1
|
Salikin NH, Keong LC, Azemin WA, Philip N, Yusuf N, Daud SA, Rashid SA. Combating multidrug-resistant (MDR) Staphylococcus aureus infection using terpene and its derivative. World J Microbiol Biotechnol 2024; 40:402. [PMID: 39627623 DOI: 10.1007/s11274-024-04190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus represents a major global health issue resulting in a wide range of debilitating infections and fatalities. The slow progression of new antibiotics, limited choices for treatment, and scarcity of new drug approvals create immense obstacles in new drug line development. S. aureus poses a significant public health risk, due to the emergence of methicillin-resistant (MRSA) and vancomycin-resistant strains (VRSA), necessitating novel antibiotics for effective control management. Current studies are delving into the terpenes' potential as an antimicrobial agent, indicating positive prospects as promising substitutes or complementary to conventional antibiotics. Concurrent reactions of terpenes with conventional antibiotics create synergistic effects that significantly enhance antibiotic efficacy. Accumulated evidence has shown that while efflux pump (e.g., NorA, TetK, and MepA) is revealed as an essential defense of S. aureus against antibiotics, terpene and its derivative act as its potent inhibitor, suggesting the promising potential of terpenes in combating those infectious pathogens. Furthermore, pronounced cell membrane disruptive activity and antibiofilm properties by terpenes have been exerted, signifying their significance as promising prevention against microbial pathogenesis and antimicrobial resistance. This review provides an overview of the potential of terpenes and their derivatives in combating S. aureus infections, highlighting their potential mechanisms of action (MOA), synergistic effects with conventional antibiotics, and challenges in clinical translation. The unique properties of terpenes offer an opportunity for their use in developing an exceptional defense strategy against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Lee Chee Keong
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Noraini Philip
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Nurhaida Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Aceh, Indonesia
| | - Siti Aisyah Daud
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Syarifah Ab Rashid
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Batista PR, Silva ADA, de Sena Bastos CM, Rodrigues da Silva RE, Calixto GL, de Morais LP, Delmondes GDA, Kerntopf MR, de Menezes IRA, Barbosa R. Vasodilation promoted by ( E, E)-farnesol involving ion channels in human umbilical arteries. Heliyon 2023; 9:e17328. [PMID: 37441374 PMCID: PMC10333471 DOI: 10.1016/j.heliyon.2023.e17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Background (E,E)-farnesol is a sesquiterpene alcohol derived from plants and animals that exhibits pharmacological properties in the cardiovascular system. However, its effects on human umbilical vessels remain unknown. Purpose Thus, this study aims to characterize the vasodilatory effect of (E,E)-farnesol in human umbilical arteries (HUA). Study design The tissue is obtained from pregnant women over 18 years of age, normotensive, and without prepartum complications. After collected, the tissue was segmented and dissected to remove Wharton's jelly and obtain the umbilical arteries segments. Methods HUA segments were isolated and sectioned into rings that were subjected to isometric tension recordings in an organ bath. Results (E,E)-farnesol (1 μmol/L to 1 mmol/L) promoted vasodilatory effect in HUA preparations, affecting basal tone, and inhibiting the electromechanical coupling induced by KCl 60 mmol/L with greater potency (EC50 225.3 μmol/L) than the pharmacomechanical coupling induced by 5-HT 10 μmol/L (EC50 363.5 μmol/L). In the absence of extracellular calcium, pharmacomechanical coupling was also abolished, and contractions induced by CaCl2 or BaCl2 were attenuated by (E,E)-farnesol indicating a possible direct inhibition of L-type VOCC as a mechanism of the vasodilatory effect. The vasodilator efficacy of (E,E)-farnesol on reduction of vasocontraction induced by the presence of tetraethylammonium (1 or 10 mmol/L), 4-aminopyridine (1 mmol/L) and glibenclamide (10 μmol/L) suggesting a possible influence of different potassium channels (BKCa, KV and KATP). Conclusion These results suggest that (E,E)-farnesol may be a promising pharmacological candidate for obstetric hypertensive disorders.
Collapse
Affiliation(s)
- Paulo Ricardo Batista
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Andressa de Alencar Silva
- Graduate Program in Physiological Sciences, Higher Institute of Biomedical Sciences, State University of Ceará, Fortaleza, 60714-903, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Carla Mikevely de Sena Bastos
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Renata Evaristo Rodrigues da Silva
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Gabriela Lucena Calixto
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Luís Pereira de Morais
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biotechnology By the Northeastern Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, 60714-903, Ceará, Brazil
| | | | - Marta Regina Kerntopf
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | | | - Roseli Barbosa
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| |
Collapse
|
3
|
Kirar S, Chaudhari D, Thakur NS, Jain S, Bhaumik J, Laha JK, Banerjee UC. Light-assisted anticancer photodynamic therapy using porphyrin-doped nanoencapsulates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 220:112209. [PMID: 34049179 DOI: 10.1016/j.jphotobiol.2021.112209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Light activatable porphyrinic photosensitizers (PSs) are essential components of anticancer and antimicrobial therapy and diagnostic imaging. However, their biological applications are quite challenging due to the lack of hydrophilicity and biocompatibility. To overcome such drawbacks, photosensitizers can be doped into a biocompatible polymer such as gelatin and further can be used for biomedical applications. Herein, first, a novel A4 type porphyrin PS [5,10,15,20-tetrakis(4-pyridylamidephenyl)porphyrin; TPyAPP] was synthesized via a rational route with good yield. Further, this porphyrin was encapsulated into the gelatin nanoparticles (GNPs) to develop hydrophilic phototherapeutic nanoagents (PTNAs, A4por-GNPs). Notably, the synthesis of such porphyrin-doped GNPs avoids the use of any toxic chemicals or solvents. The nanoprobes have also shown good fluorescence quantum yield demonstrating their applicability in bioimaging. Further, the mechanistic aspects of the anticancer and antimicrobial efficacy of the developed A4por-GNPs were evaluated via singlet oxygen generation studies. Overall, our results indicated porphyrin-doped biodegradable polymeric nanoparticles act as effective phototherapeutic agents against a broad range of cancer cell lines and microbes upon activation by the low-cost LED light.
Collapse
Affiliation(s)
- Seema Kirar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Dasharath Chaudhari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Neeraj S Thakur
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India; Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Sanyog Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India.
| |
Collapse
|
4
|
Dadi NCT, Dohál M, Medvecká V, Bujdák J, Koči K, Zahoranová A, Bujdáková H. Physico-Chemical Characterization and Antimicrobial Properties of Hybrid Film Based on Saponite and Phloxine B. Molecules 2021; 26:E325. [PMID: 33435210 PMCID: PMC7827291 DOI: 10.3390/molecules26020325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 11/23/2022] Open
Abstract
This research was aimed at the preparation of a hybrid film based on a layered silicate saponite (Sap) with the immobilized photosensitizer phloxine B (PhB). Sap was selected because of its high cation exchange capacity, ability to exfoliate into nanolayers, and to modify different surfaces. The X-ray diffraction of the films confirmed the intercalation of both the surfactant and PhB molecules in the Sap film. The photosensitizer retained its photoactivity in the hybrid films, as shown by fluorescence spectra measurements. The water contact angles and the measurement of surface free energy demonstrated the hydrophilic nature of the hybrid films. Antimicrobial effectiveness, assessed by the photodynamic inactivation on hybrid films, was tested against a standard strain and against methicillin-resistant bacteria of Staphylococcus aureus (MRSA). One group of samples was irradiated (green LED light; 2.5 h) and compared to nonirradiated ones. S. aureus strains manifested a reduction in growth from 1-log10 to over 3-log10 compared to the control samples with Sap only, and defects in S. aureus cells were proven by scanning electron microscopy. The results proved the optimal photo-physical properties and anti-MRSA potential of this newly designed hybrid system that reflects recent progress in the modification of surfaces for various medical applications.
Collapse
Affiliation(s)
- Nitin Chandra teja Dadi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (N.C.t.D.); (M.D.); (K.K.)
| | - Matúš Dohál
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (N.C.t.D.); (M.D.); (K.K.)
| | - Veronika Medvecká
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia; (V.M.); (A.Z.)
| | - Juraj Bujdák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia;
- Institute of Inorganic Chemistry of SAS, 845 36 Bratislava, Slovakia
| | - Kamila Koči
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (N.C.t.D.); (M.D.); (K.K.)
| | - Anna Zahoranová
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia; (V.M.); (A.Z.)
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia; (N.C.t.D.); (M.D.); (K.K.)
| |
Collapse
|
5
|
Sannikova NE, Timofeev IO, Chubarov AS, Lebedeva NS, Semeikin AS, Kirilyuk IA, Tsentalovich YP, Fedin MV, Bagryanskaya EG, Krumkacheva OA. Application of EPR to porphyrin-protein agents for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 211:112008. [PMID: 32932136 DOI: 10.1016/j.jphotobiol.2020.112008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
Recently, a new type of spin labels based on photoexcited triplet molecules was proposed for nanometer scale distance measurements by pulsed dipolar electron paramagnetic resonance (PD EPR). However, such molecules are also actively used within biological complexes as photosensitizers for photodynamic therapy (PDT) of cancer. Up to date, the idea of using the photoexcited triplets simultaneously as PDT agents and as spin labels for PD EPR has never been employed. In this work, we demonstrate that PD EPR in conjunction with other methods provides valuable information on the structure and function of PDT candidate complexes, exemplified here with porphyrins bound to human serum albumin (HSA). Two distinct porphyrins with different properties were used: amphiphilic meso-tetrakis(4-hydroxyphenyl)porphyrin (mTHPP) and water soluble cationic meso-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4); HSA was singly nitroxide-labeled to provide a second tag for PD EPR measurements. We found that TMPyP4 locates in a cavity at the center of the four-helix bundle of HSA subdomain IB, close to the interface with solvent, thus being readily accessible to oxygen. As a result, the photolysis of the complex leads to photooxidation of HSA by generated singlet oxygen and causes structural perturbation of the protein. Contrary, in case of mTHPP porphyrin, the binding occurs at the proton-rich pocket of HSA subdomain IIIA, where the access of oxygen to a photosensitizer is hindered. Structural data of PD EPR were supported by other EPR techniques, laser flash photolysis and protein photocleavage studies. Therefore, pulsed EPR on complexes of proteins with photoexcited triplets is a promising approach for gaining structural and functional insights into such PDT agents.
Collapse
Affiliation(s)
| | - Ivan O Timofeev
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | | | | | - Igor A Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | | | - Matvey V Fedin
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia.
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.
| |
Collapse
|
6
|
Susilo B, Lestari W. H. M, Rohim A. Impact of using low-cost packaging material of commercial herbal oil on its antibacterial compounds. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1817800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Bambang Susilo
- Department of Agricultural Engineering, Faculty of Agricultural Technology, Universitas Brawijaya, Malang–East Java, Indonesia
| | - Midia Lestari W. H.
- Central Laboratory of Life Science, Universitas Brawijaya, Malang-East Java, Indonesia
| | - Abd. Rohim
- Department of Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Malang–East Java, Indonesia
| |
Collapse
|