1
|
Firoozi P, Amiri MA, Soghli N, Farshidfar N, Hakimiha N, Fekrazad R. The Role of Photobiomodulation on Dental-Derived Stem Cells in Regenerative Dentistry: A Comprehensive Systematic Review. Curr Stem Cell Res Ther 2024; 19:559-586. [PMID: 35950251 DOI: 10.2174/1574888x17666220810141411] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Photobiomodulation therapy involves exposing tissues to light sources, including light-emitting diodes or low-level lasers, which results in cellular function modulation. The molecular mechanism of this treatment is revealed, demonstrating that depending on the light settings utilized, it has the potential to elicit both stimulatory and inhibitory reactions. OBJECTIVE The current systematic review aimed to evaluate the impact of photobiomodulation therapy on dental stem cells and provide an evidence-based conclusion in this regard. METHODS This systematic review was performed and reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) revised guidelines. PICO(S) components were employed to define the inclusion criteria. Web of Science, Scopus, Medline as well as grey literature, and google scholar were searched up to September 2021 to retrieve relevant papers. RESULTS Photobiomodulation therapy showed promising effects on the proliferation, viability, and differentiation of dental stem cells. This finding was based on reviewing related articles with a low risk of bias. CONCLUSION Despite the positive benefits of photobiomodulation therapy on dental stem cells, the current data do not provide a definitive conclusion on the best physical parameters for enhancing cell viability, proliferation, and differentiation.
Collapse
Affiliation(s)
- Parsa Firoozi
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Soghli
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Fekrazad
- Laser Research Centre in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Zhang G, Yi L, Wang C, Yang P, Zhang J, Wang J, Lu C, Zhang X, Liu Y. Photobiomodulation promotes angiogenesis in wound healing through stimulating the nuclear translocation of VEGFR2 and STAT3. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 237:112573. [PMID: 36403534 DOI: 10.1016/j.jphotobiol.2022.112573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, Photobiomodulation (PBM) has gained prevalence as a kind of physical therapy for wound healing, however, concerning specific cellular mechanisms induced by PBM remains uncertain. The objective of this study is to evaluate the mechanisms of action of PBM (632.8 nm) on angiogenesis in wound healing in vitro and vivo. In the present work, we indicated that PBM with 1.0 J/cm2 irradiation dose exerts positive effects on cell viability, migration, proliferation and tube formation in human umbilical vein endothelial cells (HUVECs). Furthermore, we demonstrate that the VEGFA/VEGFR2/STAT3 pathway plays an important role in PBM effecting cellular function and promoting angiogenesis in wound healing. In addition, we also found that PBM activated the VEGFA/VEGFR2/STAT3 pathway by stimulating VEGFR2 and STAT3 nuclear translocation in the presence of importin-β. Our research offer a new insight into the potential molecular mechanisms in which PBM promotes angiogenesis in wound healing.
Collapse
Affiliation(s)
- Gai Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Yi
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caixia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilang Yang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jizhuang Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghao Lu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Gomes NA, do Valle IB, Gleber-Netto FO, Silva TA, Oliveira HMDC, de Oliveira RF, Ferreira LDAQ, Castilho LS, Reis PHRG, Prazeres PHDM, Menezes GB, de Magalhães CS, Mesquita RA, Marques MM, Birbrair A, Diniz IMA. Nestin and NG2 transgenes reveal two populations of perivascular cells stimulated by photobiomodulation. J Cell Physiol 2022; 237:2198-2210. [PMID: 35040139 DOI: 10.1002/jcp.30680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Pericytes and glial cells are known to collaborate in dental pulp tissue repair. Cell-based therapies that stimulate these stromal components may be of therapeutic relevance for partially vital dental pulp conditions. This study aimed to examine the early effect of photobiomodulation (PBM) in pericytes from experimentally injured pulp tissue. To accomplish this, we used the Nestin-GFP/NG2-DsRed mice, which could allow the identification of distinct pericyte phenotypes. We discovered the presence of two pericytes subsets within the dental pulp, the Nestin + NG2+ (type-2) and Nestin- NG2+ (type-1). Upon injury, PBM treatment led to a significant increase in Nestin+ cells and pericytes. This boost was mainly conferred by the more committed pericyte subset (NestinNG2+ ). PBM also stimulated terminal blood vessels sprouting adjacent to the injury site while maintaining signs of pulp vitality. In vitro, PBM induced VEGF upregulation, improved dental pulp cells proliferation and migration, and favored their mineralization potential. Herein, different subsets of perivascular cells were unveiled in the pulp tissue. PBM enhanced not only NG2+ cells but nestin-expressing progenitors in the injured dental pulp.
Collapse
Affiliation(s)
- Natália A Gomes
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella B do Valle
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico O Gleber-Netto
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tarcília A Silva
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Rafaela F de Oliveira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Almeida Q Ferreira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lia S Castilho
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo H R G Reis
- Ohlab, Associação Mineira de Reabilitação, Belo Horizonte, Brazil
| | - Pedro H D M Prazeres
- Departament of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo B Menezes
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudia S de Magalhães
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo A Mesquita
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Márcia M Marques
- Postgraduation Program in Dentistry, Ibirapuera University, São Paulo, Brazil
| | - Alexander Birbrair
- Departament of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ivana M A Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Schiffer F, Khan A, Bolger E, Flynn E, Seltzer WP, Teicher MH. An Effective and Safe Novel Treatment of Opioid Use Disorder: Unilateral Transcranial Photobiomodulation. Front Psychiatry 2021; 12:713686. [PMID: 34447323 PMCID: PMC8382852 DOI: 10.3389/fpsyt.2021.713686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The opioid epidemic is a global tragedy even with current treatments, and a novel, safe, and effective treatment would be welcomed. We report here our findings from our second randomized controlled trial to evaluate unilateral transcranial photobiomodulation as a treatment for opioid use disorder. Methods: We enrolled 39 participants with active opioid cravings at 2 sites, 19 received the active treatment which consisted of a 4-min twice weekly (every 3 or 4 days) application of a light-emitting diode at 810 nm with an irradiance of 250 mW/cm2 and a fluence of 60 J/cm2 to the forehead over either the left or right dorsolateral prefrontal cortex with a fluence to the brain of 2.1 J/cm2. Twenty participants received a sham treatment with the same device with foil over the bulb. The side of the treatment was based on Dual-Brain Psychology, which posits that one hemisphere is more affected by past maltreatments and is more prone to anxiety and drug cravings that the other hemisphere. We treated the hemisphere with the more positive hemispheric emotional valence (HEV) by 2 tests for HEV. Results: Our primary outcome was changes in pre-treatment opioid craving scale (OCS) minus baseline, and we found using a mixed model that the active group had a highly significant treatment * time benefit over the sham group, p < 0.0001, effect size at the last follow-up of 1.5. The active treatment benefited those not on buprenorphine as well as those not on it. The TimeLine Follow Back measure of opioid use was significantly better in the actively treated group, p = 0.0001, with an effect size of 0.45. We observed no adverse effects. Conclusion: Active unilateral transcranial photobiomodulation to the brain hemisphere with the better HEV was better than sham in the reduction of opioid cravings and opioid use to a very significant degree in a RCT of 39 participants at 2 independent sites. In the active group those on buprenorphine and those not on it both had improvements in cravings over the study. No adverse responses were reported in either group. ClinicalTrials.gov Identifier: NCT04340622.
Collapse
Affiliation(s)
- Fredric Schiffer
- MindLight, LLC, Newton Highlands, MA, United States
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Alaptagin Khan
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Elizabeth Bolger
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, United States
| | - Edward Flynn
- MindLight, LLC, Newton Highlands, MA, United States
| | | | - Martin H. Teicher
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Colombo E, Signore A, Aicardi S, Zekiy A, Utyuzh A, Benedicenti S, Amaroli A. Experimental and Clinical Applications of Red and Near-Infrared Photobiomodulation on Endothelial Dysfunction: A Review. Biomedicines 2021; 9:biomedicines9030274. [PMID: 33803396 PMCID: PMC7998572 DOI: 10.3390/biomedicines9030274] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Under physiological conditions, endothelial cells are the main regulator of arterial tone homeostasis and vascular growth, sensing and transducing signals between tissue and blood. Disease risk factors can lead to their unbalanced homeostasis, known as endothelial dysfunction. Red and near-infrared light can interact with animal cells and modulate their metabolism upon interaction with mitochondria's cytochromes, which leads to increased oxygen consumption, ATP production and ROS, as well as to regulate NO release and intracellular Ca2+ concentration. This medical subject is known as photobiomodulation (PBM). We present a review of the literature on the in vitro and in vivo effects of PBM on endothelial dysfunction. METHODS A search strategy was developed consistent with the PRISMA statement. The PubMed, Scopus, Cochrane, and Scholar electronic databases were consulted to search for in vitro and in vivo studies. RESULTS Fifty out of >12,000 articles were selected. CONCLUSIONS The PBM can modulate endothelial dysfunction, improving inflammation, angiogenesis, and vasodilatation. Among the studies, 808 nm and 18 J (0.2 W, 2.05 cm2) intracoronary irradiation can prevent restenosis as well as 645 nm and 20 J (0.25 W, 2 cm2) can stimulate angiogenesis. PBM can also support hypertension cure. However, more extensive randomised controlled trials are necessary.
Collapse
Affiliation(s)
- Esteban Colombo
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
| | - Antonio Signore
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
- Department of Therapeutic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Stefano Aicardi
- Department for the Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Angelina Zekiy
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
| | - Anatoliy Utyuzh
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
| | - Stefano Benedicenti
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
| | - Andrea Amaroli
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (A.S.); (S.B.)
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Z.); (A.U.)
- Correspondence: ; Tel.: +39-010-3537309
| |
Collapse
|
6
|
Hosseinpour S, Xu C, Walsh LJ. Impact of photobiomodulation using four diode laser wavelengths of on cationic liposome gene transfection into pre-osteoblast cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 215:112108. [PMID: 33418241 DOI: 10.1016/j.jphotobiol.2020.112108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/21/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
Gene therapy can be an effective treatment modality for some severe genetic diseases. Despite efforts to improve their performance, non-viral gene delivery methods remain inefficient and costly. As an alternative to viral vectors, cationic liposomes have a good safety profile and low immunogenicity, but relatively low transfection efficiency. They may also be toxic to cells at high concentrations. Given these challenges, the present study explored the impact of photobiomodulation (PBM) on cationic liposome plasmid DNA transfection in terms of its efficiency and toxicity, using Lipofectamine 2000 to carry green fluorescent protein (GFP) encoding plasmid DNA, with the pre-osteoblast MC3T3-E1 cell line as the target. Cultures were irradiated using diode lasers (445, 685, 810, or 970 nm) at 200 mW using pulsed mode (50 Hz), with a power density of 104.64 mW/cm2, and irradiance from 6 to 18 joules. To determine transfection efficiency, expression of GFP was assessed using confocal laser scanning microscopy and flow cytometry. Cell viability was evaluated using the MTT assay. PBM using 810 nm and 970 nm lasers significantly enhanced transfection efficiency for GFP, indicating more efficient uptake of plasmid DNA. Conversely, laser irradiation at 445 nm and 685 nm wavelengths reduced the GFP transfection efficiency. Treatment using 685, 810, and 970 nm lasers at 12 J maintained cell viability and prevented toxicity of cationic liposomes. Overall, these findings support the concept that PBM using near infrared laser wavelengths can enhance transfection efficiency and support cell viability when cationic liposomes are used as the vector in gene therapy.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia.
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia.
| | - Laurence J Walsh
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia.
| |
Collapse
|
7
|
do Valle IB, Prazeres PHDM, Mesquita RA, Silva TA, de Castro Oliveira HM, Castro PR, Freitas IDP, Oliveira SR, Gomes NA, de Oliveira RF, Marquiore LF, Macari S, do Amaral FA, Jácome-Santos H, Barcelos LS, Menezes GB, Marques MM, Birbrair A, Diniz IMA. Photobiomodulation drives pericyte mobilization towards skin regeneration. Sci Rep 2020; 10:19257. [PMID: 33159113 PMCID: PMC7648092 DOI: 10.1038/s41598-020-76243-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Photobiomodulation is being widely applied for improving dermal or mucosal wound healing. However, the underlying cellular and molecular processes that directly contribute to its effects remain poorly understood. Pericytes are relevant cells involved in the wound microenvironment and could be one of the main targets of photobiomodulation due to their plasticity and perivascular localization. Herein, we investigate tissue repair under the photobiomodulation stimulus using a pericyte labeled (or reporter) transgenic mice. Using a model of two contralateral back wounds, one the control and the other photoactivated daily (660 nm, 20 mW, 0.71 W/cm2, 5 J/cm2, 7 s, 0.14 J), we showed an overall influx of immune and undifferentiated cells and higher mobilization of a potent pericyte subpopulation (Type-2 pericytes) in the photoactivated wounds in comparison to the controls. Doppler analysis showed a significant increase in the blood flow in the photoactivated wounds, while marked vascular supply was observed histologically. Histochemical analysis has indicated more advanced stages of tissue repair after photoactivation. These data suggest that photobiomodulation significantly accelerates tissue repair through its vascular effects with direct recruitment of pericytes to the injury site.
Collapse
Affiliation(s)
- Isabella Bittencourt do Valle
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ricardo Alves Mesquita
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Iuri Dornelas Prates Freitas
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
- School of Dentistry, Faculdade Sete Lagoas, Sete Lagoas, Minas Gerais, Brazil
| | - Sicília Rezende Oliveira
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natália Aparecida Gomes
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
| | - Rafaela Férrer de Oliveira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
| | - Larissa Fassarela Marquiore
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
| | - Soraia Macari
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
| | - Flávio Almeida do Amaral
- Department of Biochemistry and Immunology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Humberto Jácome-Santos
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Batista Menezes
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Alexander Birbrair
- Departament of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil.
| |
Collapse
|