1
|
Mulaudzi PE, Abrahamse H, Crous A. Impact of photobiomodulation on neural embryoid body formation from immortalized adipose-derived stem cells. Stem Cell Res Ther 2024; 15:489. [PMID: 39707453 PMCID: PMC11662703 DOI: 10.1186/s13287-024-04088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Embryoid bodies (EBs) are three-dimensional (3D) multicellular cell aggregates that are derived from stem cell and play a pivotal role in regenerative medicine. They recapitulate many crucial aspects of the early stages of embryonic development and is the first step in the generation of various types of stem cells, including neuronal stem cells. Current methodologies for differentiating stem cells into neural embryoid bodies (NEBs) in vitro have advanced significantly, but they still have limitations which necessitate improvement. Photobiomodulation (PBM) a low powered light therapy is a non-invasive technique shown to promote stem cell proliferation and differentiation. METHODS This in vitro study elucidated the effects of photobiomodulation (PBM) on the differentiation of immortalized adipose-derived stem cells (iADSCs) into NEBs within a 3D cell culture environment. The study utilized PBM at wavelengths of 825 nm, 525 nm, and a combination of both, with fluences of 5 and 10 J/cm2. Morphology, viability, metabolic activity, and differentiation following PBM treatment was analysed. RESULTS The results revealed that the effects of photobiomodulation (PBM) are dose dependent. PBM, at 825 nm with a fluence of 10 J/cm2, significantly enhanced the size of neural embryoid bodies (NEBs), improved cell viability and proliferation, and reduced lactate dehydrogenase (LDH) levels, indicating minimal cell damage. Interestingly, the stem cell marker CD 44 was upregulated at 5 J/cm2 in all treatment groups at 24 and 96 hpi, CD105 increased with 825 nm at 10 J/cm2 at 24 hpi, which may be attributed to a heterogeneous cell population within the NEBs. Pax6 expression showed transient activation. Nestin was upregulated at 825 nm with 10 J/cm2 at 96 hpi, suggesting a promotion of neural precursor populations. GFAP an intermediate filament protein was upregulated at 825 nm at 10 J/cm2 at both 24 and 96 hpi. SOX2, a pluripotency marker, was expressed at 5 J/cm2 across all wavelengths. Neu N a neuronal nuclei marker was expressed at 5 J/cm2 in all treatments at 24 hpi and over time the expression was observed in all treatment groups at 10 J/cm2. CONCLUSION In conclusion, the application of PBM at 825 nm with a fluence of 10 J/cm2 during the differentiation of iADSCs into NEBs resulted in optimal differentiation. Notably, the neuronal marker Nestin was significantly upregulated, highlighting the potential of the PBM approach for enhancing neuronal differentiation its promising applications in regenerative medicine.
Collapse
Affiliation(s)
- Precious Earldom Mulaudzi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
2
|
Li S, Wong TWL, Ng SSM. Potential and Challenges of Transcranial Photobiomodulation for the Treatment of Stroke. CNS Neurosci Ther 2024; 30:e70142. [PMID: 39692710 DOI: 10.1111/cns.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024] Open
Abstract
Photobiomodulation (PBM), also known as low-level laser therapy, employs red or near-infrared light emitted from a laser or light-emitting diode for the treatment of various conditions. Transcranial PBM (tPBM) is a form of PBM that is delivered to the head to improve brain health, as tPBM enhances mitochondrial function, improves antioxidant responses, reduces inflammation, offers protection from apoptosis, improves blood flow, increases cellular energy production, and promotes neurogenesis and neuroplasticity. As such, tPBM holds promise as a treatment for stroke. This review summarizes recent findings on tPBM as a treatment for stroke, presenting evidence from both animal studies and clinical trials that demonstrate its efficacy. Additionally, it discusses the potential and challenges encountered in the translation process. Furthermore, it proposes new technologies and directions for the development of light-delivery methods and emphasizes the need for extensive studies to validate and widen the application of tPBM in future treatments for stroke.
Collapse
Affiliation(s)
- Siyue Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| |
Collapse
|
3
|
Pasek J, Szajkowski S, Cieślar G. A Double-Blind Study on the Effectiveness of Polarized Light Therapy in the Treatment of Venous leg Ulcers-Pilot Study. INT J LOW EXTR WOUND 2024:15347346241264602. [PMID: 39033399 DOI: 10.1177/15347346241264602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Vein diseases are one of the most common civilization diseases. The most advanced form chronic venous insufficiency are venous leg ulcers. The study included 40 patients, 20 male (50%) and 20 female (50%) in age between 52 and 88 years (mean age: 68.00 ± 8.55 years) with venous leg ulcers lasting 12.50 ± 5.45 months. Patients were distributed randomly in a double-blind study into two equal groups including 20 patients each (group 1-polarized light therapy and group 2-sham exposure). Patients from both groups received routine pharmacological treatment, specialistic medical dressings and compression therapy. In addition, patients were exposed to a cycle of polarized light therapy procedures or to sham exposures (30 procedures performed in two series of 15 procedures). Wound surface area was evaluated by computerized planimetry and pain intensity was assessed with the use of Visual Analog Scale (VAS) before and after therapy (2.5 months). The analysis showed a statistically significant reduction of surface ulcers area between groups 1 and 2. The median (IQR) size of wounds in group 1 was 2.4 (1.95-2.9) cm2, in group 2; 2.8 (2.6-3.1) cm2 (p = 0.038). The level of pain (VAS) after treatment was assessed in group 1, median (IQR): 2 (2-3) points, in group 2 4.5 (4-5) points; and the observed difference was also statistically significant (p < 0.001). In group 1, after treatment, the area of ulcers decreased-median (IQR): 33.05 (28.7-41.48) %, in group 2 by 18.99 (15-24.4) % (p < 0.001). In group 1, the pain intensity measured using the VAS scale decreased with a median (IQR): 71.42 (61.25-71.42) %, in group 2: 37.5 (28.57-50) % (p < 0.001). Complex therapy with polarized light therapy added to standard care was more effective than standard care alone in reducing of ulcers surface area and intensity of pain ailments in patients with chronic venous leg ulcers.
Collapse
Affiliation(s)
- Jarosław Pasek
- Collegium Medicum, Jan Długosz University in Częstochowa, Częstochowa, Poland
| | - Sebastian Szajkowski
- Faculty of Medical and Social Sciences, Warsaw Medical Academy of Applied Sciences, Warszawa, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Bytom, Poland
| |
Collapse
|
4
|
Chang CY, Aviña AE, Chang CJ, Lu LS, Chong YY, Ho TY, Yang TS. Exploring the biphasic dose-response effects of photobiomodulation on the viability, migration, and extracellular vesicle secretion of human adipose mesenchymal stem cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112940. [PMID: 38776590 DOI: 10.1016/j.jphotobiol.2024.112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Photobiomodulation (PBM) is a well-established medical technology that employs diverse light sources like lasers or light-emitting diodes to generate diverse photochemical and photophysical reactions in cells, thereby producing beneficial clinical outcomes. In this study, we introduced an 830 nm near-infrared (NIR) laser irradiation system combined with a microscope objective to precisely and controllably investigate the impact of PBM on the migration and viability of human adipose mesenchymal stem cells (hADSCs). We observed a biphasic dose-response in hADSCs' viability and migration after PBM exposure (0-10 J/cm2), with the 5 J/cm2 group showing significantly higher cell viability and migration ability than other groups. Additionally, at the optimal dose of 5 J/cm2, we used nanoparticle tracking analysis (NTA) and found a 6.25-fold increase in the concentration of extracellular vesicles (EVs) derived from hADSCs (PBM/ADSC-EVs) compared to untreated cells (ADSC-EVs). Both PBM/ADSC-EVs and ADSC-EVs remained the same size, with an average diameter of 56 nm measured by the ExoView R200 system, which falls within the typical size range for exosomes. These findings demonstrate that PBM not only improves the viability and migration of hADSCs but also significantly increases the EV yield.
Collapse
Affiliation(s)
- Che-Yi Chang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Ana Elena Aviña
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan; Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan; International PhD Program in Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Jen Chang
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan; Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan; International PhD Program in Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan; Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yi-Yong Chong
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu Ying Ho
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Sen Yang
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan; International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan; Research Center of Biomedical Device, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
5
|
Fu Q, Yang J, Jiang H, Lin S, Qin H, Zhao J, Wang Y, Liu M. Effect of photobiomodulation on alleviating primary dysmenorrhea caused by PGF 2α. JOURNAL OF BIOPHOTONICS 2024; 17:e202300448. [PMID: 38348528 DOI: 10.1002/jbio.202300448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 05/04/2024]
Abstract
Photobiomodulation (PBM) has attracted widespread attention in suppressing various pain and inflammation. Primary dysmenorrhea (PD) primarily occurs in adolescents and adult females, and the limited effectiveness and side effects of conventional treatments have highlighted the urgent need to develop and identify new adjunct therapeutic strategies. In this work, the results of pain and PGs demonstrated that 850 nm, 630 nm, and 460 nm all exhibited pain inhibition, decreased PGF2α and upregulated PGE2, while 630 nm PBM has better effectiveness. Then to explore the underlying biological mechanisms of red light PBM on PD, we irradiated prostaglandin-F2α induced HUSM cells and found that low-level irradiance can restore intracellular calcium ion, ROS, ATP, and MMP levels to normal levels. And, red light enhanced cell viability and promoted cell proliferation for normal HUSM cells. Therefore, this study proposes that red light PBM may be a promising approach for the future clinical treatment of PD.
Collapse
Affiliation(s)
- Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Jie Zhao
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yanqing Wang
- School of Basic Medical Science, Fudan University, Shanghai, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| |
Collapse
|
6
|
Ramakrishnan P, Joshi A, Fazil M, Yadav P. A comprehensive review on therapeutic potentials of photobiomodulation for neurodegenerative disorders. Life Sci 2024; 336:122334. [PMID: 38061535 DOI: 10.1016/j.lfs.2023.122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
A series of experimental trials over the past two centuries has put forth Photobiomodulation (PBM) as a treatment modality that utilizes colored lights for various conditions. While in its cradle, PBM was used for treating simple conditions such as burns and wounds, advancements in recent years have extended the use of PBM for treating complex neurodegenerative diseases (NDDs). PBM has exhibited the potential to curb several symptoms and signs associated with NDDs. While several of the currently used therapeutics cause adverse side effects alongside being highly invasive, PBM on the contrary, seems to be broad-acting, less toxic, and non-invasive. Despite being projected as an ideal therapeutic for NDDs, PBM still isn't considered a mainstream treatment modality due to some of the challenges and knowledge gaps associated with it. Here, we review the advantages of PBM summarized above with an emphasis on the common mechanisms that underlie major NDDs and how PBM helps tackle them. We also discuss important questions such as whether PBM should be considered a mainstay treatment modality for these conditions and if PBM's properties can be harnessed to develop prophylactic therapies for high-risk individuals and also highlight important animal studies that underscore the importance of PBM and the challenges associated with it. Overall, this review is intended to bring the major advances made in the field to the spotlight alongside addressing the practicalities and caveats to develop PBM as a major therapeutic for NDDs.
Collapse
Affiliation(s)
- Pooja Ramakrishnan
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Aradhana Joshi
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Mohamed Fazil
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India; School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
7
|
Chen B, Liu Y, Liu Y, Xu S. Distribution characteristics of pathogens in different stages of pressure ulcers and the therapeutic effect of linear polarized polychromatic light combined with silver sulfadiazine cream. Medicine (Baltimore) 2023; 102:e35772. [PMID: 37861479 PMCID: PMC10589588 DOI: 10.1097/md.0000000000035772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
To investigate the distribution characteristics of pathogens in different stages of pressure ulcers and observe the application of linear polarized polychromatic light (LPPL) combined with silver sulfadiazine cream in treating varying stages of pressure ulcers. This study comprised 88 patients with pressure ulcers who were enrolled in the department of burn and plastic surgery of our hospital from April 2019 to April 2022. The wound exudates from patients were collected, followed by analyzing the distribution of pathogens in different stages of pressure ulcers. Patients were randomly divided into 2 groups. The first group (n = 44) received LPPL combined with silver sulfadiazine. The other group was intervened with LPPL group only for 2 weeks. The clinical efficacy, condition, and pain in the 2 groups, as well as the healing timeframes for patients were measured at different stages. The findings showed that among 88 patients with pressure ulcers, 62 were infected, and the infection rate was 70.45%. The pathogens that were observed in stage II and III to IV pressure ulcers were mainly Gram-negative bacteria. The total effective rate in the combined group was 90.91%, which was much higher than that of LPPL group (70.45%). Compared with LPPL group, the pressure ulcer scale for healing and visual analogue scale scores in the combined group were markedly lower (P < .05). It is important to note that in LPPL group, the healing time of patients in stage II and stage III to IV in the combined arm were 9.76 ± 2.38 days and 13.19 ± 2.54 days, respectively. The corresponding time in the LPPL group was prolonged to 13.20 ± 3.76 and 18.82 ± 4.17 days, respectively. The main pathogens associated with wound infection in patients with pressure ulcers are Gram-negative bacteria. The curative effects of LPPL combined with sulfadiazine silver cream on patients with pressure ulcer is obviously improved, and the recovery and pain relief are faster while the healing time of pressure ulcer is shorter.
Collapse
Affiliation(s)
- Binxiong Chen
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Yang Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Abijo A, Lee CY, Huang CY, Ho PC, Tsai KJ. The Beneficial Role of Photobiomodulation in Neurodegenerative Diseases. Biomedicines 2023; 11:1828. [PMID: 37509468 PMCID: PMC10377111 DOI: 10.3390/biomedicines11071828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Photobiomodulation (PBM), also known as Low-level Laser Therapy (LLLT), involves the use of light from a laser or light-emitting diode (LED) in the treatment of various disorders and it has recently gained increasing interest. Progressive neuronal loss with attendant consequences such as cognitive and/or motor decline characterize neurodegenerative diseases. The available therapeutic drugs have only been able to provide symptomatic relief and may also present with some side effects, thus precluding their use in treatment. Recently, there has been an exponential increase in interest and attention in the use of PBM as a therapy in various neurodegenerative diseases in animal studies. Because of the financial and social burden of neurodegenerative diseases on the sufferers and the need for the discovery of potential therapeutic inventions in their management, it is pertinent to examine the beneficial effects of PBM and the various cellular mechanisms by which it modulates neural activity. Here, we highlight the various ways by which PBM may possess beneficial effects on neural activity and has been reported in various neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, epilepsy, TBI, stroke) with the hope that it may serve as an alternative therapy in the management of neurodegenerative diseases because of the biological side effects associated with drugs currently used in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ayodeji Abijo
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Neurobiology Unit, Department of Anatomy, Ben S. Carson School of Medicine, Babcock University, Ilishan-Remo 121003, Nigeria
| | - Chun-Yuan Lee
- Aether Services, Taiwan, Ltd., Hsinchu 30078, Taiwan
| | | | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuen-Jer Tsai
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
9
|
Tripodi N, Sidiroglou F, Apostolopoulos V, Feehan J. Transcriptome analysis of the effects of polarized photobiomodulation on human dermal fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 242:112696. [PMID: 36958088 DOI: 10.1016/j.jphotobiol.2023.112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Photobiomodulation (PBM), the therapeutic use of light, is used to treat a myriad of conditions, including the management of acute and chronic wounds. Despite the presence of clinical evidence surrounding PBM, the fundamental mechanisms underpinning its efficacy remain unclear. There are several properties of light that can be altered in the application of PBM, of these, polarization-the filtering of light into specified plane(s)-is an attractive variable to investigate. AIMS To evaluate transcriptomic changes in human dermal fibroblasts in response to polarized PBM. RESULTS A total of 71 Differentially Expressed Genes (DEGs) are described. All DEGs were found in the polarized PBM group (P-PBM), relative to the control group (PC). Of the 71 DEGs, 10 genes were upregulated and 61 were downregulated. Most DEGs were either mitochondrial or extracellular matrix (ECM)-related. Gene Ontology (GO) analysis was then performed using the DEGs from the P-PBM vs. PC group. Within biological processes there were 95 terms found (p < 0.05); in the molecular function there were 18 terms found (p < 0.05); while in the cellular component there were 32 terms enriched (p < 0.05). A KEGG pathways analysis was performed for the DEGs found in the P-PBM vs. PC group. This revealed 21 significantly enriched pathways (p < 0.05). Finally, there were 24 significantly enriched reactome pathways when comparing the DEGs of the P-PBM vs. PC groups (p < 0.05). DISCUSSION AND CONCLUSIONS The P-PBM DEGs were almost always down regulated compared to the comparator groups. This may be explained by the P-PBM treatment conditions decreasing the amount of cellular stress, hence causing a decreased mitochondria and ECM protective response. Alternatively, it could point to an alternate mechanism, outside the mitochondria, by which PBM exerts its effects. Additionally, PBM appears to have a more widespread effect on the mitochondria than previously thought, opening up many new avenues of investigation in the process.
Collapse
Affiliation(s)
- Nicholas Tripodi
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia; First Year College, Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, The University of Melbourne and Western Health, St. Albans, VIC, Australia
| | - Fotios Sidiroglou
- First Year College, Victoria University, Melbourne, VIC, Australia; Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, The University of Melbourne and Western Health, St. Albans, VIC, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
10
|
Carroll JD. Photobiomodulation Literature Watch September 2022. Photobiomodul Photomed Laser Surg 2023; 41:88-89. [PMID: 36780571 DOI: 10.1089/photob.2022.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
|