1
|
Ryu DS, Lee H, Eo SJ, Kim JW, Kim Y, Kang S, Noh JH, Lee S, Park JH, Na K, Kim DH. Photo-responsive self-expanding catheter with photosensitizer-integrated silicone-covered membrane for minimally invasive local therapy in malignant esophageal cancer. Biomaterials 2025; 320:123265. [PMID: 40121828 DOI: 10.1016/j.biomaterials.2025.123265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Photodynamic therapy (PDT) using photosensitizer (PS)-integrated covered self-expandable metallic stents (SEMS) is proposed a new therapeutic approach for the treatment of palliative malignancies; however, the currently hydrophobic PS reduces the photoreactive effect, which leads to aggregation with low water solubility. In here, an aluminum (III)-phthalocyanine chloride tetrasulfonic acid (Al-PcS4)-integrated silicone-covered self-expanding catheter was successfully fabricated to perform localized PDT. The ratio of MeOH and Al-PcS4 concentrations was optimized to achieve PS coating uniformity. The photodynamic activity of the Al-PcS4-integrated silicone membrane was evaluated through laser exposure on membrane-layered tumor cell lines, tumor xenograft-bearing mice. PDT with the Al-PcS4-integrated membrane successfully generated sufficient cytotoxic singlet oxygen, inducing cell death in the esophageal cancer cell lines. PDT-treated tumor xenograft-bearing mice undergo apoptotic cell death and showed significant tumor regression. Localized PDT using an Al-PcS4-integrated silicone-covered self-expanding catheter was technically successful in the rabbit esophagus without severe complications. Based on the endoscopy, esophagography, histology, and immunohistochemistry, our study verified that localized PDT using the Al-PcS4-integrated silicone-covered self-expanding catheter was effective and safe to evenly induce tissue damage. Al-PcS4-integrated silicone-covered self-expanding catheter has substantial potential for the minimally invasive local therapy in malignant esophageal cancer.
Collapse
Affiliation(s)
- Dae Sung Ryu
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyeonseung Lee
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Seung Jin Eo
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ji Won Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yuri Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seokin Kang
- Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, 170, Juhwa-ro, Ilsanseo-gu, Goyang, Gyeonggi-do, 10380, Republic of Korea
| | - Jin Hee Noh
- Department of Internal Medicine, University of Hallym College of Medicine, Hallym University Sacred Heart Hospital, Anyang, Gyeonggi-do, 14068, Republic of Korea
| | - Sanghee Lee
- Department of Radiology Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jung-Hoon Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Kun Na
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| | - Do Hoon Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
2
|
Korbelik M, Heger M, Girotti AW. Participation of lipids in the tumor response to photodynamic therapy and its exploitation for therapeutic gain. J Lipid Res 2025; 66:100729. [PMID: 39675508 PMCID: PMC11911859 DOI: 10.1016/j.jlr.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Hydroperoxides of unsaturated membrane lipids (LOOHs) are the most abundant non-radical intermediates generated by photodynamic therapy (PDT) of soft tissues such as tumors and have far longer average lifetimes than singlet oxygen or oxygen radicals formed during initial photodynamic action. LOOH-initiated post-irradiation damage to remaining membrane lipids (chain peroxidation) or to membrane-associated proteins remains largely unrecognized. Such after-light processes could occur during clinical oncological PDT, but this is not well-perceived by practitioners of this therapy. In general, the pivotal influence of lipids in tumor responses to PDT needs to be better appreciated. Of related importance is the fact that most malignant tumors have dramatically different lipid metabolism compared with healthy tissues, and this too is often ignored. The response of tumors to PDT appears especially vulnerable to manipulations within the tumor lipid microenvironment. This can be exploited for therapeutic gain with PDT, as exemplified here by the combined treatment with the antitumor lipid edelfosine.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Li M, Bosman EDC, Smith OM, Lintern N, de Klerk DJ, Sun H, Cheng S, Pan W, Storm G, Khaled YS, Heger M. Comparative analysis of whole cell-derived vesicular delivery systems for photodynamic therapy of extrahepatic cholangiocarcinoma. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 254:112903. [PMID: 38608335 DOI: 10.1016/j.jphotobiol.2024.112903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
This first-in-its-class proof-of-concept study explored the use of bionanovesicles for the delivery of photosensitizer into cultured cholangiocarcinoma cells and subsequent treatment by photodynamic therapy (PDT). Two types of bionanovesicles were prepared: cellular vesicles (CVs) were fabricated by sonication-mediated nanosizing of cholangiocarcinoma (TFK-1) cells, whereas cell membrane vesicles (CMVs) were produced by TFK-1 cell and organelle membrane isolation and subsequent nanovesicularization by sonication. The bionanovesicles were loaded with zinc phthalocyanine (ZnPC). The CVs and CMVs were characterized (size, polydispersity index, zeta potential, stability, ZnPC encapsulation efficiency, spectral properties) and assayed for tumor (TFK-1) cell association and uptake (flow cytometry, confocal microscopy), intracellular ZnPC distribution (confocal microscopy), dark toxicity (MTS assay), and PDT efficacy (MTS assay). The mean ± SD diameter, polydispersity index, and zeta potential were 134 ± 1 nm, -16.1 ± 0.9, and 0.220 ± 0.013, respectively, for CVs and 172 ± 3 nm, -16.4 ± 1.1, and 0.167 ± 0.022, respectively, for CMVs. Cold storage for 1 wk and incorporation of ZnPC increased bionanovesicular diameter slightly but size remained within the recommended range for in vivo application (136-220 nm). ZnPC was incorporated into CVs and CMVs at an optimal photosensitizer:lipid molar ratio of 0.006 and 0.01, respectively. Both bionanovesicles were avidly taken up by TFK-1 cells, resulting in homogenous intracellular ZnPC dispersion. Photosensitization of TFK-1 cells did not cause dark toxicity, while illumination at 671 nm (35.3 J/cm2) produced LC50 values of 1.11 μM (CVs) and 0.51 μM (CMVs) at 24 h post-PDT, which is superior to most LC50 values generated in tumor cells photosensitized with liposomal ZnPC. In conclusion, CVs and CMVs constitute a potent photosensitizer platform with no inherent cytotoxicity and high PDT efficacy in vitro.
Collapse
Affiliation(s)
- Mingjuan Li
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, 314001 Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands.
| | - Esmeralda D C Bosman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands.
| | - Olivia M Smith
- Leeds Institute of Medical Research, St. James's University Hospital, Leeds LS9 7TF, United Kingdom; The University of Leeds, School of Medicine, Leeds LS2 9JT, United Kingdom
| | - Nicole Lintern
- Leeds Institute of Medical Research, St. James's University Hospital, Leeds LS9 7TF, United Kingdom; The University of Leeds, School of Medicine, Leeds LS2 9JT, United Kingdom.
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, 314001 Jiaxing, Zhejiang, PR China
| | - Hong Sun
- Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, 314001 Jiaxing, Zhejiang, PR China; Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province, Jiaxing University, 314001 Jiaxing, Zhejiang, PR China.
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 200433 Shanghai, PR China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, 314001 Jiaxing, Zhejiang, PR China
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands.
| | - Yazan S Khaled
- Leeds Institute of Medical Research, St. James's University Hospital, Leeds LS9 7TF, United Kingdom; The University of Leeds, School of Medicine, Leeds LS2 9JT, United Kingdom.
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, 314001 Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
4
|
Mesquita B, Singh A, Prats Masdeu C, Lokhorst N, Hebels ER, van Steenbergen M, Mastrobattista E, Heger M, van Nostrum CF, Oliveira S. Nanobody-mediated targeting of zinc phthalocyanine with polymer micelles as nanocarriers. Int J Pharm 2024; 655:124004. [PMID: 38492899 DOI: 10.1016/j.ijpharm.2024.124004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Photodynamic therapy (PDT) is a suitable alternative to currently employed cancer treatments. However, the hydrophobicity of most photosensitizers (e.g., zinc phthalocyanine (ZnPC)) leads to their aggregation in blood. Moreover, non-specific accumulation in skin and low clearance rate of ZnPC leads to long-lasting skin photosensitization, forcing patients with a short life expectancy to remain indoors. Consequently, the clinical implementation of these photosensitizers is limited. Here, benzyl-poly(ε-caprolactone)-b-poly(ethylene glycol) micelles encapsulating ZnPC (ZnPC-M) were investigated to increase the solubility of ZnPC and its specificity towards cancers cells. Asymmetric flow field-flow fractionation was used to characterize micelles with different ZnPC-to-polymer ratios and their stability in human plasma. The ZnPC-M with the lowest payload (0.2 and 0.4% ZnPC w/w) were the most stable in plasma, exhibiting minimal ZnPC transfer to lipoproteins, and induced the highest phototoxicity in three cancer cell lines. Nanobodies (Nbs) with binding specificity towards hepatocyte growth factor receptor (MET) or epidermal growth factor receptor (EGFR) were conjugated to ZnPC-M to facilitate cell targeting and internalization. MET- and EGFR-targeting micelles enhanced the association and the phototoxicity in cells expressing the target receptor. Altogether, these results indicate that ZnPC-M decorated with Nbs targeting overexpressed proteins on cancer cells may provide a better alternative to currently approved formulations.
Collapse
Affiliation(s)
- Bárbara Mesquita
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Arunika Singh
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Cèlia Prats Masdeu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nienke Lokhorst
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Erik R Hebels
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mies van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michal Heger
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, Jiaxing University, College of Medicine, Jiaxing, Zhejiang, PR China; Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Sabrina Oliveira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Li Y, Li Y, Song Y, Liu S. Advances in research and application of photodynamic therapy in cholangiocarcinoma (Review). Oncol Rep 2024; 51:53. [PMID: 38334150 DOI: 10.3892/or.2024.8712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a disease characterized by insidious clinical manifestations and challenging to diagnose. Patients are usually diagnosed at an advanced stage and miss the opportunity for radical surgery. Therefore, effective palliative therapy is the main treatment approach for unresectable CCA. Current common palliative treatments include biliary drainage, chemotherapy, radiotherapy, targeted therapy and immunotherapy. However, these treatments only offer limited improvement in quality of life and survival. Photodynamic therapy (PDT) is a novel local treatment method that is considered a safe tumor ablation method for numerous cancers. It has shown good efficacy in various studies of CCA and is expected to become an important treatment for CCA. In the present study, the mechanisms of PDT in the treatment of CCA were systematically explored and the progress in the research of photosensitizers was discussed. The current study focused on the various PDT protocols and their therapeutic effects in CCA, with the objective of providing a new horizon for future research and clinical applications of PDT in the treatment of CCA.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yuhang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yinghui Song
- Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
6
|
Kuwatani M, Sakamoto N. Promising Highly Targeted Therapies for Cholangiocarcinoma: A Review and Future Perspectives. Cancers (Basel) 2023; 15:3686. [PMID: 37509347 PMCID: PMC10378186 DOI: 10.3390/cancers15143686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
To overcome the poor prognosis of cholangiocarcinoma (CCA), highly targeted therapies, such as antibody-drug conjugates (ADCs), photodynamic therapy (PDT) with/without systemic chemotherapy, and experimental photoimmunotherapy (PIT), have been developed. Three preclinical trials have investigated the use of ADCs targeting specific antigens, namely HER2, MUC1, and glypican-1 (GPC1), for CCA. Trastuzumab emtansine demonstrated higher antiproliferative activity in CCA cells expressing higher levels of HER2. Similarly, "staphylococcal enterotoxin A-MUC1 antibody" and "anti-GPC1 antibody-monomethyl auristatin F" conjugates showed anticancer activity. PDT is effective in areas where appropriate photosensitizers and light coexist. Its mechanism involves photosensitizer excitation and subsequent reactive oxygen species production in cancer cells upon irradiation. Hematoporphyrin derivatives, temoporfin, phthalocyanine-4, talaporfin, and chlorine e6 derivatives have mainly been used clinically and preclinically in bile duct cancer. Currently, new forms of photosensitizers with nanotechnology and novel irradiation catheters are being developed. PIT is the most novel anti-cancer therapy developed in 2011 that selectively kills targeted cancer cells using a unique photosensitizer called "IR700" conjugated with an antibody specific for cancer cells. PIT is currently in the early stages of development for identifying appropriate CCA cell targets and irradiation devices. Future human and artificial intelligence collaboration has potential for overcoming challenges related to identifying universal CCA cell targets. This could pave the way for highly targeted therapies for CCA, such as ADC, PDT, and PIT.
Collapse
Affiliation(s)
- Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo 060-8648, Japan
| |
Collapse
|
7
|
Mantareva V, Iliev I, Sulikovska I, Durmuş M, Genova T. Collagen Hydrolysate Effects on Photodynamic Efficiency of Gallium (III) Phthalocyanine on Pigmented Melanoma Cells. Gels 2023; 9:475. [PMID: 37367145 DOI: 10.3390/gels9060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The conjugation of photosensitizer with collagen seems to be a very promising approach for innovative topical photodynamic therapy (PDT). The study aims to evaluate the effects of bovine collagen hydrolysate (Clg) on the properties of gallium (III) phthalocyanine (GaPc) on pigmented melanoma. The interaction of GaPc with Clg to form a conjugate (GaPc-Clg) showed a reduction of the intensive absorption Q-band (681 nm) with a blue shift of the maximum (678 nm) and a loss of shape of the UV-band (354 nm). The fluorescence of GaPc, with a strong emission peak at 694 nm was blue shifted due to the conjugation which lower intensity owing to reduce quantum yield (0.012 vs. 0.23, GaPc). The photo- and dark cytotoxicity of GaPc, Glg and GaPc-Clg on pigmented melanoma cells (SH-4) and two normal cell lines (BJ and HaCaT) showed a slight decrease of cytotoxicity for a conjugate, with low selectivity index (0.71 vs. 1.49 for GaPc). The present study suggests that the ability of collagen hydrolysate to form gels minimizes the high dark toxicity of GaPc. Collagen used for conjugation of a photosensitizer might be an essential step in advanced topical PDT.
Collapse
Affiliation(s)
- Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Bl. 9, 1113 Sofia, Bulgaria
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Bl. 25, 1113 Sofia, Bulgaria
| | - Inna Sulikovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Bl. 25, 1113 Sofia, Bulgaria
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Tsanislava Genova
- Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| |
Collapse
|
8
|
Kattar A, Quelle-Regaldie A, Sánchez L, Concheiro A, Alvarez-Lorenzo C. Formulation and Characterization of Epalrestat-Loaded Polysorbate 60 Cationic Niosomes for Ocular Delivery. Pharmaceutics 2023; 15:pharmaceutics15041247. [PMID: 37111732 PMCID: PMC10142600 DOI: 10.3390/pharmaceutics15041247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this work was to develop niosomes for the ocular delivery of epalrestat, a drug that inhibits the polyol pathway and protects diabetic eyes from damage linked to sorbitol production and accumulation. Cationic niosomes were made using polysorbate 60, cholesterol, and 1,2-di-O-octadecenyl-3-trimethylammonium propane. The niosomes were characterized using dynamic light scattering, zeta-potential, and transmission electron microscopy to determine their size (80 nm; polydispersity index 0.3 to 0.5), charge (-23 to +40 mV), and shape (spherical). The encapsulation efficiency (99.76%) and the release (75% drug release over 20 days) were measured with dialysis. The ocular irritability potential (non-irritating) was measured using the Hen's Egg Test on the Chorioallantoic Membrane model, and the blood glucose levels (on par with positive control) were measured using the gluc-HET model. The toxicity of the niosomes (non-toxic) was monitored using a zebrafish embryo model. Finally, corneal and scleral permeation was assessed with the help of Franz diffusion cells and confirmed with Raman spectroscopy. Niosomal permeation was higher than an unencapsulated drug in the sclera, and accumulation in tissues was confirmed with Raman. The prepared niosomes show promise to encapsulate and carry epalrestat through the eye to meet the need for controlled drug systems to treat the diabetic eye.
Collapse
Affiliation(s)
- Axel Kattar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Quelle-Regaldie
- Departamento de Zooloxía, Xenética y Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Laura Sánchez
- Departamento de Zooloxía, Xenética y Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Razlog R, Kruger CA, Abrahamse H. Cytotoxic Effects of Combinative ZnPcS 4 Photosensitizer Photodynamic Therapy (PDT) and Cannabidiol (CBD) on a Cervical Cancer Cell Line. Int J Mol Sci 2023; 24:ijms24076151. [PMID: 37047123 PMCID: PMC10094677 DOI: 10.3390/ijms24076151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The most prevalent type of gynecological malignancy globally is cervical cancer (CC). Complicated by tumor resistance and metastasis, it remains the leading cause of cancer deaths in women in South Africa. Early CC is managed by hysterectomy, chemotherapy, radiation, and more recently, immunotherapy. Although these treatments provide clinical benefits, many patients experience adverse effects and secondary CC spread. To minimize this, novel and innovative treatment methods need to be investigated. Photodynamic therapy (PDT) is an advantageous treatment modality that is non-invasive, with limited side effects. The Cannabis sativa L. plant isolate, cannabidiol (CBD), has anti-cancer effects, which inhibit tumor growth and spread. This study investigated the cytotoxic combinative effect of PDT and CBD on CC HeLa cells. The effects were assessed by exposing in vitro HeLa CC-cultured cells to varying doses of ZnPcS4 photosensitizer (PS) PDT and CBD, with a fluency of 10 J/cm2 and 673 nm irradiation. HeLa CC cells, which received the predetermined lowest dose concentrations (ICD50) of 0.125 µM ZnPcS4 PS plus 0.5 µM CBD to yield 50% cytotoxicity post-laser irradiation, reported highly significant and advantageous forms of cell death. Flow cytometry cell death pathway quantitative analysis showed that only 13% of HeLa cells were found to be viable, 7% were in early apoptosis and 64% were in late favorable forms of apoptotic cell death, with a minor 16% of necrosis post-PDT. Findings suggest that this combined treatment approach can possibly induce primary cellular destruction, as well as limit CC metastatic spread, and so warrants further investigation.
Collapse
Affiliation(s)
- Radmila Razlog
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| |
Collapse
|
10
|
Alavi N, Maghami P, Pakdel AF, Rezaei M, Avan A. Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment. Curr Pharm Des 2023; 29:3103-3122. [PMID: 37990429 DOI: 10.2174/0113816128265544231102065515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/03/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) is an innovative, non-invasive method of treating cancer that uses light-activated photosensitizers to create reactive oxygen species (ROS). However, challenges associated with the limited penetration depth of light and the need for precise control over photosensitizer activation have hindered its clinical translation. Nanomedicine, particularly gold nanobiostructures, offers promising solutions to overcome these limitations. This paper reviews the advancements in PDT and nanomedicine, focusing on applying antibody-modified gold nanobiostructures as multifunctional platforms for enhanced PDT efficacy and improved cancer treatment outcomes. The size, shape, and composition of gold nanobiostructures can significantly influence their PDT efficacy, making synthetic procedures crucial. Functionalizing the surface of gold nanobiostructures with various molecules, such as antibodies or targeting agents, bonding agents, PDT agents, photothermal therapy (PTT) agents, chemo-agents, immunotherapy agents, and imaging agents, allows composition modification. Integrating gold nanobiostructures with PDT holds immense potential for targeted cancer therapy. Antibody-modified gold nanobiostructures, in particular, have gained significant attention due to their tunable plasmonic characteristics, biocompatibility, and surface functionalization capabilities. These multifunctional nanosystems possess unique properties that enhance the efficacy of PDT, including improved light absorption, targeted delivery, and enhanced ROS generation. Passive and active targeting of gold nanobiostructures can enhance their localization near cancer cells, leading to efficient eradication of tumor tissues upon light irradiation. Future research and clinical studies will continue to explore the potential of gold nanobiostructures in PDT for personalized and effective cancer therapy. The synthesis, functionalization, and characterization of gold nanobiostructures, their interaction with light, and their impact on photosensitizers' photophysical and photochemical properties, are important areas of investigation. Strategies to enhance targeting efficiency and the evaluation of gold nanobiostructures in vitro and in vivo studies will further advance their application in PDT. The integrating antibody-modified gold nanobiostructures in PDT represents a promising strategy for targeted cancer therapy. These multifunctional nanosystems possess unique properties that enhance PDT efficacy, including improved light absorption, targeted delivery, and enhanced ROS generation. Continued research and development in this field will contribute to the advancement of personalized and effective cancer treatment approaches.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|