1
|
Karagoz A, Savran T, Yilmaz I. A ″On-Off″ Fluorescent Sensor Based on Coumarin-Furoic Hydrazide for Recognition of Fe 3+: Drinking Water, Test Strip Applications and DFT Calculations. J Fluoresc 2025:10.1007/s10895-025-04212-2. [PMID: 40011367 DOI: 10.1007/s10895-025-04212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
A coumarin based fluorescent probe (E)-N'-((7-hydroxy-2-oxo-2H-chromon-3-yl)methylene)furan-2-carbohydrazide (CFHZ) was synthesized for the detection of Fe3+ and its characterizations were carried out using spectroscopic methods such as FT-IR, mass spectrometry1H-NMR, 13C-NMR. The novel probe CFHZ showed a highly selective and sensitive "turn-off" response to Fe3+ ion without any interference from other analytes. Strong fuorescence quenching phenomena of the CFHZ were observed in EtOH:H2O (99/1, v/v) detection system (λem = 470 nm) upon the additions of Fe3+. The binding stoichiometry between CFHZ and Fe3+ was determined by Job's method, FT-IR and MALDI TOF-MS and found to be 2:1. Also, the binding constant was determined to be 1.82 × 105 M-1 and the limits of detection for the analysis of Fe3+ was measured as 25.7 nM. Besides, experimental applications were carried out for real-time monitoring of Fe3+ in water samples using developed sensor. Additionally, fluorescence imaging experiments for Fe3+ detection of CFHZ probe on test papers were successfully performed.
Collapse
Affiliation(s)
- Abdurrahman Karagoz
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Türkiye
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Türkiye
| | - Tahir Savran
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Türkiye.
| | - Ibrahim Yilmaz
- Department of Mathematics and Science Education, Faculty of Education, Bolu Abant Izzet Baysal University, 14030, Bolu, Türkiye.
- Innovative Food Technologies Development Application and Research Centre, Bolu Abant Izzet Baysal University, 14030, Bolu, Türkiye.
| |
Collapse
|
2
|
Murugaperumal P, Nallathambi S. A comprehensive review on colorimetric and fluorometric investigations of dual sensing chemosensors for Cu 2+ and Fe 3+ ions from the year 2017 to 2023. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125193. [PMID: 39340942 DOI: 10.1016/j.saa.2024.125193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Dual sensing chemosensors for copper(II) and iron(III) ions are molecules or compounds designed to selectively detect and differentiate between these specific metal ions. Because metal ions like copper(II) and iron(III) are essential to so many industrial, biological, and environmental processes, their detection and measurement have become increasingly important. In this work, a novel dual-sensing chemosensor that combines high selectivity and sensitivity is presented. It is intended to detect copper(II) (Cu2+) and iron (III)(Fe3+) ions concurrently. The chemosensor combines two different recognition components into one platform and achieves dual-mode detection by combining optical and electrochemical sensing approaches. Using a dual sensing chemosensors for two cations can save money and time compared to preparing two separate chemosensors to sense each of those cations separately. We often use various techniques, including spectroscopy, fluorescence, and electrochemistry, to monitor and measure the changes induced by the interaction between the chemosensors and the metal ions. Discussions have been held on the excitation and emission wavelengths, media used in the spectroscopic measurements, binding constant with coordination binding mode, detection mechanism, and detection limit (LOD). This extensive review paper investigates colorimetric and fluorometric dual sensing analysis for Cu2+ and Fe3+ ions which includes more than sixty papers from the year of 2017 to 2023.
Collapse
Affiliation(s)
| | - Sengottuvelan Nallathambi
- Department of Chemistry, Centre for Distance and Online Education (CDOE), Alagappa University, Karaikudi 630003, India.
| |
Collapse
|
3
|
Nazarian R, Darabi HR, Aghapoor K, Sayahi H, Mohsenzadeh F, Atasbili L. Fast, Selective and Sensitive Fluorescence Detection of Levofloxacin, Fe 3+ and Cu 2+ Ions in 100% Aqueous Solution Via Their Reciprocal Recognition. J Fluoresc 2024; 34:1279-1290. [PMID: 37526872 DOI: 10.1007/s10895-023-03362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
The fluorescence detection of ions and pharmaceutical effluents by using organic chemosensors is a valuable surrogate to the currently existing expensive analytical methods. In this regard, the design of multi-functional chemosensors to recognize desirable guests is of utmost importance. In this study, we first show that levofloxacin (LVO) is able to use as a fluorescent chemosensor for the detection of biologically important Cu2+ (turn-off) and Fe3+ (turn-on) ions via independent signal outputs in 100% aqueous buffer solutions. Next, using the reciprocal recognition of LVO and Fe3+ provides a unique emission pattern for the detection of LVO. This approach exhibited a high specificity to LVO among various pharmaceutical samples, namely acetaminophen (AC), azithromycin (AZ), gemifloxacin (GEM) and ciprofloxacin (CIP) and also showed great anti-interference property in urine. The attractive features of this sensing system are availability, easy-to-use, high sensitivity (limit of detection = 18 nM for Cu2+, 22 nM for Fe3+ and 0.12 nM for LVO), rapid response (5 s) with an excellent selectivity.
Collapse
Affiliation(s)
- Ramo Nazarian
- Nano & Organic Synthesis Lab, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran, 14968-13151, Iran
| | - Hossein Reza Darabi
- Nano & Organic Synthesis Lab, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran, 14968-13151, Iran.
| | - Kioumars Aghapoor
- Nano & Organic Synthesis Lab, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran, 14968-13151, Iran
| | - Hani Sayahi
- Nano & Organic Synthesis Lab, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran, 14968-13151, Iran
| | - Farshid Mohsenzadeh
- Nano & Organic Synthesis Lab, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran, 14968-13151, Iran
| | - Leila Atasbili
- Nano & Organic Synthesis Lab, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran, 14968-13151, Iran
| |
Collapse
|
4
|
Stîngă G, Băran A, Iovescu A, Maxim ME, Anghel DF. Metal ions recognition by pyrene labeled poly(acrylic acid). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Aggarwal R, Hooda M, Kumar P, Jain N, Dubey GP, Chugh H, Chandra R. Visible-Light-Prompted Synthesis and Binding Studies of 5,6-Dihydroimidazo[2,1- b]thiazoles with BSA and DNA Using Biophysical and Computational Methods. J Org Chem 2022; 87:3952-3966. [PMID: 35235320 DOI: 10.1021/acs.joc.1c02471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fused heterocyclic systems containing a bridgehead nitrogen atom have emerged as imperative pharmacophores in the design and development of new drugs. Among these heterocyclic moieties, the imidazothiazole scaffold has long been used in medicinal chemistry for the treatment of various diseases. In this study, we have established a simplistic and environmentally safe regioselective protocol for the synthesis of 5,6-dihydroimidazo[2,1-b]thiazole derivatives from easily available reactants. The reaction proceeds through in situ formation of the α-bromodiketones ensuing trap with imidazolidine-2-thione to provide these versatile bicyclic heterocycles in excellent yields. The synthesized compounds were screened through the molecular docking approach for the most stable complex formation with bovine serum albumin (BSA) and calf thymus deoxyribonucleic acid (ctDNA). The selected compound was further studied using ex vivo binding studies, which revealed moderate interactions with BSA and ctDNA. The binding studies were performed using biophysical approaches including UV-visible spectroscopy, steady-state fluorescence, circular dichroism (CD), and viscosity parameters.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.,CSIR-National Institute of Science Communication and Policy Research, New Delhi 110012, India
| | - Mona Hooda
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Gyan Prakash Dubey
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Heerak Chugh
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| |
Collapse
|
6
|
Karuk Elmas SN, Aydin D, Savran T, Caliskan E, Koran K, Arslan FN, Sadi G, Gorgulu AO, Yilmaz I. A Fluorene based Fluorogenic ''Turn-off'' Chemosensor for the Recognition
of Cu2+ and Fe2+: Computational Modeling and Living-cell Application. CURR ANAL CHEM 2022. [DOI: 10.2174/1871520621666210322112005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The traditional methods for the detection and quantification of Cu2+ and Fe3+
heavy metal ions are usually troublesome in terms of high-cost, non-portable, time-consuming, specialized
personnel and complicated tools, so their applications in practical analyses is limited. Therefore,
the development of cheap, fast and simple-use techniques/instruments with high sensitivity/selectivity
for the detection of heavy metal ions is highly demanded and studied.
Methods:
In this study, a fluorene-based fluorescent 'turn-off' sensor, methyl 2-(2-((((9H-fluoren-9-
yl)methoxy)carbonyl)amino)-3- phenylpropanamido) acetate (probe FLPG) was synthesized via onepot
reaction and characterized by 1H-NMR, 13C-APT-NMR, HETCOR, ATR-FTIR and elemental
analysis in detailed. All emission spectral studies of the probe FLPG have been performed in
CH3CN/HEPES (9/1, v/v, pH=7.4) media at rt. The quantum (Φ) yield of probe FLPG decreased considerably
in the presence of Cu2+ and Fe3+. The theoretical computation of probe FLPG and its complexes
were also performed using density functional theory (DFT). Furthermore, bio-imaging experiments
of the probe FLPG was successfully carried out for Cu2+ and Fe3+ monitoring in living-cells.
Results:
The probe FLPG could sense Cu2+ and Fe3+ with high selectivity and sensitivity, and quantitative
correlations (R2>0.9000) between the Cu2+/Fe3+ concentrations (0.0−10.0 equiv). The limits of detection
for Cu2+ and Fe3+ were found as 25.07 nM and 37.80 nM, respectively. The fluorescence
quenching in the sensor is managed by ligand-to-metal charge transfer (LMCT) mechanism. Job’s plot
was used to determine the binding stoichiometry (1:2) of the probe FLPG towards Cu2+ and Fe3+. The
binding constants with strongly interacting Cu2+ and Fe3+ were determined as 4.56×108 M-2 and
2.02×1010 M-2, respectively, via the fluorescence titration experiments. The outcomes of the computational
study supported the fluorescence data. Moreover, the practical application of the probe FLPG
was successfully performed for living cells.
Conclusion:
This simple chemosensor system offers a highly selective and sensitive sensing platform
for the routine detection of Cu2+ and Fe3+, and it keeps away from the usage of costly and sophisticated
analysis systems.
Collapse
Affiliation(s)
- Sukriye Nihan Karuk Elmas
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Duygu Aydin
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Tahir Savran
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Eray Caliskan
- Department of Chemistry, Science Faculty, Bingol University, Bingol, Turkey
| | - Kenan Koran
- Department of Chemistry, Faculty
of Science, Firat University, Elazig, Turkey
| | - Fatma Nur Arslan
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Gokhan Sadi
- Department of Biology, Kamil Ozdag Science Faculty, Karamanoglu
Mehmetbey University, Karaman, Turkey
| | - Ahmet Orhan Gorgulu
- Department of Chemistry, Faculty
of Science, Firat University, Elazig, Turkey
| | - Ibrahim Yilmaz
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
7
|
Petdum A, Kaewnok N, Panchan W, Sahasithiwat S, Sooksimuang T, Sirirak J, Chaiyaveij D, Wanichacheva N. New aza[5]helicene derivative for selective Fe(III) fluorescence sensing in aqueous media and its application in water samples. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Aggarwal R, Jain N, Sharma S, Kumar P, Dubey GP, Chugh H, Chandra R. Visible-light driven regioselective synthesis, characterization and binding studies of 2-aroyl-3-methyl-6,7-dihydro-5H-thiazolo[3,2-a]pyrimidines with DNA and BSA using biophysical and computational techniques. Sci Rep 2021; 11:22135. [PMID: 34764313 PMCID: PMC8586366 DOI: 10.1038/s41598-021-01037-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
In recent times, fused azaheterocycles emerged as impressive therapeutic agents. Binding studies of such azaheterocycles with biomolecules is an important subject for pharmaceutical and biochemical studies aiming at the design and development of new drugs. Fused heterocyclic scaffolds, such as thiazolopyrmidines have long been used in the pharmaceutical industry for the treatment of various diseases. In this study, we have accomplished a regioselective synthesis of 2-aroyl-3-methyl-6,7-dihydro-5H-thiazolo[3,2-a]pyrimidines by the reaction of tetrahydropyrimidine-2(H)-thione with α-bromo-1,3-diketones, generated in situ from 1,3-diketones and NBS, using visible light as an inexpensive, green and renewable energy source under mild reaction conditions with wide-ranging substrate scope. The regioisomer was characterized unambiguously by 2D-NMR [1H-13C] HMBC and [1H-13C] HMQC spectroscopy. In silico toxicity data analysis showed the low toxicity risks of the synthesized compounds. Computational molecular docking studies were carried out to examine the interaction of thiazolo[3,2-a]pyrimidines with calf-thymus DNA (ct-DNA) and Bovine Serum Albumin (BSA). Moreover, different spectroscopic approaches viz. steady-state fluorescence, competitive displacement assay, UV-visible and circular dichroism (CD) along with viscosity measurements were employed to investigate the binding mechanisms of thiazolo[3,2-a]pyrimidines with DNA and BSA. The results thus obtained revealed that thiazolo[3,2-a]pyrimidines offer groove bindings with DNA and showed moderate bindings with BSA.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
- Council of Scientific and Industrial Research, National Institute of Science Communication and Policy Research, New Delhi, 110012, India.
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Shilpa Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gyan Prakash Dubey
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Heerak Chugh
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| |
Collapse
|
9
|
Zhang YP, Teng Q, Yang YS, Guo HC, Xue JJ. A novel coumarin-based pyrazoline fluorescent probe for detection of Fe3+ and its application in cells. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Sharma S, Ghosh KS. Overview on recently reported fluorometric sensors for the detection of copper ion based on internal charge transfer (ICT), paramagnetic effect and aggregation induced emission (AIE) mechanisms. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Aleem AR, Ding W, Liu J, Li T, Guo Y, Wang Q, Wang Y, Wang Y, Rehman FUL, Kipper MJ, Belfiore LA, Tang J. Visible-light excitable Eu 3+-induced hyaluronic acid-chitosan aggregates with heterocyclic ligands for sensitive and fast recognition of hazardous ions. Int J Biol Macromol 2021; 184:188-199. [PMID: 34119544 DOI: 10.1016/j.ijbiomac.2021.06.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/16/2023]
Abstract
Water-soluble luminescent lanthanide complexes that can be excited with visible light could enable rapid detection of toxic anions and cations in biological systems. Eu3+-induced hyaluronic acid-chitosan aggregates (EIHCA) can improve the stability, biocompatibility, efficiency, and light absorption of luminescent Eu3+ complexes. Visible-range excitation may avoid phototoxicity associated with overexposure to UV light in biological and ecological applications. In this work, we synthesized and characterized series of EIHCA complexes having three N-donor heterocyclic ligands: 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Dphen), 2,2': 6',2″-terpyridine (Tpy) and 1,10-phenanthroline monohydrate (Phen). These complexes possessed bright red fluorescence with a visible range excitation maximum. The photophysical properties of one formulation (we denote as EDL6) include fast quenching response (20 s) of the fluorescence, multi-selectivity, low limit of detection, and high quenching (Ksv) values, enabling selective, rapid and sensitive recognition of Cr2O72- and Fe3+ in aqueous solution. Furthermore, EDL6 exhibits cytocompatibility with mammalian cells that make these complexes promising biocompatible candidate as a safe replacement of organic fluorophores for fluorescence sensing applications. Thus, these new EIHCA complexes were successfully employed for the selective detection of hazardous materials in biological and aqueous environment samples.
Collapse
Affiliation(s)
- Abdur Raheem Aleem
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Wei Ding
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jin Liu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Taisen Li
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaowei Guo
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qian Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Faisal U L Rehman
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Laurence A Belfiore
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
12
|
|
13
|
Lal S, Prakash K, Hooda S, Kumar V, Kumar P. Ibuprofen-based chemosensor for efficient binding and sensing of Cu2+ ion in aqueous medium. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Chugh H, Kumar P, Tomar V, Kaur N, Sood D, Chandra R. Interaction of noscapine with human serum albumin (HSA): A spectroscopic and molecular modelling approach. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|