1
|
Virág ÁD, Tóth C, Polyák P, Musioł M, Molnár K. Tailoring the mechanical and rheological properties of poly(lactic acid) by sterilizing UV-C irradiation. Int J Biol Macromol 2024; 277:134247. [PMID: 39142990 DOI: 10.1016/j.ijbiomac.2024.134247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024]
Abstract
In this study, we irradiated amorphous (A) and semi-crystalline (SC) poly(lactic acid) (PLA) with different UV-C doses up to 2214 kJ/m2. We achieved an average crystallinity of 43 % by heat treatment, which was unaffected by UV-C irradiation. Modulated differential scanning calorimetry showed that crystal polymorphs and the ratio of rigid amorphous and mobile amorphous phases were also unaffected. Using gel permeation chromatography analysis, we showed that the degradation mechanism was noncatalytic random scission, and the initial molar mass was reduced by >90 % at a dose of 2214 kJ/m2 for both A- and SC-PLA samples. Our Raman spectroscopy results indicated that the probability of the formation of oxygen-containing groups increases with increasing UV-C doses. Since we found that the mechanical properties of PLA films can be tailored with UV-C light, we proposed a method to predict the overall tensile curve as a function of the UV-C dose. We also proposed a modified Cross-WLF model to describe the effect of UV-C irradiation on viscosity up to 55 % molar mass reduction. The models allow us to estimate the limits of recyclability and reusability of sterilised PLA products.
Collapse
Affiliation(s)
- Ábris Dávid Virág
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3. H-1111 Budapest, Hungary.
| | - Csenge Tóth
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3. H-1111 Budapest, Hungary; MTA-BME Lendület Lightweight Polymer Composites Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| | - Péter Polyák
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, 1680 Madison Avenue, 44691 Wooster, OH, USA; Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3. H-1111 Budapest, Hungary.
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowska St, 41-819 Zabrze, Poland.
| | - Kolos Molnár
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3. H-1111 Budapest, Hungary; HUN-REN-BME Research Group for Composite Science and Technology, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| |
Collapse
|
2
|
Lomakin S, Mikheev Y, Usachev S, Rogovina S, Zhorina L, Perepelitsina E, Levina I, Kuznetsova O, Shilkina N, Iordanskii A, Berlin A. Evaluation and Modeling of Polylactide Photodegradation under Ultraviolet Irradiation: Bio-Based Polyester Photolysis Mechanism. Polymers (Basel) 2024; 16:985. [PMID: 38611243 PMCID: PMC11013448 DOI: 10.3390/polym16070985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
In our study, we investigated the accelerated aging process of PLA under 253.7 nm UV-C irradiation with the use of the GPC, NMR, FTIR, and DSC methods and formal kinetic analysis. The results of GPC and DSC indicated a significant degree of destructive changes in the PLA macromolecules, while spectroscopic methods NMR and FTIR showed maintenance of the PLA main structural elements even after a long time of UV exposure. In addition to that, the GPC method displayed the formation of a high molecular weight fraction starting from 24 h of irradiation, and an increase in its content after 144 h of irradiation. It has been shown for the first time that a distinctive feature of prolonged UV exposure is the occurrence of intra- and intermolecular radical recombination reactions, leading to the formation of a high molecular weight fraction of PLA decomposition products. This causes the observed slowdown of the photolysis process. It was concluded that photolysis of PLA is a complex physicochemical process, the mechanism of which depends on morphological changes in the solid phase of the polymer under UV radiation.
Collapse
Affiliation(s)
- Sergey Lomakin
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (S.U.); (S.R.); (L.Z.); (O.K.); (N.S.); (A.B.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (Y.M.); (I.L.)
| | - Yurii Mikheev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (Y.M.); (I.L.)
| | - Sergey Usachev
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (S.U.); (S.R.); (L.Z.); (O.K.); (N.S.); (A.B.)
| | - Svetlana Rogovina
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (S.U.); (S.R.); (L.Z.); (O.K.); (N.S.); (A.B.)
| | - Lubov Zhorina
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (S.U.); (S.R.); (L.Z.); (O.K.); (N.S.); (A.B.)
| | - Evgeniya Perepelitsina
- Federal State Research Center for Chemical Physics and Medical Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Irina Levina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (Y.M.); (I.L.)
| | - Olga Kuznetsova
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (S.U.); (S.R.); (L.Z.); (O.K.); (N.S.); (A.B.)
| | - Natalia Shilkina
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (S.U.); (S.R.); (L.Z.); (O.K.); (N.S.); (A.B.)
| | - Alexey Iordanskii
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (S.U.); (S.R.); (L.Z.); (O.K.); (N.S.); (A.B.)
| | - Alexander Berlin
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (S.U.); (S.R.); (L.Z.); (O.K.); (N.S.); (A.B.)
| |
Collapse
|
3
|
Szatkowski P, Gralewski J, Suchorowiec K, Kosowska K, Mielan B, Kisilewicz M. Aging Process of Biocomposites with the PLA Matrix Modified with Different Types of Cellulose. MATERIALS (BASEL, SWITZERLAND) 2023; 17:22. [PMID: 38203876 PMCID: PMC10779789 DOI: 10.3390/ma17010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
In the modern world, many products are disposable or have a very short lifespan, while at the same time, those products are made from materials that will remain in the environment in the form of waste for hundreds or even thousands of years. It is a serious problem; non-biodegradable polymer wastes are part of environmental pollution and generate microplastics, which accumulate in the organisms of living beings. One of the proposed solutions is biodegradable polymers and their composites. In our work, three types of polylactide-based composites with plant-derived fillers: microcellulose powder, short flax fibers, and wood flour at 2 wt.% were prepared. Poly(lactic acid) (PLA)-based biocomposite properties were characterized in terms of mechanical and surface properties together with microscopic analysis and Fourier-transform infrared spectroscopy (FTIR), before and after a UV (ultraviolet)-light-aging process to determine the effects of each cellulose-based additive on the UV-induced degradation process. This research shows that the addition of a cellulose additive can improve the properties of the material in terms of the UV-aging process, but the form of the chosen cellulose form plays a crucial role in this case. The testing of physicochemical properties demonstrated that not only can mechanical properties be improved, but also the time of degradation under UV light exposure can be controlled by the proper selection of the reinforcing phase and the parameters of the extrusion and injection molding process. The obtained results turned out to be very interesting, not only in terms of the cost reduction of the biocomposites themselves, as mainly the waste from the wood industry was used as a low-cost filler, but also that the additive delays the aging process occurring during UV light exposure. Even a small, 2 wt.% addition of some of the tested forms of cellulose delayed surface degradation, which is one of the most important factors affecting the biodegradation process.
Collapse
Affiliation(s)
- Piotr Szatkowski
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Jacek Gralewski
- Institute of Marketing and Sustainable Development, Lodz University of Technology, 93-590 Lodz, Poland;
| | - Katarzyna Suchorowiec
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Karolina Kosowska
- Solaris National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland;
| | - Bartosz Mielan
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland;
| | - Michał Kisilewicz
- Technology Transfer Center, University of Applied Sciences in Tarnow, Ul. Mickiewicza 8, 33-100 Tarnow, Poland;
| |
Collapse
|
4
|
Virág ÁD, Tóth C, Molnár K. Photodegradation of polylactic acid: Characterisation of glassy and melt behaviour as a function of molecular weight. Int J Biol Macromol 2023; 252:126336. [PMID: 37586636 DOI: 10.1016/j.ijbiomac.2023.126336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
During the COVID-19 pandemic, UV-C germicidal lamps became widely available, even for household applications. However, their long-term degradation effects on the mechanical and rheological properties of polylactic acid (PLA) are still not well established. The relationship between degradation and its effects on the molecular structure and macroscale properties are hardly known. In this study, we investigated the effects of long-term exposure to UV-C irradiation on the properties of PLA and interpreted the results at the molecular scale. We performed gel permeation chromatography, Fourier-transform infrared spectroscopy and UV-Vis spectroscopy to analyse changes in chemical structure induced by the UV-irradiation. Then, we carried out thermal, rheological and tensile tests to investigate mechanical and melting properties, and we investigated the applicability of these test results to estimate molecular weight loss. We have created a 3D irradiation map that can facilitate the design of disinfection devices. Based on our results, we propose a maximum number of sterilisation cycles (13 cycles) for the tested PLA films that do not result in significant changes in tensile strength and modulus.
Collapse
Affiliation(s)
- Ábris Dávid Virág
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3. H-1111 Budapest, Hungary.
| | - Csenge Tóth
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3. H-1111 Budapest, Hungary.
| | - Kolos Molnár
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3. H-1111 Budapest, Hungary; ELKH-BME Research Group for Composite Science and Technology, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| |
Collapse
|
5
|
Tian R, Li K, Lin Y, Lu C, Duan X. Characterization Techniques of Polymer Aging: From Beginning to End. Chem Rev 2023; 123:3007-3088. [PMID: 36802560 DOI: 10.1021/acs.chemrev.2c00750] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Polymers have been widely applied in various fields in the daily routines and the manufacturing. Despite the awareness of the aggressive and inevitable aging for the polymers, it still remains a challenge to choose an appropriate characterization strategy for evaluating the aging behaviors. The difficulties lie in the fact that the polymer features from the different aging stages require different characterization methods. In this review, we present an overview of the characterization strategies preferable for the initial, accelerated, and late stages during polymer aging. The optimum strategies have been discussed to characterize the generation of radicals, variation of functional groups, substantial chain scission, formation of low-molecular products, and deterioration in the polymers' macro-performances. In view of the advantages and the limitations of these characterization techniques, their utilization in a strategic approach is considered. In addition, we highlight the structure-property relationship for the aged polymers and provide available guidance for lifetime prediction. This review could allow the readers to be knowledgeable of the features for the polymers in the different aging stages and provide access to choose the optimum characterization techniques. We believe that this review will attract the communities dedicated to materials science and chemistry.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Araujo S, Sainlaud C, Delpouve N, Richaud E, Delbreilh L, Dargent E. Segmental Relaxation Dynamics in Amorphous Polylactide Exposed to UV Light. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Steven Araujo
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux Rouen 76000 France
| | - Chloé Sainlaud
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux Rouen 76000 France
| | - Nicolas Delpouve
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux Rouen 76000 France
| | - Emmanuel Richaud
- Laboratoire PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM Université, 151 boulevard de l'Hopital Paris 75013 France
| | - Laurent Delbreilh
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux Rouen 76000 France
| | - Eric Dargent
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux Rouen 76000 France
| |
Collapse
|
7
|
New way to obtain the poly(L-lactide-co-D,L-lactide) blend filled with nanohydroxyapatite as biomaterial for 3D-printed bone-reconstruction implants. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Richert A, Olewnik-Kruszkowska E, Dąbrowska GB, Dąbrowski HP. The Role of Birch Tar in Changing the Physicochemical and Biocidal Properties of Polylactide-Based Films. Int J Mol Sci 2021; 23:ijms23010268. [PMID: 35008694 PMCID: PMC8745625 DOI: 10.3390/ijms23010268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to produce bactericidal polymer films containing birch tar (BT). The produced polymer films contain PLA, plasticiser PEG (5% wt.) and birch tar (1, 5 and 10% wt.). Compared to plasticised PLA, films with BT were characterised by reduced elongation at break and reduced water vapour permeability, which was the lowest in the case of film with 10% wt. BT content. Changes in the morphology of the produced materials were observed by performing scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis; the addition of BT caused the surface of the film to be non-uniform and to contain recesses. FTIR analysis of plasticised PLA/BT films showed that the addition of birch tar did not change the crystallinity of the obtained materials. According to ISO 22196: 2011, the PLA film with 10% wt. BT content showed the highest antibacterial effect against the plant pathogens A. tumefaciens, X. campestris, P. brassicacearum, P. corrugata, P. syringae. It was found that the introduction of birch tar to plasticised PLA leads to a material with biocidal effect and favourable physicochemical and structural properties, which classifies this material for agricultural and horticultural applications.
Collapse
Affiliation(s)
- Agnieszka Richert
- Department of Genetics, Faculty of Biology and Veterinary Science, Nicolaus Copernicus University in Toruń, 87-100 Torun, Poland;
- Correspondence: ; Tel.: +48-566114576
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Torun, Poland;
| | - Grażyna B. Dąbrowska
- Department of Genetics, Faculty of Biology and Veterinary Science, Nicolaus Copernicus University in Toruń, 87-100 Torun, Poland;
| | - Henryk P. Dąbrowski
- Laboratory of Dendrochronology, Archaeological Museum in Biskupin, 88-410 Gasawa, Poland;
| |
Collapse
|
9
|
Grabska-Zielińska S, Gierszewska M, Olewnik-Kruszkowska E, Bouaziz M. Polylactide Films with the Addition of Olive Leaf Extract-Physico-Chemical Characterization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7623. [PMID: 34947221 PMCID: PMC8706180 DOI: 10.3390/ma14247623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
The aim of this work was to obtain and characterize polylactide films (PLA) with the addition of poly(ethylene glycol) (PEG) as a plasticizer and chloroformic olive leaf extract (OLE). The composition of OLE was characterized by LC-MS/MS techniques. The films with the potential for using in the food packaging industry were prepared using a solvent evaporation method. The total content of the phenolic compounds and DPPH radical scavenging assay of all the obtained materials have been tested. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (FTIR-ATR) allows for determining the molecular structure, while Scanning Electron Microscopy (SEM) indicated differences in the films' surface morphology. Among other crucial properties, mechanical properties, thickness, degree of crystallinity, water vapor permeation rate (WVPR), and color change have also been evaluated. The results showed that OLE contains numerous active substances, including phenolic compounds, and PLA/PEG/OLE films are characterized by improved antioxidant properties. The OLE addition into PLA/PEG increases the material crystallinity, while the WVPR values remain almost unaffected. From these studies, significant insight was gained into the possibility of the application of chloroform as a solvent for both olive leaf extraction and for the preparation of OLE, PLA, and PEG-containing film-forming solutions. Finally, evaporation of the solvent from OLE can be omitted.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Mohamed Bouaziz
- Electrochemistry and Environmental Laboratory, National Engineering School of Sfax, University of Sfax, BP1173, Sfax 3038, Tunisia;
| |
Collapse
|
10
|
Photo-oxidative resistance and adjustable degradation of poly-lactic acid (PLA) obtained by biomass addition and interfacial construction. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Shi Y, Tan R, Yu C, Wan Y. Dextran-polylactide micelles loaded with doxorubicin and DiR for image-guided chemo-photothermal tumor therapy. Int J Biol Macromol 2021; 187:296-308. [PMID: 34310998 DOI: 10.1016/j.ijbiomac.2021.07.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/15/2022]
Abstract
Image-guided chemo-photothermal therapy based on near-infrared (NIR) theranostic agents has found promising applications in treating tumors. In this multimodal treatment, it is of critical importance to image real-time distribution of photothermal agents in vivo and to monitor therapeutic outcomes for implementing personalized treatment. In this study, an optimally synthesized dextran-polylactide (DEX-PLA) copolymer was assembled with doxorubicin (DOX) and DiR, a kind of NIR dye, to construct desirable micelles ((DiR + DOX)/DEX-PLA) for performing image-guided chemo-photothermal therapy. These (DiR + DOX)/DEX-PLA micelles had good physical and photothermal stability in aqueous media and showed high photothermal efficiency in vivo. Based on the H22-tumor-bearing mouse model, (DiR + DOX)/DEX-PLA micelles were found to accumulate inside tumors sustainably and to emit strong fluorescence signals for more than three days. The (DiR + DOX)@DEX-PLA micelles together with NIR laser irradiation were able to highly inhibit tumor growth or even eradicate tumors with one injection and two dose-designated 5-minute laser irradiations at the tumor site during 14 days of treatment. Furthermore, they showed almost no impairment to the body of the treated mice. These (DiR + DOX)@DEX-PLA micelles have confirmative translational potential in clinical tumor therapy on account of their persistent image-guided capacity, high antitumor efficacy and good in vivo safety.
Collapse
Affiliation(s)
- Yanmei Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ronghua Tan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chan Yu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
12
|
Dąbrowska GB, Garstecka Z, Olewnik-Kruszkowska E, Szczepańska G, Ostrowski M, Mierek-Adamska A. Comparative Study of Structural Changes of Polylactide and Poly(ethylene terephthalate) in the Presence of Trichoderma viride. Int J Mol Sci 2021; 22:ijms22073491. [PMID: 33800567 PMCID: PMC8038068 DOI: 10.3390/ijms22073491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Plastic pollution is one of the crucial global challenges nowadays, and biodegradation is a promising approach to manage plastic waste in an environment-friendly and cost-effective way. In this study we identified the strain of fungus Trichoderma viride GZ1, which was characterized by particularly high pectinolytic activity. Using differential scanning calorimetry, Fourier-transform infrared spectroscopy techniques, and viscosity measurements we showed that three-month incubation of polylactide and polyethylene terephthalate in the presence of the fungus lead to significant changes of the surface of polylactide. Further, to gain insight into molecular mechanisms underneath the biodegradation process, western blot hybridization was used to show that in the presence of poly(ethylene terephthalate) (PET) in laboratory conditions the fungus produced hydrophobin proteins. The mycelium adhered to the plastic surface, which was confirmed by scanning electron microscopy, possibly due to the presence of hydrophobins. Further, using atomic force microscopy we demonstrated for the first time the formation of hydrophobin film on the surface of aliphatic polylactide (PLA) and PET by T. viride GZ1. This is the first stage of research that will be continued under environmental conditions, potentially leading to a practical application.
Collapse
Affiliation(s)
- Grażyna B. Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (G.B.D.); (Z.G.)
| | - Zuzanna Garstecka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (G.B.D.); (Z.G.)
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Grażyna Szczepańska
- Laboratory for Instrumental Analysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Maciej Ostrowski
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (G.B.D.); (Z.G.)
- Correspondence: ; Tel.: +48-56-611-4576
| |
Collapse
|
13
|
Olewnik-Kruszkowska E, Gierszewska M, Richert A, Grabska-Zielińska S, Rudawska A, Bouaziz M. Antibacterial Films Based on Polylactide with the Addition of Quercetin and Poly(Ethylene Glycol). MATERIALS 2021; 14:ma14071643. [PMID: 33801625 PMCID: PMC8036468 DOI: 10.3390/ma14071643] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
A series of new films with antibacterial properties has been obtained by means of solvent casting method. Biodegradable materials including polylactide (PLA), quercetin (Q) acting as an antibacterial compound and polyethylene glycol (PEG) acting as a plasticizer have been used in the process. The effect of quercetin as well as the amount of PEG on the structural, thermal, mechanical and antibacterial properties of the obtained materials has been determined. It was found that an addition of quercetin significantly influences thermal stability. It should be stressed that samples containing the studied flavonoid are characterized by a higher Young modulus and elongation at break than materials consisting only of PLA and PEG. Moreover, the introduction of 1% of quercetin grants antibacterial properties to the new materials. Recorded results showed that the amount of plasticizer did not influence the antibacterial properties; it does, however, cause changes in physicochemical properties of the obtained materials. These results prove that quercetin could be used as an antibacterial compound and simultaneously improve mechanical and thermal properties of polylactide-based films.
Collapse
Affiliation(s)
- Ewa Olewnik-Kruszkowska
- Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland; (M.G.); (S.G.-Z.)
- Correspondence: ; Tel.: +48-56-611-2210
| | - Magdalena Gierszewska
- Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland; (M.G.); (S.G.-Z.)
| | - Agnieszka Richert
- Faculty of Biological and Veterinary Sciences, Chair of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1 Street, 87-100 Toruń, Poland;
| | - Sylwia Grabska-Zielińska
- Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland; (M.G.); (S.G.-Z.)
| | - Anna Rudawska
- Faculty of Mechanical Engineering, Department of Production Engineering, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Mohamed Bouaziz
- Electrochemistry and Environmental Laboratory, National Engineering School of Sfax, University of Sfax, BP1173, Sfax 3038, Tunisia;
| |
Collapse
|
14
|
Impact of Water and UV Irradiation on Nonwoven Polylactide/Natural Rubber Fiber. Polymers (Basel) 2021; 13:polym13030461. [PMID: 33572692 PMCID: PMC7866982 DOI: 10.3390/polym13030461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
A nonwoven fiber made of polylactide/natural rubber with a rubber content from 0 to 15 wt.% was obtained by electrospinning from a solution. The water sorption test showed that the addition of natural rubber into the polylactide matrix did not significantly affect the degree of water absorption of the fibers, which was in the range of 48.9-50.6%. The melt flow rate only increased by 0.5 g/10 min at a content of 15 wt.% natural rubber. The thermal characteristics after 120 days of degradation in distilled water and UV irradiation (50 h) at a wavelength of 365 nm were determined using differential scanning calorimetry. Changes in the values of the phase transition temperatures and the degree of crystallinity were determined. It was determined that the fiber samples from all compositions retained the propensity for photo- and hydrolytic degradation.
Collapse
|
15
|
Sun Y, Lee D, Wang Y, Li S, Ying J, Liu X, Xu G, Gwon J, Wu Q. Thermal decomposition behavior of
3D
printing filaments made of wood‐filled polylactic acid/starch blend. J Appl Polym Sci 2020. [DOI: 10.1002/app.49944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yufeng Sun
- Collaborative Innovation Center of Biomass Energy, College of Mechanical and Electrical Engineering Henan Agricultural University Zhengzhou China
- School of Renewable Natural Resources Louisiana State University AgCenter Baton Rouge Louisiana USA
| | - Danbee Lee
- School of Renewable Natural Resources Louisiana State University AgCenter Baton Rouge Louisiana USA
| | - Yapeng Wang
- Collaborative Innovation Center of Biomass Energy, College of Mechanical and Electrical Engineering Henan Agricultural University Zhengzhou China
| | - Suiliang Li
- Collaborative Innovation Center of Biomass Energy, College of Mechanical and Electrical Engineering Henan Agricultural University Zhengzhou China
| | - Jilai Ying
- Collaborative Innovation Center of Biomass Energy, College of Mechanical and Electrical Engineering Henan Agricultural University Zhengzhou China
| | - Xinping Liu
- Collaborative Innovation Center of Biomass Energy, College of Mechanical and Electrical Engineering Henan Agricultural University Zhengzhou China
| | - Guangyin Xu
- Collaborative Innovation Center of Biomass Energy, College of Mechanical and Electrical Engineering Henan Agricultural University Zhengzhou China
| | - Jaegyoung Gwon
- Forest products department National institute of Forest Science Seoul South Korea
| | - Qinglin Wu
- School of Renewable Natural Resources Louisiana State University AgCenter Baton Rouge Louisiana USA
| |
Collapse
|
16
|
González-López ME, Martín del Campo AS, Robledo-Ortíz JR, Arellano M, Pérez-Fonseca AA. Accelerated weathering of poly(lactic acid) and its biocomposites: A review. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Mysiukiewicz O, Barczewski M, Skórczewska K, Matykiewicz D. Correlation between Processing Parameters and Degradation of Different Polylactide Grades during Twin-Screw Extrusion. Polymers (Basel) 2020; 12:polym12061333. [PMID: 32545388 PMCID: PMC7362239 DOI: 10.3390/polym12061333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/16/2022] Open
Abstract
This article presents the effect of twin-screw extrusion processing parameters, including temperature and rotational speed of screws, on the structure and properties of four grades of polylactide (PLA). To evaluate the critical processing parameters for PLA and the possibilities for oxidative and thermomechanical degradation, Fourier-transform infrared spectroscopy (FT-IR), oscillatory rheological analysis, and differential scanning calorimetry (DSC) measurements were used. The influence of degradation induced by processing temperature and high shearing conditions on the quality of the biodegradable polyesters with different melt flow indexes (MFIs)was investigated by color analysis within the CIELab scale. The presented results indicate that considering the high-temperature processing of PLA, the high mass flow index and low viscosity of the polymer reduce its time of residence in the plastifying unit and therefore limit discoloration and reduction of molecular weight due to the degradation process during melt mixing, whereas the initial molecular weight of the polymer is not an essential factor.
Collapse
Affiliation(s)
- Olga Mysiukiewicz
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland;
- Correspondence: (O.M.); (M.B.); Tel.: +48-61-647-5858 (M.B.)
| | - Mateusz Barczewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland;
- Correspondence: (O.M.); (M.B.); Tel.: +48-61-647-5858 (M.B.)
| | - Katarzyna Skórczewska
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| | - Danuta Matykiewicz
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland;
| |
Collapse
|
18
|
Selected Functional Properties of Oxo-Degradable Materials Containing Antimicrobial Substances. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2018. [DOI: 10.2478/pjct-2018-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Polyethylene oxo-degradable composites containing antibacterial substances in the form of vegetable oils: geranium, clove and eucalyptus as well as a mixture of nanoAg with nanoCu were discussed. Antibacterial fi lm: PE-0, PE- 1A, PE-2B, PE-3C, PE-4D properties were verifi ed according to ISO 22196:2011 “Measurement of antibacterial activity on plastic and other non-porous surfaces” for the two standard bacteria species of E. coli and S. aureus, whereas water vapour permeability tests (Pv) were carried out acc. ISO 15106-2007 “Plastics. Foils and plates. Determination of water vapor transmission rate. Part 1: Humidity sensor method”. Film marked PE-4D showed the best antibacterial features and good barrier properties.
Collapse
|