1
|
Mansour A, Eldin MH, El-Sherbiny IM. Metallic nanomaterials in Parkinson's disease: a transformative approach for early detection and targeted therapy. J Mater Chem B 2025; 13:3806-3830. [PMID: 40029109 DOI: 10.1039/d4tb02428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by substantial loss of dopaminergic neurons in the substantia nigra, leading to both motor and non-motor symptoms that significantly impact quality of life. The prevalence of PD is expected to increase with the aging population, affecting millions globally. Current detection techniques, including clinical assays and neuroimaging, lack the sensitivity and specificity to sense PD in its earliest stages. Despite extensive research, there is no cure for PD, and available treatments primarily focus on symptomatic relief rather than halting disease progression. Conventional treatments, such as levodopa and dopamine agonists, provide limited and often temporary relief, with long-term use associated with significant side effects and diminished efficacy. Nanotechnology, particularly the use of metallic-based nanomaterials (MNMs), offers a promising approach to overcome these limitations. MNMs, due to their unique physicochemical properties, can be engineered to target specific cellular and molecular mechanisms involved in PD. These MNMs can improve drug delivery, enhance imaging and biosensing techniques, and provide neuroprotective effects. For example, gold and silver nanoparticles have shown potential in crossing the blood-brain barrier, providing real-time imaging for early diagnosis and delivering therapeutic agents directly to the affected neurons. This review aims to reveal the current advancements in the use of MNMs for the detection and treatment of PD. It will provide a comprehensive overview of the limitations of conventional detection techniques and therapies, followed by a detailed discussion on how nanotechnology can address these challenges. The review will also highlight recent preclinical research and examine the potential toxicity of MNMs. By emphasizing the potential of MNMs, this review article aims to underscore the transformative impact of nanotechnology in revolutionizing the detection and treatment of PD.
Collapse
Affiliation(s)
- Amira Mansour
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt.
| | - Mariam Hossam Eldin
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt.
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt.
| |
Collapse
|
2
|
Elmitwalli OSMMS, Kassim DAK, Algahiny AT, Henari FZ. Green Synthesis of Metal Nanoparticles Using Cinnamomum-Based Extracts and Their Applications. Nanotechnol Sci Appl 2025; 18:93-114. [PMID: 40027987 PMCID: PMC11871920 DOI: 10.2147/nsa.s489274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/15/2024] [Indexed: 03/05/2025] Open
Abstract
Introduction Nanotechnology is the science that deals with matter on the nanoscale, with sizes ranging from 1 to 100 nm. It involves designing, synthesising, characterising and applying these nanoscale materials. Nanoparticles (NPs) are known for their high surface-area to volume-ratio, surface charge density, low melting point, and distinguishably good optical/electrical properties. NPs exhibit an excellent drug delivery system, an effective contrast agent for vascular imaging, and effective antimicrobial activity. The biological synthesis of NPs is a simple, cost-effective, and environmentally friendly technique. This bottom-up technique utilises organisms' enzymes/bio-compounds and a plant extract as capping and reducing agents. Cinnamomum species are known for their intrinsic antimicrobial, antidiabetic, antioxidant, anti-inflammatory, anticancer, and neuroprotective properties. This review summarises articles that greenly synthesised NPs using Cinnamomum species' extracts, describing their methodologies, characterisation of the nanoparticles and their medical applications. Methods A literature search has been conducted on databases PubMed, ScienceDirect, and Frontier on the green synthesis of metal nanoparticles (MNPs) using Cinnamomum-based extracts. Various articles reported the methodology of utilising Cinnamomum species' extracts as reducing and capping agents. Only original lab articles were considered. Results Various types of MNPs have been successfully synthesised. The most common Cinnamomum species utilised as extracts is Cinnamomum tamala. The most common applications tested were the MNPs' antibacterial, antiviral, antifungal, antidiabetic and anticancerous activity. MNPs also had a role in treating mice-induced polycystic ovarian syndrome and Parkinson-like neurodegenerative diseases. Conclusion Cinnamomum species have been successfully utilised in the green synthesis of various MNPs. Silver and Gold NPs were the most reported. These MNPs proved their efficacy in multiple fields of medicine and biology, especially their antibacterial, antiviral and antifungal activity. Notably, the newly synthesised NPs showed promising results in treating polycystic ovarian syndrome in rats.
Collapse
Affiliation(s)
| | - Deyari Azad Kareem Kassim
- Department of Medical Sciences, Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Muharraq, Kingdom of Bahrain
| | - Ahmed Taymour Algahiny
- Department of Medical Sciences, Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Muharraq, Kingdom of Bahrain
| | - Fryad Zeki Henari
- Department of Medical Sciences, Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Muharraq, Kingdom of Bahrain
| |
Collapse
|
3
|
Ali I, Adil M, Imran M, Qureshi SA, Qureshi S, Hasan N, Ahmad FJ. Nanotechnology in Parkinson's Disease: overcoming drug delivery challenges and enhancing therapeutic outcomes. Drug Deliv Transl Res 2025:10.1007/s13346-025-01799-8. [PMID: 39878857 DOI: 10.1007/s13346-025-01799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development. Moreover, early and precise PD diagnosis remains elusive, relying on clinical assessments, neuroimaging techniques, and emerging biomarkers. Conventional management of PD involves dopaminergic medications and surgical interventions, but these treatments often become less effective over time and do not address disease treatment. Challenges persist due to the blood-brain barrier's (BBB) impermeability, hindering drug delivery. Recent advancements in nanotechnology offer promising novel approaches for PD management. Various drug delivery systems (DDS), including nanosized polymers, lipid-based carriers, and nanoparticles (such as metal/metal oxide, protein, and carbonaceous particles), aim to enhance drug and gene delivery. These modifications seek to improve BBB permeability, ultimately benefiting PD patients. This review underscores the critical role of ageing in PD development and explores how age-related neuronal decline contributes to substantia nigra loss and PD manifestation in susceptible individuals. The review also highlights the advancements and ongoing challenges in nanotechnology-based therapies for PD.
Collapse
Affiliation(s)
- Irfan Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Adil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, 4102, Australia
| | - Saba Asif Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
5
|
Fu S, Bao X, Wang Z, Tang Y, Wu Q, Zhu B, Zhou F, Ding Z. Antipyretic effect of inhaled Tetrastigma hemsleyanum polysaccharide on substance and energy metabolism in yeast-induced pyrexia mice via TLR4/NF-κb signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117732. [PMID: 38218501 DOI: 10.1016/j.jep.2024.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrastigma hemsleyanum Diels et Gilg, is one of the perennial evergreen plants with grass vine, which has obvious curative effect on severe infectious diseases. Although Tetrastigma hemleyanum has long been recognized for its capacity of antipyretic and antitoxic, its specific mechanism is unknown. AIM OF THE STUDY To evaluate the antipyretic effect of Tetrastigma hemleyanum polysaccharide (THP) on mice with dry yeast-induced fever, and to explore its specific antipyretic mechanism. METHODS In this study, THP was administered by aerosol in febrile mice. The rectal temperatures of treated animals were monitored at different time points. Histopathological evaluation and various inflammatory indexes were used to assess inflammatory damage. The concentration variations of the central neurotransmitter, endocrine system, substance and energy metabolism indicators were measured to explore the physiological mechanism. Quantitative real-time PCR, Western bolt and Immunohistochemistry were performed to identify the correlation between antipyretic and TLR4/NF-κB signaling pathway. RESULTS THP reduced the body temperature of febrile mice induced by dry yeast, as well as the levels of thermogenic cytokines and downregulated the contents of thermoregulatory mediators. THP alleviated the pathological damage of liver and hypothalamus caused by fever. In addition, THP decreased the secretion of thyroid hormone, substance and energy metabolism related indicators. Furthermore, THP significantly suppressed TLR4/NF-κB signaling pathway-related indicators. CONCLUSIONS In conclusion, our results suggest that inhaled THP exerts antipyretic effect by mediating the thermoregulatory mediator, decreasing the content of pyrogenic factors to lower the body temperature, and eventually restoring the high metabolic level in the body to normal via inhibiting TLR4/NF-κB signaling pathway. The study provides a reasonable pharmacodynamic basis for the treatment of polysaccharide in febrile-related diseases.
Collapse
Affiliation(s)
- Siyu Fu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Xiaodan Bao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Zhejiong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310053, China.
| | - Youying Tang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Qian Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
6
|
Cicek B, Hacimuftuoglu A, Yeni Y, Kuzucu M, Genc S, Cetin A, Yavuz E, Danısman B, Levent A, Ozdokur KV, Kantarcı M, Docea AO, Siokas V, Tsarouhas K, Coleman MD, Tsatsakis A, Taghizadehghalehjoughi A. AuNPs with Cynara scolymus leaf extracts rescue arsenic-induced neurobehavioral deficits and hippocampal tissue toxicity in Balb/c mice through D1R and D2R activation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104417. [PMID: 38493879 DOI: 10.1016/j.etap.2024.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The present study was designed to evaluate whether AuNPs (gold nanoparticles) synthesized with the Cynara scolymus (CS) leaf exert protective and/or alleviative effects on arsenic (As)-induced hippocampal neurotoxicity in mice. Neurotoxicity in mice was developed by orally treating 10 mg/kg/day sodium arsenite (NaAsO2) for 21 days. 10 µg/g AuNPs, 1.6 g/kg CS, and 10 µg/g CS-AuNPs were administered orally simultaneously with 10 mg/kg As. CS and CS-AuNPs treatments showed down-regulation of TNF-α and IL-1β levels. CS and CS-AuNPs also ameliorated apoptosis and reduced the alterations in the expression levels of D1 and D2 dopamine receptors induced by As. Simultaneous treatment with CS and CS-AuNPs improved As-induced learning, memory deficits, and motor coordination in mice assessed by water maze and locomotor tests, respectively. The results of this study provide evidence that CS-AuNPs demonstrated neuroprotective roles with antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as improving D1 and D2 signaling, and eventually reversed neurobehavioral impairments.
Collapse
Affiliation(s)
- Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey.
| | - Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya 44210, Turkey.
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Sidika Genc
- Bilecik Şeyh Edebali University, Faculty of Medicine, Department of Medical Pharmacology, Bilecik 11230, Turkey
| | - Ahmet Cetin
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Emre Yavuz
- Department of Medical Services and Technicians, Çayirli Vocational School, Erzincan Binali Yildirim University, Erzincan, Turkey.
| | - Betul Danısman
- Department of Biophysics, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey.
| | - Akin Levent
- Department of Radiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Kemal Volkan Ozdokur
- Sciences Application and Research Center, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Mecit Kantarcı
- Department of Radiology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41100, Greece
| | | | - Michael D Coleman
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK.
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece.
| | - Ali Taghizadehghalehjoughi
- Bilecik Şeyh Edebali University, Faculty of Medicine, Department of Medical Pharmacology, Bilecik 11230, Turkey.
| |
Collapse
|
7
|
Chiang MC, Yang YP, Nicol CJB, Wang CJ. Gold Nanoparticles in Neurological Diseases: A Review of Neuroprotection. Int J Mol Sci 2024; 25:2360. [PMID: 38397037 PMCID: PMC10888679 DOI: 10.3390/ijms25042360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
This review explores the diverse applications of gold nanoparticles (AuNPs) in neurological diseases, with a specific focus on Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The introduction highlights the pivotal role of neuroinflammation in these disorders and introduces the unique properties of AuNPs. The review's core examines the mechanisms by which AuNPs exert neuroprotection and anti-neuro-inflammatory effects, elucidating various pathways through which they manifest these properties. The potential therapeutic applications of AuNPs in AD are discussed, shedding light on promising avenues for therapy. This review also explores the prospects of utilizing AuNPs in PD interventions, presenting a hopeful outlook for future treatments. Additionally, the review delves into the potential of AuNPs in providing neuroprotection after strokes, emphasizing their significance in mitigating cerebrovascular accidents' aftermath. Experimental findings from cellular and animal models are consolidated to provide a comprehensive overview of AuNPs' effectiveness, offering insights into their impact at both the cellular and in vivo levels. This review enhances our understanding of AuNPs' applications in neurological diseases and lays the groundwork for innovative therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Ping Yang
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher J. B. Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
8
|
Grancharova T, Simeonova S, Pilicheva B, Zagorchev P. Gold Nanoparticles in Parkinson's Disease Therapy: A Focus on Plant-Based Green Synthesis. Cureus 2024; 16:e54671. [PMID: 38524031 PMCID: PMC10960252 DOI: 10.7759/cureus.54671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease that affects approximately 1% of people over the age of 60 and 5% of those over the age of 85. Current drugs for Parkinson's disease mainly affect the symptoms and cannot stop its progression. Nanotechnology provides a solution to address some challenges in therapy, such as overcoming the blood-brain barrier (BBB), adverse pharmacokinetics, and the limited bioavailability of therapeutics. The reformulation of drugs into nanoparticles (NPs) can improve their biodistribution, protect them from degradation, reduce the required dose, and ensure target accumulation. Furthermore, appropriately designed nanoparticles enable the combination of diagnosis and therapy with a single nanoagent. In recent years, gold nanoparticles (AuNPs) have been studied with increasing interest due to their intrinsic nanozyme activity. They can mimic the action of superoxide dismutase, catalase, and peroxidase. The use of 13-nm gold nanoparticles (CNM-Au8®) in bicarbonate solution is being studied as a potential treatment for Parkinson's disease and other neurological illnesses. CNM-Au8® improves remyelination and motor functions in experimental animals. Among the many techniques for nanoparticle synthesis, green synthesis is increasingly used due to its simplicity and therapeutic potential. Green synthesis relies on natural and environmentally friendly materials, such as plant extracts, to reduce metal ions and form nanoparticles. Moreover, the presence of bioactive plant compounds on their surface increases the therapeutic potential of these nanoparticles. The present article reviews the possibilities of nanoparticles obtained by green synthesis to combine the therapeutic effects of plant components with gold.
Collapse
Affiliation(s)
- Tsenka Grancharova
- Department of Medical Physics and Biophysics, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Stanislava Simeonova
- Department of Pharmaceutical Sciences, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| | - Plamen Zagorchev
- Department of Medical Physics and Biophysics, Medical University of Plovdiv, Plovdiv, BGR
- Research Institute, Medical University of Plovdiv, Plovdiv, BGR
| |
Collapse
|
9
|
Aili M, Zhou K, Zhan J, Zheng H, Luo F. Anti-inflammatory role of gold nanoparticles in the prevention and treatment of Alzheimer's disease. J Mater Chem B 2023; 11:8605-8621. [PMID: 37615596 DOI: 10.1039/d3tb01023f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory and cognitive dysfunction and reduces a person's decision-making and reasoning functions. AD is the leading cause of dementia in the elderly. Patients with AD have increased expression of pro-inflammatory cytokines in the nervous system, and the sustained inflammatory response impairs neuronal function. Meanwhile, long-term use of anti-inflammatory drugs can reduce the incidence of AD to some extent. This confirms that anti-neuroinflammation may be an effective treatment for AD. Gold nanoparticles (AuNPs) are an emerging nanomaterial with promising physicochemical properties, anti-inflammatory and antioxidant. AuNPs reduce neuroinflammation by inducing macrophage polarization toward the M2 phenotype, reducing pro-inflammatory cytokine expression, blocking leukocyte adhesion, and decreasing oxidative stress. Therefore, AuNPs are gradually attracting the interest of scholars and are used for treating inflammatory diseases and drug delivery. Herein, we explored the role and mechanism of AuNPs in treating neuroinflammation in AD. The use of AuNPs for treating AD is a topic worth exploring in the future, not only to help solve a global public health problem but also to provide a reference for treating other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Munire Aili
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Kebing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China
| |
Collapse
|
10
|
Wang YC, Wang V, Chen BH. Analysis of bioactive compounds in cinnamon leaves and preparation of nanoemulsion and byproducts for improving Parkinson's disease in rats. Front Nutr 2023; 10:1229192. [PMID: 37599679 PMCID: PMC10433916 DOI: 10.3389/fnut.2023.1229192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
INTRODUCTION Cinnamomum osmophloeum Kanehira (C. osmophloeum), a broad-leaved tree species of Taiwan, contains phenolic acids, flavonoids, and phenylpropanoids such as cinnamaldehyde and cinnamic acid in leaves. Many reports have shown that the cinnamon leaf extract possesses anti-inflammatory, hypoglycemic, hypolipidemic and neuroprotective functions. This study aims to analyze bioactive compounds in C. osmophloeum (cinnamon leaves) by UPLC-MS/MS and prepare hydrosol, cinnamon leaf extract and cinnamon leaf nanoemulsion for comparison in improving Parkinson's disease (PD) in rats. METHODS After extraction and determination of total phenolic and total flavonoid contents, cinnamaldehyde and the other bioactive compounds were analyzed in cinnamon leaves and hydrosol by UPLC-MS/MS. Cinnamon leaf nanoemulsion was prepared by mixing a suitable proportion of cinnamon leaf extract, soybean oil, lecithin, Tween 80 and deionized water, followed by characterization of particle size and polydispersity index by dynamic light scattering analyzer, particle size and shape by transmission electron microscope, encapsulation efficiency, as well as storage and heating stability. Fifty-six male Sprague-Dawley rats aged 8 weeks were divided into seven groups with group 1 as control (sunflower oil) and group 2 as induction (2 mg/kg bw rotenone in sunflower oil plus 10 mL/kg bw saline), while the other groups including rotenone injection (2 mg/kg bw) followed by high-dose of 60 mg/kg bw (group 3) or low-dose of 20 mg/kg bw (group 4) for tube feeding of cinnamon leaf extract or cinnamon leaf nanoemulsion at the same doses (groups 5 and 6) every day for 5 weeks as well as group 7 with rotenone plus hydrosol containing 0.5 g cinnamon leaf powder at a dose of 10 mL/kg bw. Biochemical analysis of brain tissue (striatum and midbrain) was done to determine dopamine, α-synuclein, tyrosine hydroxylase, superoxide dismutase, catalase, glutathione peroxidase and malondialdehyde contents by using commercial kits, while catalepsy performed by bar test. RESULTS AND DISCUSSION An extraction solvent of 80% ethanol was found to be the most optimal with a high yield of 15 bioactive compounds being obtained following UPLC analysis. A triple quadrupole tandem mass spectrometer with electrospray ionization mode was used for identification and quantitation, with cinnamaldehyde present at the highest amount (17985.2 µg/g). The cinnamon leaf nanoemulsion was successfully prepared with the mean particle size, zeta potential, polydispersity index and encapsulation efficiency being 30.1 nm, -43.1 mV, 0.149 and 91.6%, respectively. A high stability of cinnamon leaf nanoemulsion was shown over a 90-day storage period at 4 and heating at 100 for 2 h. Animal experiments revealed that the treatments of cinnamon leaf extract, nanoemulsion and hydrosol increased the dopamine contents from 17.08% to 49.39% and tyrosine hydroxylase levels from 17.07% to 25.59%, while reduced the α-synuclein levels from 17.56% to 15.95% in the striatum of rats. Additionally, in the midbrain of rats, an elevation of activities of superoxide dismutase (6.69-16.82%), catalase (8.56-16.94%), and glutathione peroxidase (2.09-16.94%) was shown, while the malondialdehyde content declined by 15.47-22.47%. Comparatively, the high-dose nanoemulsion exerted the most pronounced effect in improving PD in rats and may be a promising candidate for the development of health food or botanic drug.
Collapse
Affiliation(s)
- Yi Chun Wang
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Vinchi Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Bing Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Jalil K, Ahmad S, Islam N, Ullah R, Jalil Q, Sulaiman S, Sajjad A, Ullah R, Alqahtani AS, Bari A, Hussain H, Ali EA. One Pot Synthesis, Biological Efficacy of AuNPs and Au-Amoxicillin Conjugates Functionalized with Crude Flavonoids Extract of Micromeria biflora. Molecules 2023; 28:molecules28083320. [PMID: 37110554 PMCID: PMC10140876 DOI: 10.3390/molecules28083320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Amoxicillin is the most widely used antibiotic in human medicine for treating bacterial infections. However, in the present research, Micromeria biflora's flavonoids extract mediated gold nanoparticles (AuNPs) were conjugated with amoxicillin (Au-amoxi) to study their efficacy against the inflammation and pain caused by bacterial infections. The formation of AuNPs and Au-amoxi conjugates were confirmed by UV-visible surface plasmon peaks at 535 nm and 545 nm, respectively. The scanning electron microscopy (SEM), zeta potential (ZP), and X-ray diffraction (XRD) studies reveal that the size of AuNPs and Au-amoxi are found to be 42 nm and 45 nm, respectively. Fourier-transform infrared spectroscopy (FT-IR) absorption bands at 3200 cm-1, 1000 cm-1, 1500 cm-1, and 1650 cm-1 reveal the possible involvement of different moieties for the formation of AuNPs and Au-amoxi. The pH studies show that AuNPs and Au-amoxi conjugates are stable at lower pH. The carrageenan-induced paw edema test, writhing test, and hot plate test were used to conduct in vivo anti-inflammatory and antinociceptive studies, respectively. According to in vivo anti-inflammatory activity, Au-amoxi compounds have higher efficiency (70%) after 3 h at a dose of 10 mg/kg body weight as compared to standard diclofenac (60%) at 20 mg/kg, amoxicillin (30%) at 100 mg/kg, and flavonoids extract (35%) at 100 mg/kg. Similarly, for antinociceptive activities, writhing test results show that Au-amoxi conjugates produced the same number of writhes (15) but at a lower dose (10 mg/kg) compared to standard diclofenac (20 mg/kg). The hot plate test results demonstrate that the Au-amoxi has a better latency time of 25 s at 10 mg/kg dose when compared to standard Tramadol of 22 s at 30 mg/ kg, amoxicillin of 14 s at 100 mg/kg, and extract of 14 s at 100 mg/kg after placing the mice on the hot plate for 30, 60, and 90 min with a significance of (p ≤ 0.001). These findings show that the conjugation of AuNPs with amoxicillin to form Au-amoxi can boost its anti-inflammatory and antinociceptive potential caused by bacterial infections.
Collapse
Affiliation(s)
- Kamran Jalil
- Chemistry Department, Islamia College University, Peshawar 25000, Pakistan
- Department of Chemistry, Government Degree College Hayatabad, Peshawar 25000, Pakistan
| | - Shabir Ahmad
- Chemistry Department, Islamia College University, Peshawar 25000, Pakistan
| | - Nazrul Islam
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar 25000, Pakistan
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Qudsia Jalil
- Chemistry Department, Islamia College University, Peshawar 25000, Pakistan
| | - Sulaiman Sulaiman
- Chemistry Department, Islamia College University, Peshawar 25000, Pakistan
| | - Anoosha Sajjad
- Chemistry Department, Islamia College University, Peshawar 25000, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Bhosale A, Paul G, Mazahir F, Yadav A. Theoretical and applied concepts of nanocarriers for the treatment of Parkinson's diseases. OPENNANO 2023. [DOI: 10.1016/j.onano.2022.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Martano S, De Matteis V, Cascione M, Rinaldi R. Inorganic Nanomaterials versus Polymer-Based Nanoparticles for Overcoming Neurodegeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2337. [PMID: 35889562 PMCID: PMC9317100 DOI: 10.3390/nano12142337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Abstract
Neurodegenerative disorders (NDs) affect a great number of people worldwide and also have a significant socio-economic impact on the aging population. In this context, nanomedicine applied to neurological disorders provides several biotechnological strategies and nanoformulations that improve life expectancy and the quality of life of patients affected by brain disorders. However, available treatments are limited by the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (B-CSFB). In this regard, nanotechnological approaches could overcome these obstacles by updating various aspects (e.g., enhanced drug-delivery efficiency and bioavailability, BBB permeation and targeting the brain parenchyma, minimizing side effects). The aim of this review is to carefully explore the key elements of different neurological disorders and summarize the available nanomaterials applied for neurodegeneration therapy looking at several types of nanocarriers. Moreover, nutraceutical-loaded nanoparticles (NPs) and synthesized NPs using green approaches are also discussed underling the need to adopt eco-friendly procedures with a low environmental impact. The proven antioxidant properties related to several natural products provide an interesting starting point for developing efficient and green nanotools useful for neuroprotection.
Collapse
|
14
|
Bottoni M, Milani F, Galimberti PM, Vignati L, Romanini PL, Lavezzo L, Martinetti L, Giuliani C, Fico G. Ca' Granda, Hortus simplicium: Restoring an Ancient Medicinal Garden of XV-XIX Century in Milan (Italy). Molecules 2021; 26:6933. [PMID: 34834025 PMCID: PMC8620247 DOI: 10.3390/molecules26226933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
This work is based on the study of 150 majolica vases dated back to the mid XVII century that once preserved medicinal remedies prepared in the ancient Pharmacy annexed to the Ospedale Maggiore Ca' Granda in Milan (Lombardy, Italy). The Hortus simplicium was created in 1641 as a source of plant-based ingredients for those remedies. The main objective of the present work is to lay the knowledge base for the restoration of the ancient Garden for educational and informative purposes. Therefore, the following complementary phases were carried out: (i) the analysis of the inscriptions on the jars, along with the survey on historical medical texts, allowing for the positive identification of the plant ingredients of the remedies and their ancient use as medicines; (ii) the bibliographic research in modern pharmacological literature in order to validate or refute the historical uses; (iii) the realization of the checklist of plants potentially present in cultivation at the ancient Garden, concurrently with the comparison with the results of a previous in situ archaeobotanical study concerning pollen grains. For the species selection, considerations were made also regarding drug amounts in the remedies and pedoclimatic conditions of the study area. Out of the 150 vases, 108 contained plant-based remedies, corresponding to 148 taxa. The remedies mainly treated gastrointestinal and respiratory disorders. At least one of the medicinal uses was validated in scientific literature for 112 out of the 148 examined species. Finally, a checklist of 40 taxa, presumably hosted in the Hortus simplicium, was assembled.
Collapse
Affiliation(s)
- Martina Bottoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Fabrizia Milani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Paolo M. Galimberti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122 Milan, Italy;
| | - Lucia Vignati
- Landscape Ecomuseum of Parabiago, P.za della Vittoria 7, 20015 Milan, Italy;
| | - Patrizia Luise Romanini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Luca Lavezzo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Livia Martinetti
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy;
| | - Claudia Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| |
Collapse
|
15
|
Cai F, Li S, Huang H, Iqbal J, Wang C, Jiang X. Green synthesis of gold nanoparticles for immune response regulation: Mechanisms, applications, and perspectives. J Biomed Mater Res A 2021; 110:424-442. [PMID: 34331516 DOI: 10.1002/jbm.a.37281] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
Immune responses are involved in the pathogenesis of many diseases, including cancer, autoimmune diseases, and chronic inflammation. These responses are attributed to immune cells that produce cytokines, mediate cytotoxicity, and synthesize antibodies. Gold nanoparticles (GNPs) are novel agents that intervene with immune responses because of their unique physical-chemical properties. In particular, GNPs enhance anti-tumour activity during immunotherapy and eliminate excessive inflammation in autoimmune diseases. However, GNPs synthesized by conventional methods are toxic to living organisms. Green biosynthesis provides a safe and eco-friendly method to obtain GNPs from microbes or plant extracts. In this review, we describe several patterns for green GNP biosynthesis. The applications of GNPs to target immune cells and modulate the immune response are summarized. In particular, we elaborate on how GNPs regulate innate immunity and adaptive immunity, including inflammatory signaling and immune cell differentiation. Finally, perspectives and challenges in utilizing green biosynthesized GNPs for novel therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Feiyang Cai
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyi Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Huang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Canran Wang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
17
|
Liu X, Liu W, Wang C, Chen Y, Liu P, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Silibinin attenuates motor dysfunction in a mouse model of Parkinson's disease by suppression of oxidative stress and neuroinflammation along with promotion of mitophagy. Physiol Behav 2021; 239:113510. [PMID: 34181930 DOI: 10.1016/j.physbeh.2021.113510] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Silybum marianum (L.) Gaertn has been widely used to obtain a drug for the treatment of hepatic diseases. Silibinin (silybin), a flavonoid extracted and isolated from the fruit of S. marianumis investigated in our study to explore its motor protective potential on Parkinson's disease (PD) model mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). PD is a neurodegenerative disease that causes a debilitating movement disorder, characterized by a progressive loss of nigrostriatal (substantia nigra and striatum) dopaminergic neurons. Several studies have proven that neurodegeneration is aggravated by neuroinflammation, oxidative stress and/or the presence of α-synuclein (α-syn) aggregation. Essentially no causal therapy for PD exists at present. Our results demonstrate that silibinin significantly attenuates MPTP-induced movement disorder in behavioral tests. Immunohistochemical analysis shows that MPTP injection results in the loss of dopaminergic neurons in the substantia nigra, and the decrease of the striatal tyrosine hydroxylase. However, MPTP-injected mice were protected against dopaminergic neuronal loss by oral administration of silibinin (280 mg/kg) that increased expressions of PTEN-induced putative kinase 1 (PINK1) and Parkin, suggesting mitophagy activation. The neuroprotective mechanism of silibinin involves not only reduction of mitochondrial damage by repressing proinflammatory response and α-syn aggregation, but also enhancement of oxidative defense system. Namely, protection of dopaminergic nerves is due to promotion of mitophagy, leading to clearance of the toxic effects of damaged mitochondria. These findings suggest that silibinin has a potential to be further developed as a therapeutic candidate for PD.
Collapse
Affiliation(s)
- Xiumin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Chenkang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yinzhe Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Panwen Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| |
Collapse
|
18
|
Ma X, Wang Y, Yin H, Hua L, Zhang X, Xiao J, Yuan Q, Wang S, Liu Y, Zhang S, Wang Y. Down-regulated long non-coding RNA RMST ameliorates dopaminergic neuron damage in Parkinson's disease rats via regulation of TLR/NF-κB signaling pathway. Brain Res Bull 2021; 174:22-30. [PMID: 33933526 DOI: 10.1016/j.brainresbull.2021.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/04/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Current treatment and prognosis of Parkinson's disease (PD) are not ideal. This study explored the mechanism of long non-coding RNA (lncRNA) rhabdomyosarcoma 2-associated transcript (RMST) in dopaminergic (DA) neuron damage in PD rats. METHODS PD rats were modeled and injected with RMST silence or overexpression vectors to figure out its roles in oxidative stress, the apoptosis of DA neurons in brain substantia nigra (SN), and neurobehavioral activities of PD rats. Tyrosine hydroxylase (TH), synaptophysin (SYN), glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule (Iba-1) in SN were detected. RMST and Toll-like receptor (TLR)/nuclear factor kappa B (NF-κB) pathway-related factors were detected. RESULTS RMST expression in brain SN of rats, TLR2, TLR4 expression in neurons and NF-κB expression in cell nucleus were increased. Silenced RMST improved the neurobehavioral activities, depressed oxidative stress and neuronal apoptosis, increased TH and SYN expression, and reduced the activation degree of glial cells in SN and the inflammatory response via reducing GFAP and Iba-1. Moreover, reduced RMST reduced TLR2 and TLR4 expression in neurons and NF-κB expression in cell nucleus in PD rats. CONCLUSION Inhibited RMST attenuates DA neuron damage in PD rats, which may be implicated with TLR/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xuelian Ma
- Neurology Department, The 960th Hospital of the PLA, Zibo 255300, Shandong, China
| | - Yutong Wang
- Qilu Medical University, Zibo 255300, Shandong, China
| | - Honglei Yin
- Neurology Department, The 960th Hospital of the PLA, Zibo 255300, Shandong, China
| | - Linlin Hua
- Neurology Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Xiaolei Zhang
- Neurology Department, The 960th Hospital of the PLA, Zibo 255300, Shandong, China
| | - Jianhao Xiao
- Neurology Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Qian Yuan
- Neurology Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Shanshan Wang
- Neurology Department, The 960th Hospital of the PLA, Zibo 255300, Shandong, China
| | - Yajun Liu
- Neurology Department, The 960th Hospital of the PLA, Zibo 255300, Shandong, China
| | - Simiao Zhang
- Neurology Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Yunliang Wang
- Neurology Department, The 960th Hospital of the PLA, Zibo 255300, Shandong, China; Neurology Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China.
| |
Collapse
|
19
|
Dolatshahi M, Ranjbar Hameghavandi MH, Sabahi M, Rostamkhani S. Nuclear factor-kappa B (NF-κB) in pathophysiology of Parkinson disease: Diverse patterns and mechanisms contributing to neurodegeneration. Eur J Neurosci 2021; 54:4101-4123. [PMID: 33884689 DOI: 10.1111/ejn.15242] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD), the most common movement disorder, comprises several pathophysiologic mechanisms including misfolded alpha-synuclein aggregation, inflammation, mitochondrial dysfunction, and synaptic loss. Nuclear Factor-Kappa B (NF-κB), as a key regulator of a myriad of cellular reactions, is shown to be involved in such mechanisms associated with PD, and the changes in NF-κB expression is implicated in PD. Alpha-synuclein accumulation, the characteristic feature of PD pathology, is known to trigger NF-κB activation in neurons, thereby propagating apoptosis through several mechanisms. Furthermore, misfolded alpha-synuclein released from degenerated neurons, activates several signaling pathways in glial cells which culminate in activation of NF-κB and production of pro-inflammatory cytokines, thereby aggravating neurodegenerative processes. On the other hand, NF-κB activation, acting as a double-edged sword, can be necessary for survival of neurons. For instance, NF-κB activation is necessary for competent mitochondrial function and deficiency in c-Rel, one of the NF-κB proteins, is known to propagate DA neuron loss via several mechanisms. Despite the dual role of NF-κB in PD, several agents by selectively modifying the mechanisms and pathways associated with NF-κB, can be effective in attenuating DA neuron loss and PD, as reviewed in this paper.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Mohammadmahdi Sabahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sabra Rostamkhani
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Angelopoulou E, Nath Paudel Y, Piperi C, Mishra A. Neuroprotective potential of cinnamon and its metabolites in Parkinson's disease: Mechanistic insights, limitations, and novel therapeutic opportunities. J Biochem Mol Toxicol 2021:e22711. [PMID: 33587308 DOI: 10.1002/jbt.22711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 01/09/2021] [Indexed: 11/08/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder with obscure etiology and no disease-modifying therapy to date. Hence, novel, safe, and low cost-effective approaches employing medicinal plants are currently receiving increased attention. A growing body of evidence has revealed that cinnamon, being widely used as a spice of unique flavor and aroma, may exert neuroprotective effects in several neurodegenerative diseases, including PD. In vitro evidence has indicated that the essential oils of Cinnamomum species, mainly cinnamaldehyde and sodium benzoate, may protect against oxidative stress-induced cell death, reactive oxygen species generation, and autophagy dysregulation, thus acting in a potentially neuroprotective manner. In vivo evidence has demonstrated that oral administration of cinnamon powder and sodium benzoate may protect against dopaminergic cell death, striatal neurotransmitter dysregulation, and motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse models of PD. The underlying mechanisms of its action include autophagy regulation, antioxidant effects, upregulation of Parkin, DJ-1, glial cell line-derived neurotrophic factor, as well as modulation of the Toll-like receptors/nuclear factor-κB pathway and inhibition of the excessive proinflammatory responses. In addition, in vitro and in vivo studies have shown that cinnamon extracts may affect the oligomerization process and aggregation of α-synuclein. Herein, we discuss recent evidence on the novel therapeutic opportunities of this phytochemical against PD, indicating additional mechanistic aspects that should be explored and potential obstacles/limitations that need to be overcome for its inclusion in experimental PD therapeutics.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
21
|
Angelopoulou E, Paudel YN, Piperi C, Mishra A. Neuroprotective potential of cinnamon and its metabolites in Parkinson's disease: Mechanistic insights, limitations, and novel therapeutic opportunities. J Biochem Mol Toxicol 2021; 35:e22720. [PMID: 33491302 DOI: 10.1002/jbt.22720] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/21/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder with obscure etiology and no disease-modifying therapy to date. Hence, novel, safe, and low cost-effective approaches employing medicinal plants are currently receiving increased attention. A growing body of evidence has revealed that cinnamon, being widely used as a spice of unique flavor and aroma, may exert neuroprotective effects in several neurodegenerative diseases, including PD. In vitro evidence has indicated that the essential oils of Cinnamomum species, mainly cinnamaldehyde and sodium benzoate may protect against oxidative stress-induced cell death, reactive oxygen species generation, and autophagy dysregulation, thus acting in a potentially neuroprotective manner. In vivo evidence has demonstrated that oral administration of cinnamon powder and sodium benzoate may protect against dopaminergic cell death, striatal neurotransmitter dysregulation, and motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse models of PD. The underlying mechanisms of its action include autophagy regulation, antioxidant effects, upregulation of Parkin, DJ-1, glial cell line-derived neurotrophic factor, as well as modulation of the TLR/NF-κB pathway and inhibition of the excessive proinflammatory responses. In addition, in vitro and in vivo studies have shown that cinnamon extracts may affect the oligomerization process and aggregation of α-synuclein. Herein, we discuss recent evidence on the novel therapeutic opportunities of this phytochemical against PD, indicating additional mechanistic aspects that should be explored, and potential obstacles/limitations that need to be overcome, for its inclusion in experimental PD therapeutics.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam N Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|