1
|
Khiar H, Janani FZ, Sadiq M, Mansouri S, Puga A, Barka N. Effect of indium (III) doping on Ag 3PO 4 catalyst stabilization and its visible light photocatalytic activity toward toxic dyes in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100785-100798. [PMID: 37640975 DOI: 10.1007/s11356-023-29429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Indium(III)-doped Ag3PO4 (In-AgP) catalysts at different weight percentages were elaborated by co-precipitation and subjected to XRD, SEM, UV-vis DRS, and FTIR characterization. The prepared catalysts were of spherical morphology and their diameters depends on doping dosage. The whole materials crystallize in a centered cubic system with a slight dissimilation in the positions of the characteristic peaks as a function of indium dosage. The photocatalytic performance of the catalysts under visible light was investigated in the photocatalytic degradation of anionic dye (methyl orange (MO)) and cationic dye (auramine O (AO)) in moderate acid, neutral, and basic pH conditions. Results showed more selectivity to MO than AO. Furthermore, indium-doped samples are more active in the acidic medium than the pure Ag3PO4 (AgP), and 10%In-AgP catalyst presents the highest activity. The degradation efficiency reached 99 % in 60 min for MO and in 180 min for AO. In addition, a high recycling stability was achieved and the catalyst retains its degradation capacity above 99 % after five cycles.
Collapse
Affiliation(s)
- Habiba Khiar
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, 145, 2500, Khouribga, BP, Morocco
| | - Fatima Zahra Janani
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, 145, 2500, Khouribga, BP, Morocco
| | - M'hamed Sadiq
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, 145, 2500, Khouribga, BP, Morocco
| | - Said Mansouri
- Materials Science Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Alberto Puga
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda dels Països Catalans, 26, 43007, Tarragona, Spain
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, 145, 2500, Khouribga, BP, Morocco.
| |
Collapse
|
3
|
El-Sayed F, Hussien MSA, Mohammed MI, Ganesh V, AlAbdulaal TH, Zahran HY, Yahia IS, Hegazy HH, Abdel-wahab MS, Shkir M, Valarasu S, Ibrahim MA. The Photocatalytic Performance of Nd 2O 3 Doped CuO Nanoparticles with Enhanced Methylene Blue Degradation: Synthesis, Characterization and Comparative Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1060. [PMID: 35407178 PMCID: PMC9000884 DOI: 10.3390/nano12071060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023]
Abstract
The growth of the textile industry results in a massive accumulation of dyes on water. This enormous rise in pigments is the primary source of water pollution, affecting the aquatic lives and our ecosystem balance. This study aims to notify the fabrication of neodymium incorporated copper oxide (Nd2O3 doped CuO) nanoparticles by combustion method for effective degradation of dye, methylene blue (MB). X-ray diffraction (XRD), Field emission Scanning electron microscopy (FESEM), Zeta potential have been applied for characterization. Photocatalyst validity has been evaluated for methylene blue degradation (MB). Test conditions such as time of contact, H2O2, pH, and photo-Fenton have been modified to identify optimal degradation conditions. Noticeably, 7.5% Nd2O3 doped CuO nanoparticle demonstrated the highest photocatalytic efficiency, up to 90.8% in 80 min, with a 0.0227 min-1 degradation rate. However, the photocatalytic efficiency at pH 10 becomes 99% with a rate constant of 0.082 min-1. Cyclic experiments showed the Nd2O3 doped CuO nanoparticle's stability over repeated use. Scavenge hydroxyl radical species responsible for degradation using 7.5% Nd2O3 doped CuO nanoparticles have been investigated under visible irradiation.
Collapse
Affiliation(s)
- Fatma El-Sayed
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Metallurgical Lab.1, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt; (F.E.-S.); (M.S.A.H.); (M.I.M.)
| | - Mai S. A. Hussien
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Metallurgical Lab.1, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt; (F.E.-S.); (M.S.A.H.); (M.I.M.)
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
| | - Mervat I. Mohammed
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Metallurgical Lab.1, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt; (F.E.-S.); (M.S.A.H.); (M.I.M.)
| | - Vanga Ganesh
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (T.H.A.); (H.Y.Z.); (I.S.Y.); (H.H.H.); (M.S.)
| | - Thekrayat H. AlAbdulaal
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (T.H.A.); (H.Y.Z.); (I.S.Y.); (H.H.H.); (M.S.)
| | - Heba Y. Zahran
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (T.H.A.); (H.Y.Z.); (I.S.Y.); (H.H.H.); (M.S.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Semiconductor Laboratory, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
| | - Ibrahim S. Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (T.H.A.); (H.Y.Z.); (I.S.Y.); (H.H.H.); (M.S.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Semiconductor Laboratory, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
| | - Hosam H. Hegazy
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (T.H.A.); (H.Y.Z.); (I.S.Y.); (H.H.H.); (M.S.)
- Department of Physics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed Sh. Abdel-wahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni–Suef University, Beni–Suef 62511, Egypt;
| | - Mohd. Shkir
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (T.H.A.); (H.Y.Z.); (I.S.Y.); (H.H.H.); (M.S.)
| | - Santiyagu Valarasu
- PG and Research Department of Physics, Arul Anandar College, Madurai 625514, India;
| | - Medhat A. Ibrahim
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo 11837, Egypt;
- Molecular Spectroscopy and Modeling Unit, Spectroscopy Department, National Research Centre, 33 El-Bohouth Street, Giza 12622, Egypt
| |
Collapse
|
6
|
Hussien MSA, Mohammed MI, Yahia IS. Flexible photocatalytic membrane based on CdS/PMMA polymeric nanocomposite films: multifunctional materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45225-45237. [PMID: 32783181 DOI: 10.1007/s11356-020-10305-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
In this study, poly(methyl methacrylate) with different doping nano-cadmium sulfide (CdS/PMMA) is prepared and characterized. CdS/PMMA polymeric nanocomposite films were synthesized using solution casting methodology. SEM and XRD are used for structure analysis for the studied nanocomposite films. XRD revealed the amorphous domains of PMMA polymer, which increased with increasing CdS nanoparticle contents. SEM revealed the CdS dispersion within the PMMA matrix. CdS nanoparticles in the PMMA matrix are expected to be aggregated due to the casting technique. The optical energy gap is found to be decreased after the CdS addition. ε' and ε″ have the same behavior with the applied frequency. Maxwell-Wagner interfacial polarization is the responsible factor for higher values of ε'-ε″ at the higher frequencies. Electrical conductivity behavior σAC tends to obtain a constant value at lower frequencies that approach from its DC conductivity values. After doping PMMA with nano-CdS, an exponential increase after a critical frequency value and the values of σAC was also increased. Besides, a significant reduction in laser energy power is identified by the reduction of the output power. CdS/PMMA can attenuate the laser power due to its nonlinear effect. CdS/PMMA nanocomposite can act as a photocatalyst to improve the performance of the photodegradation of Rhodamine B (RhB). Among the different CdS/PMMA nanocomposite films, 3.33 wt% CdS/PMMA demonstrates the highest efficiency in visible photocatalysis of Rhodamine B. CdS/PMMA can be utilized as multifunctional materials use like laser optical limiting to reduce the power of laser sources and as a photocatalyst membranes.
Collapse
Affiliation(s)
- Mai S A Hussien
- Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Cairo, 11757, Egypt.
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Metallurgical Lab.1., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo, 11757, Egypt.
| | - Mervat I Mohammed
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Metallurgical Lab.1., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo, 11757, Egypt
| | - Ibrahim S Yahia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo, 11757, Egypt
| |
Collapse
|
8
|
Pourrahim S, Salem A, Salem S, Tavangar R. Application of solid waste of ductile cast iron industry for treatment of wastewater contaminated by reactive blue dye via appropriate nano-porous magnesium oxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113454. [PMID: 31679878 DOI: 10.1016/j.envpol.2019.113454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 05/28/2023]
Abstract
The solid waste of ductile iron industry, which contains at least 88.0% magnesium oxide, is one of the toxic materials, leading to land contamination. On the other hand, the removal of reactive dyes from wastewaters is difficult required effective adsorbent like nano-porous MgO. The novelty of present investigation is based on nano-porous magnesium oxide production by precipitation from the solid waste to treat the wastewaters contaminated by reactive dye which is abundantly used in the textile industry. In order to improve the adsorptive properties of extracted MgO powder, the combinations of surfactants, containing cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polyoxyethylene octyl phenyl ether (TX100) were applied based on the mixture design algorithm in the precipitation. The effects of processing factors such as surfactant composition, powder calcination temperature, surfactant dose and pH were evaluated on the removal efficiency. The results revolved that the combination of SDS and TX100, 1:1, plays an effective role in the production of particles with the appropriate average pore size, 16 nm. The adsorbent prepared in the optimum condition indicated a significant affinity for the removal of reactive dye which shows relatively pH-independent efficiency in the range of 3-9. The applied producer for fabrication of adsorbent eventually overcomes the pH-dependent problem for the toxic dye uptake, leading to produce the adsorbent with maximal adsorption capacity of 1000 mg g-1.
Collapse
Affiliation(s)
- Solmaz Pourrahim
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Amin Salem
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran; Center of Excellence for Color Science and Technology, Tehran, Iran.
| | - Shiva Salem
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Reza Tavangar
- Faculty of Material Science Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
9
|
Yang Q, Dai Y, Huang Z, Zhang J, Zeng M, Shi C. Synthesis of Bi2WO6/Na-bentonite composites for photocatalytic oxidation of arsenic(iii) under simulated sunlight. RSC Adv 2019; 9:29689-29698. [PMID: 35531526 PMCID: PMC9071977 DOI: 10.1039/c9ra06181a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/09/2019] [Accepted: 09/13/2019] [Indexed: 11/24/2022] Open
Abstract
Novel Bi2WO6/bentonite (denoted as BWO/BENT) composites were prepared via a typical hydrothermal process and employed for the photocatalytic oxidation of arsenic(iii) (As(iii)). The properties of the prepared samples were characterized through X-ray diffraction, transmission and scanning electron microscopy, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. Effects of the BENT ratio on the As(iii) removal were explored under simulated sunlight, and the best photocatalytic effect was observed for the composite with BWO : BENT = 7 : 3 w/w. Compared with the pure BWO, the BWO/BENT composites exhibited an improved photocatalytic ability in the removal of As(iii), which was mainly ascribed to the enlarged specific surface area and the suppressed electron–hole recombination by the incorporated BENT. Furthermore, photo-generated holes (h+) and superoxide radicals ·O2− were confirmed to be the major contributors to the oxidation of As(iii), and an associated mechanism of photocatalytic oxidation of As(iii) over BWO/BENT composites was proposed. Novel Bi2WO6/bentonite (denoted as BWO/BENT) composites were prepared via a typical hydrothermal process and employed for the photocatalytic oxidation of arsenic(iii) (As(iii)).![]()
Collapse
Affiliation(s)
- Quancheng Yang
- School of Chemical and Environmental Engineering
- China University of Mining and Technology
- Beijing 100083
- P. R. China
- Key Laboratory of Environmental Nano-Technology and Health Effect
| | - Yunxiang Dai
- School of Chemical and Environmental Engineering
- China University of Mining and Technology
- Beijing 100083
- P. R. China
- Key Laboratory of Environmental Nano-Technology and Health Effect
| | - Zijian Huang
- School of Chemical and Environmental Engineering
- China University of Mining and Technology
- Beijing 100083
- P. R. China
- Key Laboratory of Environmental Nano-Technology and Health Effect
| | - Jing Zhang
- Key Laboratory of Environmental Nano-Technology and Health Effect
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- P. R. China
| | - Ming Zeng
- School of Chemical and Environmental Engineering
- China University of Mining and Technology
- Beijing 100083
- P. R. China
| | - Changsheng Shi
- Department of Environmental Engineering
- North China Institute of Science and Technology
- Beijing 101601
- P. R. China
| |
Collapse
|