N, Vieira BM, Alfieri A, Karpel-Massler G, da Silva EB. Noninvasive Ultra Low Intensity Light Photodynamic Treatment of Glioblastoma with Drug Augmentation: LoGlo PDT Regimen. Brain Sci 2024; 14:1164. [PMID: 39766363 PMCID: PMC11674893 DOI: 10.3390/brainsci14121164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
This paper presents the basis for LoGlo PDT, a new treatment for glioblastoma. Glioblastoma is currently treated with maximal safe resection, temozolomide, and ionizing irradiation. Mortality in 2024 remains over 80% within several years from diagnosis. Oral 5-aminolevulinic acid (5-ALA) is an FDA/EMA approved drug that is selectively taken up by malignant cells, including by glioblastoma. In photodynamic treatment of glioblastoma, intense intraoperative light causes glioblastoma tissue that has taken up 5-ALA to generate cytotoxic reactive oxygen species. The requirement for intense light flux has restricted photodynamic treatment to a single one-hour intraoperative session. We analyze here published data showing that external light, illuminating the entire intact scalp, can attain low μW/cm2 flux several cm into intact brain that would be sufficient to mediate 5-ALA photodynamic treatment of glioblastoma if the light and 5-ALA are delivered continuously over 24 h. At the core of LoGlo PDT regimen is the dataset showing that, for a given fluence, as the duration of PDT light delivery goes down, light intensity (flux) delivered must go up to achieve the same glioblastoma cell cytotoxicity as would a weaker light (lower flux) delivered over a longer time. Thus, a repetitive, noninvasive PDT of glioblastoma using an external light source may be possible. We analyze 5-ALA cellular physiology to show that three non-oncology drugs, ciprofloxacin, deferiprone, and telmisartan, can be repurposed to increase light energy capture after 5-ALA, thereby increasing photodynamic treatment's glioblastoma cell cytotoxicity. The LoGlo PDT approach uses both drug augmentation and prolonged ultra-low noninvasive transcranial light delivery for a repetitive, noninvasive 5-ALA photodynamic treatment of glioblastoma.
Collapse
Affiliation(s)
- Richard E. Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, VT 05408, USA;
| | - Anton P. Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, VT 05408, USA;
| | - Jürgen Arnhold
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany;
| | - Felix Capanni
- Biomechatronics Research Group, Ulm University of Applied Sciences, Albert Einstein Allee 55, 89081 Ulm, Germany; (F.C.); (N.B.)
| | | | - Nicolas Bader
- Biomechatronics Research Group, Ulm University of Applied Sciences, Albert Einstein Allee 55, 89081 Ulm, Germany; (F.C.); (N.B.)
| | - Bruno Marques Vieira
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro, Rio de Janeiro 20230-024, Brazil;
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland;
| | | | - Erasmo Barros da Silva
- Neurosurgery Department—Neuro-Oncology, Instituto de Neurologia de Curitiba, Rua Jeremias Maciel Perretto, 300-Campo Comprido, Curitiba 81210-310, Brazil;
| |
Collapse
|
2
|
Efendiev K, Alekseeva P, Skobeltsin A, Shiryaev A, Pisareva T, Akhilgova F, Mamedova A, Reshetov I, Loschenov V. Combined use of 5-ALA-induced protoporphyrin IX and chlorin e6 for fluorescence diagnostics and photodynamic therapy of skin tumors. Lasers Med Sci 2024; 39:266. [PMID: 39477891 DOI: 10.1007/s10103-024-04219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/24/2024] [Indexed: 02/01/2025]
Abstract
Different types of photosensitizers (PSs) have different dynamics and intensities of accumulation, depending on the type of tumor or different areas within the same tumor. This determines the effectiveness of fluorescence diagnostics and photodynamic therapy (PDT). This paper studies the processes of 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) and chlorin e6 (Ce6) accumulation in the central and border zones of a tumor after combined administration of two PSs into the patient's body. Fluorescence diagnostic methods have shown that sublingual administration of 5-ALA leads to the more intense accumulation of PpIX in a tumor compared to oral administration. Differences have been identified in the dynamics of 5-ALA-induced PpIX and Ce6 accumulation in the central and border zones of the tumor, as well as normal tissues. Ce6 accumulates mainly in the central zone of the tumor while PpIX accumulates in the border zone of the tumor. All patients with combined PDT experienced complete therapeutic pathomorphosis and relapse-free observation.
Collapse
Affiliation(s)
- Kanamat Efendiev
- Prokhorov General Physics Institute, Moscow, Russian Federation.
- Moscow Engineering Physics Institute, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | - Victor Loschenov
- Prokhorov General Physics Institute, Moscow, Russian Federation
- Moscow Engineering Physics Institute, Moscow, Russian Federation
| |
Collapse
|
3
|
Wijerathna HMSM, Shanaka KASN, Raguvaran SS, Jayamali BPMV, Kim SH, Kim MJ, Jung S, Lee J. CRISPR/Cas9-Mediated fech Knockout Zebrafish: Unraveling the Pathogenesis of Erythropoietic Protoporphyria and Facilitating Drug Screening. Int J Mol Sci 2024; 25:10819. [PMID: 39409147 PMCID: PMC11476521 DOI: 10.3390/ijms251910819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Erythropoietic protoporphyria (EPP1) results in painful photosensitivity and severe liver damage in humans due to the accumulation of fluorescent protoporphyrin IX (PPIX). While zebrafish (Danio rerio) models for porphyria exist, the utility of ferrochelatase (fech) knockout zebrafish, which exhibit EPP, for therapeutic screening and biological studies remains unexplored. This study investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated fech-knockout zebrafish larvae as a model of EPP1 for drug screening. CRISPR/Cas9 was employed to generate fech-knockout zebrafish larvae exhibiting morphological defects without lethality prior to 9 days post-fertilization (dpf). To assess the suitability of this model for drug screening, ursodeoxycholic acid (UDCA), a common treatment for cholestatic liver disease, was employed. This treatment significantly reduced PPIX fluorescence and enhanced bile-secretion-related gene expression (abcb11a and abcc2), indicating the release of PPIX. Acridine orange staining and quantitative reverse transcription polymerase chain reaction analysis of the bax/bcl2 ratio revealed apoptosis in fech-/- larvae, and this was reduced by UDCA treatment, indicating suppression of the intrinsic apoptosis pathway. Neutral red and Sudan black staining revealed increased macrophage and neutrophil production, potentially in response to PPIX-induced cell damage. UDCA treatment effectively reduced macrophage and neutrophil production, suggesting its potential to alleviate cell damage and liver injury in EPP1. In conclusion, CRISPR/Cas9-mediated fech-/- zebrafish larvae represent a promising model for screening drugs against EPP1.
Collapse
Affiliation(s)
- Hitihami M. S. M. Wijerathna
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Department of Aquaculture and Seafood Technology, Faculty of Fisheries and Ocean Sciences, Ocean University of Sri Lanka, Colombo 01500, Sri Lanka
| | - Kateepe A. S. N. Shanaka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Sarithaa S. Raguvaran
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Bulumulle P. M. V. Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
| | - Seok-Hyung Kim
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju-si 37242, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
- Marine Molecular Genetics Lab, Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
- Marine Molecular Genetics Lab, Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| |
Collapse
|
4
|
Ebrahimi S, Khaleghi Ghadiri M, Stummer W, Gorji A. Enhancing 5-ALA-PDT efficacy against resistant tumor cells: Strategies and advances. Life Sci 2024; 351:122808. [PMID: 38852796 DOI: 10.1016/j.lfs.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
As a precursor of protoporphyrin IX (PpIX), an endogenous pro-apoptotic and fluorescent molecule, 5-Aminolevulinic acid (5-ALA) has gained substantial attention for its potential in fluorescence-guided surgery as well as photodynamic therapy (PDT). Moreover, 5-ALA-PDT has been suggested as a promising chemo-radio sensitization therapy for various cancers. However, insufficient 5-ALA-induced PpIX fluorescence and the induction of multiple resistance mechanisms may hinder the 5-ALA-PDT clinical outcome. Reduced efficacy and resistance to 5-ALA-PDT can result from genomic alterations, tumor heterogeneity, hypoxia, activation of pathways related to cell surveillance, production of nitric oxide, and most importantly, deregulated 5-ALA transporter proteins and heme biosynthesis enzymes. Understanding the resistance regulatory mechanisms of 5-ALA-PDT may allow the development of effective personalized cancer therapy. Here, we described the mechanisms underlying resistance to 5-ALA-PTD across various tumor types and explored potential strategies to overcome this resistance. Furthermore, we discussed future approaches that may enhance the efficacy of treatments using 5-ALA-PDT.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran
| | | | - Walter Stummer
- Department of Neurosurgery, Münster University, 48149 Münster, Germany
| | - Ali Gorji
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran.
| |
Collapse
|
5
|
Reburn C, Gawthorpe G, Perry A, Wood M, Curnow A. Novel Iron-Chelating Prodrug Significantly Enhanced Fluorescence-Mediated Detection of Glioma Cells Experimentally In Vitro. Pharmaceutics 2023; 15:2668. [PMID: 38140009 PMCID: PMC10747273 DOI: 10.3390/pharmaceutics15122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: The protoporphyrin IX (PpIX)-mediated fluorescence-guided resection and interoperative photodynamic therapy (PDT) of remaining cells may be effective adjuvants to the resection of glioma. Both processes may be enhanced by increasing intracellular PpIX concentrations, which can be achieved through iron chelation. AP2-18 is a novel combinational drug, which ester-links a PpIX precursor (aminolaevulinic acid; ALA) to an iron-chelating agent (CP94). (2) Methods: Human glioma U-87 MG cells were cultured in 96-well plates for 24 h and incubated for 3 or 6 h with various test compound combinations: ALA (±) CP94, methyl aminolevulinate (MAL) (±) CP94 and AP2-18. PpIX fluorescence was measured at 0, 3 or 6 h with a Bio-tek Synergy HT plate reader, as well as immediately after irradiation with a 635 nm red light (Aktilite CL16 LED array), representing the PDT procedure. Cell viability post-irradiation was assessed using the neutral red assay. (3) Results: AP2-18 significantly increased PpIX fluorescence compared to all other test compounds. All treatment protocols effectively achieved PDT-induced cytotoxicity, with no significant difference between test compound combinations. (4) Conclusions: AP2-18 has potential to improve the efficacy of fluorescence-guided resection either with or without the subsequent intraoperative PDT of glioma. Future work should feature a more complex in vitro model of the glioma microenvironment.
Collapse
Affiliation(s)
| | | | | | | | - Alison Curnow
- Knowledge Spa, Royal Cornwall Hospital, University of Exeter, Truro TR1 3HD, UK; (C.R.); (G.G.); (A.P.); (M.W.)
| |
Collapse
|
6
|
Drexler R, Sauvigny T, Schüller U, Eckhardt A, Maire CL, Khatri R, Hausmann F, Hänzelmann S, Huber TB, Bonn S, Bode H, Lamszus K, Westphal M, Dührsen L, Ricklefs FL. Epigenetic profiling reveals a strong association between lack of 5-ALA fluorescence and EGFR amplification in IDH-wildtype glioblastoma. Neurooncol Pract 2023; 10:462-471. [PMID: 37720395 PMCID: PMC10502788 DOI: 10.1093/nop/npad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Background 5-aminolevulinic acid (5-ALA) fluorescence-guided resection increases the percentage of complete CNS tumor resections and improves the progression-free survival of IDH-wildtype glioblastoma patients. A small subset of IDH-wildtype glioblastoma shows no 5-ALA fluorescence. An explanation for these cases is missing. In this study, we used DNA methylation profiling to further characterize non-fluorescent glioblastomas. Methods Patients with newly diagnosed and recurrent IDH-wildtype glioblastoma that underwent surgery were analyzed. The intensity of intraoperative 5-ALA fluorescence was categorized as non-visible or visible. DNA was extracted from tumors and genome-wide DNA methylation patterns were analyzed using Illumina EPIC (850k) arrays. Furthermore, 5-ALA intensity was measured by flow cytometry on human gliomasphere lines (BT112 and BT145). Results Of 74 included patients, 12 (16.2%) patients had a non-fluorescent glioblastoma, which were compared to 62 glioblastomas with 5-ALA fluorescence. Clinical characteristics were equally distributed between both groups. We did not find significant differences between DNA methylation subclasses and 5-ALA fluorescence (P = .24). The distribution of cells of the tumor microenvironment was not significantly different between the non-fluorescent and fluorescent tumors. Copy number variations in EGFR and simultaneous EGFRvIII expression were strongly associated with 5-ALA fluorescence since all non-fluorescent glioblastomas were EGFR-amplified (P < .01). This finding was also demonstrated in recurrent tumors. Similarly, EGFR-amplified glioblastoma cell lines showed no 5-ALA fluorescence after 24 h of incubation. Conclusions Our study demonstrates an association between non-fluorescent IDH-wildtype glioblastomas and EGFR gene amplification which should be taken into consideration for recurrent surgery and future studies investigating EGFR-amplified gliomas.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Alicia Eckhardt
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Lab of Radiobiology & Experimental Radiation Oncology, University Cancer Center Hamburg, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helena Bode
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Borges HS, Gusmão LA, Tedesco AC. Multi-charged nanoemulsion for photodynamic treatment of glioblastoma cell line in 2D and 3D in vitro models. Photodiagnosis Photodyn Ther 2023; 43:103723. [PMID: 37487809 DOI: 10.1016/j.pdpdt.2023.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Multi-charged nanoemulsions (NE) were designed to deliver Cannabidiol (CBD), Indocyanine green (ICG), and Protoporphyrin (PpIX) to treat glioblastoma (GBM) through Photodynamic Therapy (PDT). The phase-inversion temperature (PIT) method resulted in a highly stable NE that can be scaled easily, with a six-month shelf-life. We observed the quasi-spherical morphology of the nanoemulsions without any unencapsulated material and that 89% (± 5.5%) of the material was encapsulated. All physicochemical properties were within the expected range for a nanostructured drug delivery system, making these multi-charged nanoemulsions promising for further research and development. NE-PIC (NE-Protoporphyrin + Indocyanine + CBD) was easily internalized on GBM cells after three hours of incubation. Nanoemulsion (NE and NE-PIC) did not result in significant cytotoxicity, even for GBM or non-tumorigenic cell lines (NHF). Phototoxicity was significantly higher for the U87MG cell than the T98G cell when exposed to: visible (430 nm) and infrared (810 nm) laser light, with a difference of about 20%. From 50 mJ.cm-2, the viability of GBM cell lines decreases significantly, ranging from 65% to 85%. The NE-PIC was also effective for inhibiting cell proliferation into a 3D spheroidal GBM cell model, which is promising for mimicking the tumor cell environment. Irradiation at 810 nm was more effective in treating spheroid due to its deeper penetration in complex structures. NE-PIC has the potential as a drug delivery system for photoinactivation and photo diagnostic of GBM cell lines, taking advantage of the versatility of its active components.
Collapse
Affiliation(s)
- Hiago Salge Borges
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Luiza Araújo Gusmão
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
8
|
Howley R, Chandratre S, Chen B. 5-Aminolevulinic Acid as a Theranostic Agent for Tumor Fluorescence Imaging and Photodynamic Therapy. Bioengineering (Basel) 2023; 10:bioengineering10040496. [PMID: 37106683 PMCID: PMC10136048 DOI: 10.3390/bioengineering10040496] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
5-Aminolevulinic acid (ALA) is a naturally occurring amino acid synthesized in all nucleated mammalian cells. As a porphyrin precursor, ALA is metabolized in the heme biosynthetic pathway to produce protoporphyrin IX (PpIX), a fluorophore and photosensitizing agent. ALA administered exogenously bypasses the rate-limit step in the pathway, resulting in PpIX accumulation in tumor tissues. Such tumor-selective PpIX disposition following ALA administration has been exploited for tumor fluorescence diagnosis and photodynamic therapy (PDT) with much success. Five ALA-based drugs have now received worldwide approval and are being used for managing very common human (pre)cancerous diseases such as actinic keratosis and basal cell carcinoma or guiding the surgery of bladder cancer and high-grade gliomas, making it the most successful drug discovery and development endeavor in PDT and photodiagnosis. The potential of ALA-induced PpIX as a fluorescent theranostic agent is, however, yet to be fully fulfilled. In this review, we would like to describe the heme biosynthesis pathway in which PpIX is produced from ALA and its derivatives, summarize current clinical applications of ALA-based drugs, and discuss strategies for enhancing ALA-induced PpIX fluorescence and PDT response. Our goal is two-fold: to highlight the successes of ALA-based drugs in clinical practice, and to stimulate the multidisciplinary collaboration that has brought the current success and will continue to usher in more landmark advances.
Collapse
Affiliation(s)
- Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
| | - Sharayu Chandratre
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Ghantasala S, Bhat A, Agarwal U, Biswas D, Bhattarai P, Epari S, Moiyadi A, Srivastava S. Deep proteome investigation of high-grade gliomas reveals heterogeneity driving differential metabolism of 5-aminolevulinic acid. Neurooncol Adv 2023; 5:vdad065. [PMID: 37358939 PMCID: PMC10290514 DOI: 10.1093/noajnl/vdad065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Background Fluorescence-guided surgery (FGS) using 5-aminolevulinic acid (5-ALA) as adjunct for high-grade gliomas (HGGs) has been on the rise in recent years. Despite being largely effective, we observed multiple histologically similar sub-regions of the same tumor from a few individuals with varying protoporphyrin IX (PpIX) levels. The current study aims at understanding the proteomic changes driving differential metabolism of 5-ALA in HGGs. Methods Biopsies were histologically and biochemically assayed. Following this, a deep proteomics investigation was carried out using high resolution liquid chromatography-mass spectrometry (HR LC-MS) to identify protein expression in differentially fluorescing regions of HGGs. Results Our analysis identified 5437 proteins with high confidence. Differential analysis in the subgroup with HGGs carrying IDH mutation (IDH mt.) revealed 93 differentially regulated proteins (raw p-value ≤ 0.05 and absolute FC ≥ 1.5). Similar analysis in the IDH wild type (IDH wt.) subgroup revealed 20 differentially regulated proteins. Gene set enrichment analysis (GSEA) identified key pathways like ion channel transport, trafficking of AMPA receptors, and regulation of heme-oxygenase-1 in the IDH wt. subgroup. Pathways such as scavenging of heme, signaling by NOTCH4, negative regulation of PI3-AKT pathway, and iron uptake and transport were observed to be differentially regulated in the IDH mt. subgroup. Conclusions Tumor regions from the same patient exhibiting differential fluorescence following 5-ALA administration were observed to have different proteome profiles. Future studies aimed at a better molecular understanding of 5-ALA metabolism in HGGs hold the potential to increase the efficacy of FGS and the use of 5-ALA as a theragnostic tool.
Collapse
Affiliation(s)
- Saicharan Ghantasala
- Centre for Research in Nano Technology and Sciences, Indian Institute of Technology Bombay, Mumbai, India
| | - Amruth Bhat
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Unnati Agarwal
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prawesh Bhattarai
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre’s—Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- Homi Bhabha National Institute, Mumbai, India
- Department of Neurosurgery, Tata Memorial Centre’s—Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Sanjeeva Srivastava
- Corresponding Author: Sanjeeva Srivastava, PhD, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India ()
| |
Collapse
|
10
|
Zhang C, Zhao X, Li D, Ji F, Dong A, Chen X, Zhang J, Wang X, Zhao Y, Chen X. Advances in 5-aminoketovaleric acid(5-ALA) nanoparticle delivery system based on cancer photodynamic therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Chan KM, Vasilev K, MacGregor M. Effects of Supplemental Drugs on Hexaminolevulinate (HAL)-Induced PpIX Fluorescence in Bladder Cancer Cell Suspensions. Int J Mol Sci 2022; 23:ijms23147631. [PMID: 35886979 PMCID: PMC9323055 DOI: 10.3390/ijms23147631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Seven different inhibitors of the heme metabolic pathway were applied in combination with HAL to study the formation of PpIX in bladder cancer HT1197 and normal fibroblast HFFF2 cells ex vivo, specifically with the aim to increase the fluorescence contrast between cancer and non-cancer cells. The mRNA expression of enzymes involved in the heme biosynthesis pathway were measured via PCR following incubation with the drugs in order to link the fluorescence levels and metabolic activity. The exogenous administration of HAL does lead to cancer-specific PpIX accumulation. However, the contrast between cancer and normal cells in suspension was not enhanced by the enzyme inhibitors and iron-chelating agents tested, nor did the mRNA expression necessarily correlate with the fluorescence intensity. The results indicate that a difference in the metabolic activity of cells in suspension may limit the applicability of exogenous enzyme inhibitor administration as a mean to improve the fluorescence-based detection of cancer cells shed in body fluids.
Collapse
Affiliation(s)
- Kit Man Chan
- UniSA STEM, University of South Australia, Adelaide, SA 5095, Australia;
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| | - Melanie MacGregor
- Flinders Institute for Nanoscale Science & Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
- Correspondence: ; Tel.: +61-8-8201-2574
| |
Collapse
|
12
|
Mansi M, Howley R, Chandratre S, Chen B. Inhibition of ABCG2 transporter by lapatinib enhances 5-aminolevulinic acid-mediated protoporphyrin IX fluorescence and photodynamic therapy response in human glioma cell lines. Biochem Pharmacol 2022; 200:115031. [PMID: 35390338 DOI: 10.1016/j.bcp.2022.115031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023]
Abstract
5-Aminolevulinic acid (ALA) is an intraoperative molecular probe approved for fluorescence-guided resection (FGR) of high-grade gliomas to achieve maximal safe tumor resection. Although ALA has no fluorescence on its own, it is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) with red fluorescence for tumor detection and photosensitizing activity for photodynamic therapy (PDT). The preferential tumor accumulation of PpIX following ALA administration enables the use of ALA as a prodrug for PpIX FGR and PDT of gliomas. Since intracellular PpIX in tumor cells after ALA treatment is influenced by biological processes including PpIX bioconversion catalyzed by ferrochelatase (FECH) and PpIX efflux by ATP-binding cassette subfamily G member 2 (ABCG2), we determined the activity of FECH and ABCG2 in a panel of human glioma cell lines and correlated with intracellular and extracellular PpIX levels and PDT response. We found that glioma cell lines with ABCG2 activity exhibited the trend of low intracellular PpIX, high extracellular PpIX and low PDT response, whereas no particular correlation was seen with FECH activity. Inhibition of PpIX efflux with ABCG2 inhibitors was more effective in enhancing ALA-PpIX fluorescence and PDT response than blocking PpIX bioconversion with iron chelator deferoxamine. We also showed that a clinically used kinase inhibitor lapatinib could be repurposed for therapeutic enhancement of ALA due to its potent ABCG2 inhibitory activity. Our study reveals ABCG2 as an important biological determinant of PpIX fluorescence in glioma cells and suggests ABCG2 inhibition with lapatinib as a promising therapeutic enhancement approach.
Collapse
Affiliation(s)
- Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Sharayu Chandratre
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Mazurek M, Szczepanek D, Orzyłowska A, Rola R. Analysis of Factors Affecting 5-ALA Fluorescence Intensity in Visualizing Glial Tumor Cells-Literature Review. Int J Mol Sci 2022; 23:ijms23020926. [PMID: 35055109 PMCID: PMC8779265 DOI: 10.3390/ijms23020926] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Glial tumors are one of the most common lesions of the central nervous system. Despite the implementation of appropriate treatment, the prognosis is not successful. As shown in the literature, maximal tumor resection is a key element in improving therapeutic outcome. One of the methods to achieve it is the use of fluorescent intraoperative navigation with 5-aminolevulinic acid. Unfortunately, often the level of fluorescence emitted is not satisfactory, resulting in difficulties in the course of surgery. This article summarizes currently available knowledge regarding differences in the level of emitted fluorescence. It may depend on both the histological type and the genetic profile of the tumor, which is reflected in the activity and expression of enzymes involved in the intracellular metabolism of fluorescent dyes, such as PBGD, FECH, UROS, and ALAS. The transport of 5-aminolevulinic acid and its metabolites across the blood–brain barrier and cell membranes mediated by transporters, such as ABCB6 and ABCG2, is also important. Accompanying therapies, such as antiepileptic drugs or steroids, also have an impact on light emission by tumor cells. Accurate determination of the factors influencing the fluorescence of 5-aminolevulinic acid-treated cells may contribute to the improvement of fluorescence navigation in patients with highly malignant gliomas.
Collapse
|
14
|
Stimulation and homogenization of the protoporphyrin IX endogenous production by photobiomodulation to increase the potency of photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112347. [PMID: 34736068 DOI: 10.1016/j.jphotobiol.2021.112347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Protoporphyrin IX (PpIX) is produced in the mitochondria and used as fluorescent contrast agent or photosensitizer after exogenous 5-aminolevulinic acid (ALA) delivery in cancer photodynamic detection and therapy (PDT). Although routinely used in the clinics, the stimulated production of PpIX is often insufficient and/or heterogeneous within the lesions, thereby limiting the PDT performances. Since photobiomodulation, which is based on the illumination of the tissues with sub-thermal radiometric conditions in the red or near-infrared, is known to stimulate the cell metabolism, we have optimized these conditions in vitro. Some of them lead to the homogenization and strong stimulation of the PpIX endogenous production. Interestingly, combined sequentially, PBM enhanced significantly the potency of PpIX-based PDT in vitro and in vivo in tumors grown on the chicken embryo chorioallantoic membrane. These results are in excellent agreement with other assays based on measurements of the cell survival/death, the production of reactive oxygen species, including singlet oxygen, and the mitochondrial membrane potential.
Collapse
|
15
|
Hu X, Zhang N, Shen L, Yu L, Huang LY, Wang AJ, Shan D, Yuan PX, Feng JJ. The enhanced photoelectrochemical platform constructed by N-doped ZnO nanopolyhedrons and porphyrin for ultrasensitive detection of brain natriuretic peptide. Anal Chim Acta 2021; 1183:338870. [PMID: 34627528 DOI: 10.1016/j.aca.2021.338870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022]
Abstract
Nowadays, brain natriuretic peptide (BNP-32) is fundamental to early cardiovascular clinical diagnosis, whose accurate assay is of significance by photoelectrochemistry (PEC) for the low background and high precision. Herein, a novel enhanced PEC platform was built by successive deposition of N-doped ZnO nanopolyhedra (N-ZnO NP) and protoporphyrin IX (PPIX). Specifically, the N-ZnO NP with a narrow bandgap of 2.60 eV was synthesized by direct calcination of zeolitic imidazole framework-8 (ZIF-8), and performed as the substrate to enhance the photocurrents of PPIX (as photosensitizer) whose photoelectron transfer pathway and enhanced PEC mechanism were studied in detail. Under such foundation, a label-free PEC aptasensor was developed by deposition of DNA aptamer onto the PEC platform and then ultrasensitive assay of BNP-32 based on a "signal off" model. The biosensor showed a wide linear range (1 pg mL-1- 0.1 μg mL-1) with a limit of detection (LOD) as low as 0.14 pg mL-1. This doping technique of ZnO nanomaterials provides some valuable guidelines for synthesis of advanced PEC probes in bioanalysis.
Collapse
Affiliation(s)
- Xiang Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Nuo Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Luan Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lu Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Yan Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Dan Shan
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
16
|
Elzi DJ, Bauta WE, Sanchez JR, Das T, Mogare S, Zannes Fatland P, Iza M, Pertsemlidis A, Rebel VI. Identification of a novel mechanism for meso-tetra (4-carboxyphenyl) porphyrin (TCPP) uptake in cancer cells. FASEB J 2021; 35:e21427. [PMID: 33629776 DOI: 10.1096/fj.202000197r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 01/23/2023]
Abstract
Porphyrins are used for cancer diagnostic and therapeutic applications, but the mechanism of how porphyrins accumulate in cancer cells remains elusive. Knowledge of how porphyrins enter cancer cells can aid the development of more accurate cancer diagnostics and therapeutics. To gain insight into porphyrin uptake mechanisms in cancer cells, we developed a flow cytometry assay to quantify cellular uptake of meso-tetra (4-carboxyphenyl) porphyrin (TCPP), a porphyrin that is currently being developed for cancer diagnostics. We found that TCPP enters cancer cells through clathrin-mediated endocytosis. The LDL receptor, previously implicated in the cellular uptake of other porphyrins, only contributes modestly to uptake. We report that TCPP instead binds strongly ( K D = 42 nM ) to CD320, the cellular receptor for cobalamin/transcobalamin II (Cbl/TCN2). Additionally, TCPP competes with Cbl/TCN2 for CD320 binding, suggesting that CD320 is a novel receptor for TCPP. Knockdown of CD320 inhibits TCPP uptake by up to 40% in multiple cancer cell lines, including lung, breast, and prostate cell lines, which supports our hypothesis that CD320 both binds to and transports TCPP into cancer cells. Our findings provide some novel insights into why porphyrins concentrate in cancer cells. Additionally, our study describes a novel function for the CD320 receptor which has been reported to transport only Cbl/TCN2 complexes.
Collapse
Affiliation(s)
- David J Elzi
- BioAffinity Technologies, Inc., San Antonio, TX, USA
| | | | | | - Trisha Das
- BioAffinity Technologies, Inc., San Antonio, TX, USA
| | - Shweta Mogare
- BioAffinity Technologies, Inc., San Antonio, TX, USA
| | | | - Moises Iza
- BioAffinity Technologies, Inc., San Antonio, TX, USA
| | - Alexander Pertsemlidis
- Department of Pediatrics, The University of Texas Health Science Center, San Antonio, TX, USA.,Department of Cell Systems & Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX, USA
| | - Vivienne I Rebel
- BioAffinity Technologies, Inc., San Antonio, TX, USA.,Department of Cell Systems & Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
17
|
Howley R, Mansi M, Shinde J, Restrepo J, Chen B. Evaluation of aminolevulinic acid-mediated protoporphyrin IX fluorescence and enhancement by ABCG2 inhibitors in renal cell carcinoma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:112017. [PMID: 32919173 DOI: 10.1016/j.jphotobiol.2020.112017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022]
Abstract
Aminolevulinic acid (ALA) has been approved as an intraoperative molecular imaging probe for protoporphyrin IX (PpIX) fluorescence-guided resection of glioma. Here we explored its potential application for renal cell carcinoma (RCC) that is showing increased incidence in recent years. ALA-mediated PpIX in cell lysates (intracellular) and culture medium was measured in five human RCC cell lines (786-O, 769-P, A-704, Caki-1, Caki-2) and a non-tumor human kidney epithelial cell line HK-2 by spectrofluorometry and flow cytometry. The activity of PpIX bioconversion enzyme ferrochelatase (FECH) and PpIX efflux transporter ABCG2 was determined to correlate with the PpIX level. We found that ALA-PpIX fluorescence was highly variable among RCC cell lines and A-704 was the only RCC cell line exhibiting significantly higher intracellular PpIX than HK-2 cells. Neither the intracellular PpIX level nor the total amount of PpIX (including PpIX in cell lysates and the medium) had significant correlation with the activity of FECH or ABCG2. To enhance the intracellular PpIX, cells were treated with Ko143, a pharmacological inhibitor of ABCG2. Ko143 significantly increased the intracellular PpIX in cell lines with ABCG2 activity, but not in cell lines with little ABCG2 activity. In fact, there was a positive correlation between the ABCG2 activity and Ko143-induced PpIX enhancement across kidney cell lines. To identify clinically relevant ABCG2 inhibitors, small molecule inhibitors targeting various cell signaling pathways, some of which are known to inhibit ABCG2, were evaluated for the enhancement of ALA-PpIX in Caki-2 cells that had the highest ABCG2 activity in the RCC cell panel. Our screening led to the identification of several clinically available inhibitors that significantly increased the intracellular PpIX. Particularly, kinase inhibitor lapatinib exhibited the strongest enhancement effect. These clinical inhibitors can be used for the enhancement of ALA-PpIX fluorescence in tumors with elevated ABCG2 activity.
Collapse
Affiliation(s)
- Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Janhavi Shinde
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Juliana Restrepo
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Mischkulnig M, Kiesel B, Lötsch D, Roetzer T, Borkovec M, Wadiura LI, Mercea PA, Jaklin FJ, Hervey-Jumper S, Roessler K, Berger MS, Widhalm G, Erhart F. TCGA mRNA Expression Analysis of the Heme Biosynthesis Pathway in Diffusely Infiltrating Gliomas: A Comparison of Typically 5-ALA Fluorescent and Non-Fluorescent Gliomas. Cancers (Basel) 2020; 12:cancers12082043. [PMID: 32722247 PMCID: PMC7466145 DOI: 10.3390/cancers12082043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a fluorescent dye that after metabolization to Protoporphyrin IX (PpIX) by the heme biosynthesis pathway typically leads to visible fluorescence in WHO grade IV but not grade II gliomas. The exact mechanism for high PpIX levels in WHO grade IV gliomas and low PpIX levels in WHO grade II gliomas is not fully clarified. To detect relevant changes in mRNA expression, we performed an in-silico analysis of WHO grade II and IV glioma sequencing datasets provided by The Cancer Genome Atlas (TCGA) to investigate mRNA expression levels of relevant heme biosynthesis genes: Solute Carrier Family 15 Member 1 and 2 (SLC15A1 and SLC15A2), Aminolevulinate-Dehydratase (ALAD), Hydroxymethylbilane-Synthase (HMBS), Uroporphyrinogen-III-Synthase (UROS), Uroporphyrinogen-Decarboxylase (UROD), Coproporphyrinogen-Oxidase (CPOX), Protoporphyrinogen-Oxidase (PPOX), ATP-binding Cassette Subfamily B Member 6 (ABCB6)/G Member 2 (ABCG2) and Ferrochelatase (FECH). Altogether, 258 WHO grade II and 166 WHO grade IV samples were investigated. The mRNA expression levels showed significant differences in 8 of 11 examined genes between WHO grade II and IV gliomas. Significant differences in mRNA expression included increases of HMBS, UROD, FECH and PPOX as well as decreases of SLC15A2, ALAD, UROS and ABCB6 in WHO IV gliomas. Since the majority of changes was found in directions that might actually impair PpIX accumulation in WHO grade IV gliomas, additional studies are needed to analyze the corresponding factors of the heme biosynthesis also on protein level.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Daniela Lötsch
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Thomas Roetzer
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University Vienna, 1090 Vienna, Austria
| | - Martin Borkovec
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Department of Statistics, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Lisa I. Wadiura
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Petra A. Mercea
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Florian J. Jaklin
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Karl Roessler
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-40400-45650
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| |
Collapse
|
19
|
Reinert M, Piffaretti D, Wilzbach M, Hauger C, Guckler R, Marchi F, D'Angelo ML. Quantitative Modulation of PpIX Fluorescence and Improved Glioma Visualization. Front Surg 2019; 6:41. [PMID: 31380388 PMCID: PMC6646670 DOI: 10.3389/fsurg.2019.00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) induced fluorescence to augment surgical resection for high grade glioma has become a standard of care. Protoporphyrin IX (PpIX) visibility is however subject to the variability of the single tumor expression and to the interobserver interpretation. We therefore hypothesized that in different glioma cell lines with variable 5-ALA induced fluorescence, the signal can be pharmacologically increased. We therefore analyzed in three different GBM cell lines, with different expression of epidermal growth factor receptor (EGFR), the variability of 5-ALA induced PpIX fluorescence after the pharmacological blockade at different steps of PpIX breakdown and influencing the outbound transport of PpIX. Using flow cytometry, fluorescence microplate reader, and confocal microscopy the PpIX fluorescence was analyzed after exposure to tin protoporphyrin IX (SnPP), deferoxamine (DFO), and genistein. We furthermore constructed a microscope (Qp9-microscope) being able to measure quantitatively the concentration of PpIX. These values were compared with the extraction of PpIX in tumor biopsy taken during the GBM surgery. Although all three cell lines showed an increase to 5-ALA induced fluorescence their baseline activity was different. Treatment with either SnPP, DFO and genistein was able to increase 5-ALA induced fluorescence. Qp9-microscopy of tumor sample produced a color coded PpIX concentration map which was overlaid on the tumor image. The PpIX extraction from tumor sample analyzed using the plate reader gave lower values of the concentration, as compared to the expected values of the Qp9-microscope, however still in the same decimal range of μg/mL. This may be due to homogenization of the values during extraction and cell disaggregation. In conclusion pharmacological augmentation in GBM cell lines of PpIX signal is possible. A quantitative PpIX map for surgery is feasible and may help refine surgical excision. Further correlations of tumor tissue samples and Qp9-microscopy is needed, prior to develop an intraoperative surgical adjunct to the already existing 5-ALA induced surgery.
Collapse
Affiliation(s)
- Michael Reinert
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland.,Department of Neurosurgery, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland.,Medical Faculty, University of Bern, Bern, Switzerland
| | - Deborah Piffaretti
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland.,Faculty of Medicine, Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | | | - Francesco Marchi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland.,Department of Neurosurgery, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Maria Luisa D'Angelo
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
| |
Collapse
|