1
|
Yang Q, Lu D, Wu J, Liang F, Wang H, Yang J, Zhang G, Wang C, Yang Y, Zhu L, Sun X. Nanoparticles for the treatment of spinal cord injury. Neural Regen Res 2025; 20:1665-1680. [PMID: 39104097 PMCID: PMC11688544 DOI: 10.4103/nrr.nrr-d-23-01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 08/07/2024] Open
Abstract
Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Di Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Jiuping Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ganggang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinzhi Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
2
|
Fu H, Ou Z, Wang F, Wang W, Wang Z. Mitochondrial Fusion Protein 2-Modified Bone Marrow Mesenchymal Stem Cells Improved Hyperglycemia-Induced Schwann Cell Injury via Regulating Mitochondria-Associated Endoplasmic Reticulum Membranes. Neurourol Urodyn 2025. [PMID: 40313160 DOI: 10.1002/nau.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 03/01/2025] [Accepted: 04/15/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVE High glucose damages rat Schwann cells (SCs), which is closely related to the dysfunction of mitochondria-associated endoplasmic reticulum membranes (MAMs). Therefore, the present study aimed to investigate the protective effects and mechanisms of modified bone marrow mesenchymal stem cells (BMSCs) and mitochondrial fusion protein 2 (Mfn2) modified BMSCs against SCs injury. METHODS The Mfn2-modified BMSCs were constructed after culturing with neural-induced differentiation solution. MAP-2 (microtubule-associated protein-2, neuron marker) and GFAP (glial fibrillary acidic protein, astrocytes marker) immunofluorescence staining was used to observe changes in the differentiation potential of neural-like BMSCs. SCs (RSC96) cells cultured under high glucose conditions were cocultured with Mfn2-modified BMSCs. Changes in functional protein expression of MAMs were detected by Western Blot. Transmission electron microscopy (TEM) was used to observe the microscopic morphology of MAMs, mitochondria and endoplasmic reticulum. RESULTS The expression level of Mfn2 was significantly increased in BMSCs transfected with Mfn2. The fluorescence densities of MAP-2 and GFAP were significantly upregulated in Mfn2-BMSCs after induction by neural inducible differentiation solution. When RSC96 was incubated with high glucose and Mfn2-modified/non-modified BMSCs, the expression level of Mfn2 in RSC96 was significantly increased, while PERK, IP3R and Drp1 expressions were significantly reduced. And the Mfn2-modified BMSCs showed more significant effects comparing to Mfn2-non-modified BMSCs. The TEM showed the structural integrity of MAMs, clear structure of mitochondrial cristae and obvious and structurally intact extension of endoplasmic reticulum in Mfn2-BMSC group. CONCLUSIONS Mfn2 transfection promoted neural-like cell differentiation in BMSCs. Mfn2-modified BMSCs modulated the structural and functional homeostasis of MAMs by regulating the expression levels of MAMs functional proteins.
Collapse
Affiliation(s)
- Housheng Fu
- Department of Urology, Hainan Hospital Affiliated to Hainan Medical University, Haikou City, Hainan Province, China
- Kidney Disease Center, Hainan Provincial People's Hospital, Haikou City, Hainan Province, China
| | - Zhewen Ou
- Department of Urology, Hainan Hospital Affiliated to Hainan Medical University, Haikou City, Hainan Province, China
- Kidney Disease Center, Hainan Provincial People's Hospital, Haikou City, Hainan Province, China
| | - Fei Wang
- Department of Urology, Hainan Hospital Affiliated to Hainan Medical University, Haikou City, Hainan Province, China
- Kidney Disease Center, Hainan Provincial People's Hospital, Haikou City, Hainan Province, China
| | - Weifu Wang
- Department of Urology, Hainan Hospital Affiliated to Hainan Medical University, Haikou City, Hainan Province, China
- Kidney Disease Center, Hainan Provincial People's Hospital, Haikou City, Hainan Province, China
| | - Zhongyao Wang
- Department of Urology, Hainan Hospital Affiliated to Hainan Medical University, Haikou City, Hainan Province, China
- Kidney Disease Center, Hainan Provincial People's Hospital, Haikou City, Hainan Province, China
| |
Collapse
|
3
|
Liao Z, Bao Q, Saijilahu, Chimedtseren C, Tumurbaatar K, Saijilafu. Research Progress on Biomaterials for Spinal Cord Repair. Int J Nanomedicine 2025; 20:1773-1787. [PMID: 39958319 PMCID: PMC11829652 DOI: 10.2147/ijn.s501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Spinal cord injury (SCI) is a very destructive disease of the central nervous system that often causes irreversible nerve damage. Unfortunately, the adult mammalian spinal cord displays little regenerative capacity after injury. In addition, the glial scars and inflammatory responses around the lesion site are another major obstacle for successful axon regeneration after SCI. However, biomaterials are highly biocompatible, and they could provide physical guidance to allow regenerating axon growth over the lesion site and restore functional neural circuits. In addition, combined or synergistic effects of spinal cord repair can be achieved by integrating different strategies, including the use of various biomaterials and microstructures, as well as combining bioactive molecules and living cells. Therefore, it is possible to use tissue engineering scaffolds to regulate the local microenvironment of the injured spinal cord, which may achieve better functional recovery in spinal cord injury repair. In this review, we summarize the latest progress in the treatment of SCI by biomaterials, and discussed its potential mechanism.
Collapse
Affiliation(s)
- Zhenglie Liao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Qianyi Bao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Saijilahu
- Tongliao Centers for Disease Control and Prevention, Tongliao, Inner Mongolia, People’s Republic of China
| | | | - Khaliunaa Tumurbaatar
- Institute of Traditional Medicine and Technology of Mongolia, Ulaanbaatar city, Mongolia
| | - Saijilafu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| |
Collapse
|
4
|
Liu C, Rivera Ruiz A, Zhang Y, Zimmern P, Li Z. Emergent biotechnology applications in urology: a mini review. Front Bioeng Biotechnol 2025; 13:1539126. [PMID: 39968011 PMCID: PMC11832658 DOI: 10.3389/fbioe.2025.1539126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Technological advances have significantly impacted the field of urology, providing innovative solutions for diagnosis, treatment, and management of various urological disorders and diseases. This article highlights four groundbreaking technologies: whole-cell biosensors, optogenetic interventions for neuromodulation, bioengineered urinary bladder, and 3D bioprinting. Each technology plays a crucial role in enhancing patient care and improving clinical outcomes in urology. Advances in these fields underscore a shift towards precision diagnostics, personalized treatments, and enhanced regenerative strategies, ultimately aiming to enhance patient outcomes and address unmet clinical needs in urological diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Alejandro Rivera Ruiz
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Philippe Zimmern
- Department of Urology, The University of Texas Southwestern, Dallas, TX, United States
| | - Zhengwei Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- Department of Biomedical Sciences, The Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX, United States
| |
Collapse
|
5
|
Xu Y, Wang X, Zhou X, Zeng W, Yuan J, Ye J. Multiple strategies enhance the efficacy of MSC-Exos transplantation for spinal cord injury. Exp Neurol 2025; 383:115038. [PMID: 39481515 DOI: 10.1016/j.expneurol.2024.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Spinal cord injury (SCI) is a relatively common and lethal dangerous disease of the central nervous system, for which there is a lack of effective clinical treatments. It has been found that mesenchymal stem cell-derived exosomes (MSC-Exos) play a key role in alleviating SCI through mechanisms such as regulating the microenvironment, promoting angiogenesis, and facilitating axonal regeneration. However, the drawbacks of natural exosomes, such as low yield, weak activity, and low targeting ability, limit their clinical applications. In recent years, MSCs-Exos have gradually become a research hotspot for treating SCI through miRNA modulation, combined hydrogel, and preculture. In addition, exosomes as good biocompatible drugs, nucleic acid, and other delivery carriers have shown a broad application prospect in treating SCI. This article summarizes the pathogenesis of SCI and the research progress of MSC-Exos in the treatment of SCI in recent years, and provides a systematic review of the mechanisms of MSC exosomes and their combination with different modalities in the treatment of SCI.
Collapse
Affiliation(s)
- Yan Xu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Xiaolei Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Wenhui Zeng
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Jiayi Yuan
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China; Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou 341000, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
6
|
Liu Z, Xiang C, Zhao X, Aizawa T, Niu R, Zhao J, Guo F, Li Y, Luo W, Liu W, Gu R. Regulation of dynamic spatiotemporal inflammation by nanomaterials in spinal cord injury. J Nanobiotechnology 2024; 22:767. [PMID: 39696584 DOI: 10.1186/s12951-024-03037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
Spinal cord injury (SCI) is a common clinical condition of the central nervous system that can lead to sensory and motor impairment below the injury level or permanent loss of function in severe cases. Dynamic spatiotemporal neuroinflammation is vital to neurological recovery, which is collectively constituted by the dynamic changes in a series of inflammatory cells, including microglia, neutrophils, and astrocytes, among others. Immunomodulatory nanomaterials can readily improve the therapeutic effects and simultaneously overcome various drawbacks associated with treatment, such as the off-target side effects and loss of bioactivity of immune agents during circulation. In this review, we discuss the role of dynamic spatiotemporal inflammation in secondary injuries after SCI, elaborate on the mechanism of action and effect of existing nanomaterials in treating SCI, and summarize the mechanism(s) whereby they regulate inflammation. Finally, the challenges and prospects associated with using nanotechnology to modulate immunotherapy are discussed to provide new insights for future treatment. Deciphering the intricate spatiotemporal mechanisms of neuroinflammation in SCI requires further in-depth studies. Therefore, SCI continues to represent a formidable challenge.
Collapse
Affiliation(s)
- Zeping Liu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Chunyu Xiang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Xu Zhao
- Department of Orthopedics, Third Military Medical University, Xinqiao Hosp, 83 Xinqiao Main St, Chongqing, 400037, PR China
| | - Toshimi Aizawa
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Renrui Niu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Jianhui Zhao
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Fengshuo Guo
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Yueying Li
- Department of Hand & Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Wenqi Luo
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China.
| | - Wanguo Liu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China.
| | - Rui Gu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China.
| |
Collapse
|
7
|
Liu Z, Lai J, Kong D, Zhao Y, Zhao J, Dai J, Zhang M. Advances in electroactive bioscaffolds for repairing spinal cord injury. Biomed Mater 2024; 19:032005. [PMID: 38636508 DOI: 10.1088/1748-605x/ad4079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder, leading to loss of motor or somatosensory function, which is the most challenging worldwide medical problem. Re-establishment of intact neural circuits is the basis of spinal cord regeneration. Considering the crucial role of electrical signals in the nervous system, electroactive bioscaffolds have been widely developed for SCI repair. They can produce conductive pathways and a pro-regenerative microenvironment at the lesion site similar to that of the natural spinal cord, leading to neuronal regeneration and axonal growth, and functionally reactivating the damaged neural circuits. In this review, we first demonstrate the pathophysiological characteristics induced by SCI. Then, the crucial role of electrical signals in SCI repair is introduced. Based on a comprehensive analysis of these characteristics, recent advances in the electroactive bioscaffolds for SCI repair are summarized, focusing on both the conductive bioscaffolds and piezoelectric bioscaffolds, used independently or in combination with external electronic stimulation. Finally, thoughts on challenges and opportunities that may shape the future of bioscaffolds in SCI repair are concluded.
Collapse
Affiliation(s)
- Zeqi Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Dexin Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jiakang Zhao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jianwu Dai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
8
|
Wang W, Yong J, Marciano P, O’Hare Doig R, Mao G, Clark J. The Translation of Nanomedicines in the Contexts of Spinal Cord Injury and Repair. Cells 2024; 13:569. [PMID: 38607008 PMCID: PMC11011097 DOI: 10.3390/cells13070569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE OF THIS REVIEW Manipulating or re-engineering the damaged human spinal cord to achieve neuro-recovery is one of the foremost challenges of modern science. Addressing the restricted permission of neural cells and topographically organised neural tissue for self-renewal and spontaneous regeneration, respectively, is not straightforward, as exemplified by rare instances of translational success. This review assembles an understanding of advances in nanomedicine for spinal cord injury (SCI) and related clinical indications of relevance to attempts to design, engineer, and target nanotechnologies to multiple molecular networks. RECENT FINDINGS Recent research provides a new understanding of the health benefits and regulatory landscape of nanomedicines based on a background of advances in mRNA-based nanocarrier vaccines and quantum dot-based optical imaging. In relation to spinal cord pathology, the extant literature details promising advances in nanoneuropharmacology and regenerative medicine that inform the present understanding of the nanoparticle (NP) biocompatibility-neurotoxicity relationship. In this review, the conceptual bases of nanotechnology and nanomaterial chemistry covering organic and inorganic particles of sizes generally less than 100 nm in diameter will be addressed. Regarding the centrally active nanotechnologies selected for this review, attention is paid to NP physico-chemistry, functionalisation, delivery, biocompatibility, biodistribution, toxicology, and key molecular targets and biological effects intrinsic to and beyond the spinal cord parenchyma. SUMMARY The advance of nanotechnologies for the treatment of refractory spinal cord pathologies requires an in-depth understanding of neurobiological and topographical principles and a consideration of additional complexities involving the research's translational and regulatory landscapes.
Collapse
Affiliation(s)
- Wenqian Wang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Joel Yong
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Paul Marciano
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Ryan O’Hare Doig
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Jillian Clark
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
9
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
10
|
Wang H, Tang Q, Lu Y, Chen C, Zhao YL, Xu T, Yang CW, Chen XQ. Berberine-loaded MSC-derived sEVs encapsulated in injectable GelMA hydrogel for spinal cord injury repair. Int J Pharm 2023; 643:123283. [PMID: 37536642 DOI: 10.1016/j.ijpharm.2023.123283] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
After spinal cord injury (SCI), local inflammatory response and fibrous scar formation severely hinder nerve regeneration. Berberine (Ber) has a powerful regulatory effect on the local microenvironment, but its limited solubility and permeability through the blood-brain barrier severely limit its systemic efficacy. Human umbilical cord mesenchymal stem cells (hUC-MSCs)-derived small extracellular vesicles (sEVs) are natural nanocarriers with high cargo loading capacity, and can cross the blood-brain barrier. Most importantly, sEVs can improve drug solubility and drug utilization. Therefore, they can overcome many defects of Ber application. This experiment aimed to design a Ber-carrying hUC-MSCs-derived sEVs and GelMA hydrogel. Ber was loaded into sEVs (sEVs-Ber) by ultrasonic co-incubation with a drug loading capacity (LC) of 15.07%. The unhindered release of up to 80% of sEVs-Ber from GelMA hydrogel was accomplished for up to 14 days. And they could be directly absorbed by local cells of injury, allowing for direct local delivery of the drug and enhancing its efficacy. The experimental results confirmed injecting GelMA-sEVs-Ber into spinal cord defects could exert anti-inflammatory effects by regulating the expression of inflammatory factors. It also demonstrated the anti-fibrotic effect of Ber in SCI for the first time. The modulatory effects of sEVs and Ber on the local microenvironment significantly promoted nerve regeneration and recovery of motor function in post-SCI rats. These results demonstrated that the GelMA-sEVs-Ber dual carrier system is a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Heng Wang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Qin Tang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yang Lu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cheng Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yu-Lin Zhao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Tao Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Chang-Wei Yang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Xiao-Qing Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
11
|
Sun Z, Zhu D, Zhao H, Liu J, He P, Luan X, Hu H, Zhang X, Wei G, Xi Y. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. J Nanobiotechnology 2023; 21:238. [PMID: 37488557 PMCID: PMC10364437 DOI: 10.1186/s12951-023-01996-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Functional hydrogels show potential application in repairing spinal cord injury (SCI) due to their unique chemical, physical, and biological properties and functions. In this comprehensive review, we present recent advance in the material design, functional regulation, and SCI repair applications of bioactive hydrogels. Different from previously released reviews on hydrogels and three-dimensional scaffolds for the SCI repair, this work focuses on the strategies for material design and biologically functional regulation of hydrogels, specifically aiming to show how these significant efforts can promoting the repairing performance of SCI. We demonstrate various methods and techniques for the fabrication of bioactive hydrogels with the biological components such as DNA, proteins, peptides, biomass polysaccharides, and biopolymers to obtain unique biological properties of hydrogels, including the cell biocompatibility, self-healing, anti-bacterial activity, injectability, bio-adhesion, bio-degradation, and other multi-functions for repairing SCI. The functional regulation of bioactive hydrogels with drugs/growth factors, polymers, nanoparticles, one-dimensional materials, and two-dimensional materials for highly effective treating SCI are introduced and discussed in detail. This work shows new viewpoints and ideas on the design and synthesis of bioactive hydrogels with the state-of-the-art knowledges of materials science and nanotechnology, and will bridge the connection of materials science and biomedicine, and further inspire clinical potential of bioactive hydrogels in biomedical fields.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Zhao
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jia Liu
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Huiqiang Hu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
12
|
Shahemi NH, Mahat MM, Asri NAN, Amir MA, Ab Rahim S, Kasri MA. Application of Conductive Hydrogels on Spinal Cord Injury Repair: A Review. ACS Biomater Sci Eng 2023. [PMID: 37364251 DOI: 10.1021/acsbiomaterials.3c00194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Spinal cord injury (SCI) causes severe motor or sensory damage that leads to long-term disabilities due to disruption of electrical conduction in neuronal pathways. Despite current clinical therapies being used to limit the propagation of cell or tissue damage, the need for neuroregenerative therapies remains. Conductive hydrogels have been considered a promising neuroregenerative therapy due to their ability to provide a pro-regenerative microenvironment and flexible structure, which conforms to a complex SCI lesion. Furthermore, their conductivity can be utilized for noninvasive electrical signaling in dictating neuronal cell behavior. However, the ability of hydrogels to guide directional axon growth to reach the distal end for complete nerve reconnection remains a critical challenge. In this Review, we highlight recent advances in conductive hydrogels, including the incorporation of conductive materials, fabrication techniques, and cross-linking interactions. We also discuss important characteristics for designing conductive hydrogels for directional growth and regenerative therapy. We propose insights into electrical conductivity properties in a hydrogel that could be implemented as guidance for directional cell growth for SCI applications. Specifically, we highlight the practical implications of recent findings in the field, including the potential for conductive hydrogels to be used in clinical applications. We conclude that conductive hydrogels are a promising neuroregenerative therapy for SCI and that further research is needed to optimize their design and application.
Collapse
Affiliation(s)
- Nur Hidayah Shahemi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Nurul Ain Najihah Asri
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Muhammad Abid Amir
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mohamad Arif Kasri
- Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
13
|
Zhang C, Ye W, Zhao M, Long L, Xia D, Fan Z. KDM6B Negatively Regulates the Neurogenesis Potential of Apical Papilla Stem Cells via HES1. Int J Mol Sci 2023; 24:10608. [PMID: 37445785 PMCID: PMC10341966 DOI: 10.3390/ijms241310608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Stem cells from the apical papilla (SCAPs) are used to regulate the microenvironment of nerve defects. KDM6B, which functions as an H3K27me3 demethylase, is known to play a crucial role in neurogenesis. However, the mechanism by which KDM6B influences the neurogenesis potential of SCAPs remains unclear. We evaluated the expression of neural markers in SCAPs by using real-time RT-PCR and immunofluorescence staining. To assess the effectiveness of SCAP transplantation in the SCI model, we used the BBB scale to evaluate motor function. Additionally, toluidine blue staining and Immunofluorescence staining of NCAM, NEFM, β-III-tubulin, and Nestin were used to assess nerve tissue remodeling. Further analysis was conducted through Microarray analysis and ChIP assay to study the molecular mechanisms. Our results show that KDM6B inhibits the expression of NeuroD, TH, β-III tubulin, and Nestin. In vivo studies indicate that the SCAP-KDM6Bsh group is highly effective in restoring spinal cord structure and motor function in rats suffering from SCI. Our findings suggest that KDM6B directly binds to the HES1 promoter via regulating H3K27me3 and HES1 expression. In conclusion, our study can help understand the regulatory role of KDM6B in neurogenesis and provide more effective treatments for nerve injury.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China; (C.Z.); (W.Y.); (M.Z.); (L.L.)
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China;
| | - Weilong Ye
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China; (C.Z.); (W.Y.); (M.Z.); (L.L.)
| | - Mengyao Zhao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China; (C.Z.); (W.Y.); (M.Z.); (L.L.)
| | - Lujue Long
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China; (C.Z.); (W.Y.); (M.Z.); (L.L.)
| | - Dengsheng Xia
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China;
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China; (C.Z.); (W.Y.); (M.Z.); (L.L.)
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing 100069, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100069, China
| |
Collapse
|
14
|
Suzuki H, Imajo Y, Funaba M, Ikeda H, Nishida N, Sakai T. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24032528. [PMID: 36768846 PMCID: PMC9917245 DOI: 10.3390/ijms24032528] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit and social and financial burdens. It is currently being managed symptomatically, with no real therapeutic strategies available. In recent years, a number of innovative regenerative strategies have emerged and have been continuously investigated in preclinical research and clinical trials. In the near future, several more are expected to come down the translational pipeline. Among ongoing and completed trials are those reporting the use of biomaterial scaffolds. The advancements in biomaterial technology, combined with stem cell therapy or other regenerative therapy, can now accelerate the progress of promising novel therapeutic strategies from bench to bedside. Various types of approaches to regeneration therapy for SCI have been combined with the use of supportive biomaterial scaffolds as a drug and cell delivery system to facilitate favorable cell-material interactions and the supportive effect of neuroprotection. In this review, we summarize some of the most recent insights of preclinical and clinical studies using biomaterial scaffolds in regenerative therapy for SCI and summarized the biomaterial strategies for treatment with simplified results data. One hundred and sixty-eight articles were selected in the present review, in which we focused on biomaterial scaffolds. We conducted our search of articles using PubMed and Medline, a medical database. We used a combination of "Spinal cord injury" and ["Biomaterial", or "Scaffold"] as search terms and searched articles published up until 30 April 2022. Successful future therapies will require these biomaterial scaffolds and other synergistic approaches to address the persistent barriers to regeneration, including glial scarring, the loss of a structural framework, and biocompatibility. This database could serve as a benchmark to progress in future clinical trials for SCI using biomaterial scaffolds.
Collapse
|
15
|
Multiple strategies enhance the efficacy of MSCs transplantation for spinal cord injury. Biomed Pharmacother 2023; 157:114011. [PMID: 36410123 DOI: 10.1016/j.biopha.2022.114011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is a serious complication of the central nervous system (CNS) after spine injury, often resulting in severe sensory, motor, and autonomic dysfunction below the level of injury. To date, there is no effective treatment strategy for SCI. Recently, stem cell therapy has brought hope to patients with neurological diseases. Mesenchymal stem cells (MSCs) are considered to be the most promising source of cellular therapy after SCI due to their immunomodulatory, neuroprotective and angiogenic potential. Considering the limited therapeutic effect of MSCs due to the complex pathophysiological environment following SCI, this paper not only reviews the specific mechanism of MSCs to facilitate SCI repair, but also further discusses the research status of these pluripotent stem cells combined with other therapeutic approaches to promote anatomical and functional recovery post-SCI.
Collapse
|
16
|
Shen Y, Cao X, Lu M, Gu H, Li M, Posner DA. Current treatments after spinal cord injury: Cell engineering, tissue engineering, and combined therapies. SMART MEDICINE 2022; 1:e20220017. [PMID: 39188731 PMCID: PMC11235943 DOI: 10.1002/smmd.20220017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
Both traumatic and non-traumatic spinal cord injuries (SCIs) can be categorized as damages done to our central nervous system (CNS). The patients' physical and mental health may suffer greatly because of traumatic SCI. With the widespread use of motor vehicles and increasingly aged population, the occurrence of SCI is more frequent than before, creating a considerable burden to global public health. The regeneration process of the spinal cord is hampered by a series of events that occur following SCI like edema, hemorrhage, formation of cystic cavities, and ischemia. An effective strategy for the treatment of SCI and functional recovery still has not been discovered; however, recent advances have been made in bioengineering fields that therapies based on cells, biomaterials, and biomolecules have proved effective in the repair of the spinal cord. In the light of worldwide importance of treatments for SCI, this article aims to provide a review of recent advances by first introducing the physiology, etiology, epidemiology, and mechanisms of SCI. We then put emphasis on the widely used clinical treatments and bioengineering strategies (cell-based, biomaterial-based, and biomolecule-based) for the functional regeneration of the spinal cord as well as challenges faced by scientists currently. This article provides scientists and clinicians with a comprehensive outlook on the recent advances of preclinical and clinical treatments of SCI, hoping to help them find keys to the functional regeneration of SCI.
Collapse
Affiliation(s)
- Yingbo Shen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Xinyue Cao
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minhui Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Hongcheng Gu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minli Li
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - David A. Posner
- Molecular Immunity UnitCambridge Institute of Therapeutic Immunology and Infectious DiseasesDepartment of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
17
|
Wang Y, Lv HQ, Chao X, Xu WX, Liu Y, Ling GX, Zhang P. Multimodal therapy strategies based on hydrogels for the repair of spinal cord injury. Mil Med Res 2022; 9:16. [PMID: 35410314 PMCID: PMC9003987 DOI: 10.1186/s40779-022-00376-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) is a serious traumatic disease of the central nervous system, which can give rise to the loss of motor and sensory function. Due to its complex pathological mechanism, the treatment of this disease still faces a huge challenge. Hydrogels with good biocompatibility and biodegradability can well imitate the extracellular matrix in the microenvironment of spinal cord. Hydrogels have been regarded as promising SCI repair material in recent years and continuous studies have confirmed that hydrogel-based therapy can effectively eliminate inflammation and promote spinal cord repair and regeneration to improve SCI. In this review, hydrogel-based multimodal therapeutic strategies to repair SCI are provided, and a combination of hydrogel scaffolds and other therapeutic modalities are discussed, with particular emphasis on the repair mechanism of SCI.
Collapse
Affiliation(s)
- Yan Wang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016 China
| | - Hong-Qian Lv
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016 China
| | - Xuan Chao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016 China
| | - Wen-Xin Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016 China
| | - Yun Liu
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Gui-Xia Ling
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016 China
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016 China
| |
Collapse
|
18
|
Kiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomater 2022; 139:43-64. [PMID: 33326879 DOI: 10.1016/j.actbio.2020.12.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The individual approaches of regenerative medicine efforts alone and rehabilitation efforts alone have not yet fully restored function after severe spinal cord injury (SCI). Regenerative rehabilitation may be leveraged to promote regeneration of the spinal cord tissue, and promote reorganization of the regenerated neural pathways and intact spinal circuits for better functional recovery for SCI. Conductive biomaterials may be a linchpin that empowers the synergy between regenerative medicine and rehabilitation approaches, as electrical stimulation applied to the spinal cord could facilitate neural reorganization. In this review, we discuss current regenerative medicine approaches in clinical trials and the rehabilitation, or neuromodulation, approaches for SCI, along with their respective translational limitations. Furthermore, we review the translational potential, in a surgical context, of conductive biomaterials (e.g., conductive polymers, carbon-based materials, metallic nanoparticle-based materials) as they pertain to SCI. While pre-formed scaffolds may be difficult to translate to human contusion SCIs, injectable composites that contain blended conductive components and can form within the injury may be more translational. However, given that there are currently no in vivo SCI studies that evaluated conductive materials combined with rehabilitation approaches, we discuss several limitations of conductive biomaterials, including demonstrating safety and efficacy, that will need to be addressed in the future for conductive biomaterials to become SCI therapeutics. Even so, the use of conductive biomaterials creates a synergistic opportunity to merge the fields of regenerative medicine and rehabilitation and redefine what regenerative rehabilitation means for the spinal cord. STATEMENT OF SIGNIFICANCE: For spinal cord injury (SCI), the individual approaches of regenerative medicine and rehabilitation are insufficient to fully restore functional recovery; however, the goal of regenerative rehabilitation is to combine these two disparate fields to maximize the functional outcomes. Concepts similar to regenerative rehabilitation for SCI have been discussed in several reviews, but for the first time, this review considers how conductive biomaterials may synergize the two approaches. We cover current regenerative medicine and rehabilitation approaches for SCI, and the translational advantages and disadvantages, in a surgical context, of conductive biomaterials used in biomedical applications that may be additionally applied to SCI. Furthermore, we identify the current limitations and translational challenges for conductive biomaterials before they may become therapeutics for SCI.
Collapse
|
19
|
Abstract
In 2001, the concept of the neurovascular unit was introduced at the Stroke Progress Review Group meeting. The neurovascular unit is an important element of the health and disease status of blood vessels and nerves in the central nervous system. Since then, the neurovascular unit has attracted increasing interest from research teams, who have contributed greatly to the prevention, treatment, and prognosis of stroke and neurodegenerative diseases. However, additional research is needed to establish an efficient, low-cost, and low-energy in vitro model of the neurovascular unit, as well as enable noninvasive observation of neurovascular units in vivo and in vitro. In this review, we first summarize the composition of neurovascular units, then investigate the efficacy of different types of stem cells and cell culture methods in the construction of neurovascular unit models, and finally assess the progress of imaging methods used to observe neurovascular units in recent years and their positive role in the monitoring and investigation of the mechanisms of a variety of central nervous system diseases.
Collapse
Affiliation(s)
- Taiwei Dong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Feng Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Jian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Provinve, China
| |
Collapse
|
20
|
Zhang H, Xu J, Saijilafu. The effects of GelMA hydrogel on nerve repair and regeneration in mice with spinal cord injury. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1147. [PMID: 34430588 PMCID: PMC8350630 DOI: 10.21037/atm-21-2874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/15/2021] [Indexed: 12/02/2022]
Abstract
Background To determine the effects of gelatin methacryloyl (GelMA) hydrogel on nerve repair and regeneration in mice with spinal cord injury (SCI). Methods A total of 30 ICR mice (6–8 weeks old) were randomly assigned into the control group, the model group, and the experimental group via the random digits table method. There were 10 mice in each group. All mice underwent a T8 laminectomy. For mice in the experimental group and the model group, after the T8 laminectomy, SCI models were constructed by clamping the mice spinal cord tissue for 1 minute using an aneurysm clip (25 g). Additionally, the SCI area of each mouse in the experimental group was locally injected with 0.05–0.7 mL GelMA hydrogel [10% (w/v)] and photocrosslinking was initiated under a blue light source with a wavelength of 405 nm. The exercise performance of each mouse was tested via the bedside mobility scale (BMS) on post-operative days 1, 3, 7, and 14. After 14 days, mice were sacrificed and the dorsal root ganglion (DRG) sensory neurons were isolated and cultured for 3 days in vitro. The axon lengths of the neurons were then evaluated. Immunohistochemical staining was performed to assess the development of syringomyelia in the area. Western blots (WB) and immunofluorescence staining were performed to quantify the expression of glial fibrillary acidic protein (GFAP), growth associated protein (GAP)43, and nestin in the DRG neurons from each group of mice. Results Compared with mice in the control group, mice in the SCI model group showed a notable decrease in exercise ability, while the exercise ability of mice in the experimental group recovered markedly after treatment with GelMA hydrogel. Administration of GelMA hydrogel lengthened the axon of DRG neurons in mice and reduced the area of syringomyelia. Furthermore, GelMA hydrogel inhibited scar formation and promoted the recovery of neurological function by upregulating GAP43 and nestin expression and downregulating GFAP expression. Conclusions In mice with SCI, local injection of GelMA hydrogel strongly inhibited scar formation, reduced the area of syringomyelia, and promoted nerve regeneration and recovery of limb movement function.
Collapse
Affiliation(s)
- Hongcheng Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhui Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Saijilafu
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Cheng J, Chen Z, Liu C, Zhong M, Wang S, Sun Y, Wen H, Shu T. Bone mesenchymal stem cell-derived exosome-loaded injectable hydrogel for minimally invasive treatment of spinal cord injury. Nanomedicine (Lond) 2021; 16:1567-1579. [PMID: 34189939 DOI: 10.2217/nnm-2021-0025] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Aim: Bone mesenchymal stem cell-derived exosomes (Exos) have been shown to exert therapeutic effects in spinal cord injury (SCI). In this study, we aimed to apply bioengineering approaches to promote Exo retention and their sustained release for SCI repair. Materials & methods: 3D gelatin methacrylate hydrogel (GelMA) was used as a transplanted Exo delivery system (GelMA-Exos). The viability, proliferation, and differentiation of neural stem cells cultured on hydrogel were assessed. Further, GelMA-Exos was injected into the damaged lesions to assess its repair potential. Results: GelMA hydrogel enhanced the retention of Exos, which promoted the neuronal differentiation and extension in vitro. Furthermore, GelMA-Exos promoted neurogenesis and attenuated glial scars in the damaged lesions. Conclusion: The injectable Exo-loaded 3D hydrogel induced neurological functional recovery post SCI.
Collapse
Affiliation(s)
- Jiyun Cheng
- School of Basic Medicine & Public Health, Jinan University, Guangzhou, 510630, China
| | - Zheng Chen
- Department of Stomatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Can Liu
- Department of Orthopedic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Mei Zhong
- Intensive Care Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510630, China
| | - Shihuan Wang
- Child Developmental & Behavioral Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yongjian Sun
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Huiquan Wen
- Department of Radiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tao Shu
- Department of Spine Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, China
| |
Collapse
|