1
|
Li HQ, Yang SH, Li Y, Ye WX, Liao ZY, Lu JQ, Wang ZY. Schiff Base Compounds Derived from 5-Methyl Salicylaldehyde as Turn-On Fluorescent Probes for Al 3+ Detection: Experimental and DFT Calculations. Molecules 2025; 30:1128. [PMID: 40076352 PMCID: PMC11901710 DOI: 10.3390/molecules30051128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Using 5-methyl salicylaldehyde (2) as a reactant to react with different amines, 2-aminobenzimidazole (1a), 2-aminobenzothiazole (1b), and 2-aminopyridine (1c), respectively, three types of Schiff base fluorescent probes 3a-3c were designed and synthesized for selective detection of Al3+ in aqueous media. The structure of the compounds was acquired by 1H NMR, 13C NMR, and X-ray single-crystal diffraction. Furthermore, their photochromic and fluorescent behaviors have been investigated systematically by fluorescence spectra. Compounds 3a-3c can exhibit high selectivity, sensitivity, and anti-interference properties towards Al3+ in aqueous media. Among them, the limit of detection (LOD) of probe 3b for Al3+ is 2.81 × 10-7 M. Notably, the response times of probes 3a-3c for Al3+ are 90 s, 80 s, and 80 s, respectively, which are much faster than most previously reported probes. The coordination stoichiometry between compounds 3a-3c and Al3+ has been verified to be 1:1 through the Job's plot. After coordination with Al3+, the C=N isomerization of compounds 3a-3c is inhibited, leading to the closure of the excited state intramolecular proton transfer (ESIPT) effect. At the same time, the fluorescence intensity is significantly increased through chelation-enhanced fluorescence mechanism (CHEF), which is confirmed by density functional theory (DFT) calculations. In addition, probes 3a-3c can be potentially applied in the selective and high-precision detection of Al3+ in environmental systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (H.-Q.L.); (S.-H.Y.); (Y.L.); (W.-X.Y.); (Z.-Y.L.); (J.-Q.L.)
| |
Collapse
|
2
|
Ullah Q, Khan SA, Arifuddin M, Mohsin M, Kausar S, Fatema N, Ahmer MF. Recent Developments in Colorimetric and Fluorometric Detection Methods of Trivalent Metal Cations (Al 3+, Fe 3+ and Cr 3+) Using Schiff Base Probes: At a Glance. J Fluoresc 2025; 35:543-557. [PMID: 38133749 DOI: 10.1007/s10895-023-03514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
This review basically concerned with the application of different Schiff bases (SB) based fluorimetric (turn-off and turn-on) and colorimetric chemosensors for the detection of heavy metal cations particularly Al(III), Fe(III), and Cr(III) ions. Chemosensors based on Schiff bases have exhibited outstanding performance in the detection of different metal cations due to their facile and in-expensive synthesis, and their excellent coordination ability with almost all metal cations and stabilize them in different oxidation states. Moreover, Schiff bases have also been used as antifungal, anticancer, analgesic, anti-inflammatory, antibacterial, antiviral, antioxidant, and antimalarial etc. The Schiff base also can be used as an intermediate for the formation of various heterocyclic compounds. In this review, we have focused on the research work performed on the development of chemosensors (colorimetric and fluorometric) for rapid detection of trivalent metal cations particularly Al(III), Fe(III), and Cr(III) ions using Schiff base as a ligand during 2020-2022.
Collapse
Affiliation(s)
- Qasim Ullah
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Salman Ahmad Khan
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammed Arifuddin
- Chemistry Department, Directorate of Distance Education (DDE), Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Md Mohsin
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Samrin Kausar
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Nahid Fatema
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammad Faraz Ahmer
- Department of Electrical and Electronics Engineering, Mewat Engineering College, Nuh Gurugram University Haryana, Gurugram, India.
| |
Collapse
|
3
|
Güngör Ö, Nuralin L. A Novel Naphthylidene-diimine Chemosensor for Selective Colorimetric and Fluorometric Detection of Al 3+ and CN - Ions. J Fluoresc 2024; 34:1319-1342. [PMID: 37530933 DOI: 10.1007/s10895-023-03368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
A naphthylidene-diimine L2 was newly designed, and its structure was identified by elemental analysis and spectroscopic methods. The effect of temperature, acid-base and light on enol-keto tautomerism in this Schiff base was evaluated by colorimetry, UV-Vis and fluorescence spectroscopy. Under irradiation 365 nm, L2 emitted yellow, orange and strong green emission in pure, basic and aqueous DMSO media (v/v, 1/1), respectively. Its ionochromic behavior against various cations (Fe3+, Al3+, Cr3+, Cu2+, Co2+, Ni2+, Zn2+, Cd2+, Pb2+, Ba2+ and Ag+) and anions (F-, Cl-, CH3COO-, SO32-, S2O32-, HSO4-, H2PO4-, NO3-, CN-, and OH-) was investigated in aqueous DMSO media (v/v, 1/1) by UV-Vis and fluorescence experiments. Dark yellow color of L2 changed to colorless for Fe3+, Cr3+ and HSO4- ions, and turned to light yellow for Al3+ and Cu2+ ions, and to orange for CN- and OH- ions. According to UV-Vis data, the chemosensor displayed selective recognition towards Fe3+, Al3+, Cu2+, HSO4-, CN- and OH- with a 1:1 stoichiometric ratio. At the excitation wavelength of 365 nm, L2 gave strong yellowish white emission (λem = 445 and 539 nm) in the presence of Al3+, and the intensity increased about 12.5 times. On the other hand, the chemosensor displayed one emission band at 452 nm and 450 nm in the presence of CN- and OH- with 1.9 fold and 2.3 fold fluorescence enhancement, respectively.
Collapse
Affiliation(s)
- Özlem Güngör
- Department of Chemistry, Faculty of Science, Gazi University, 06500, Ankara, Turkey.
| | - Levent Nuralin
- Department of Chemical Engineering, Faculty of Engineering, Gazi University, 06570, Ankara, Turkey
| |
Collapse
|
4
|
Anitha O, Thiruppathiraja T, Lakshmipathi S, Murugesapandian B. Diethylaminophenol appended pyrimidine bis hydrazone for the sequential detection of Al 3+ and PPi ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123077. [PMID: 37413920 DOI: 10.1016/j.saa.2023.123077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
In this study, a novel easy-to-prepare diethylaminophenol appended pyrimidine bis hydrazone (HD) has been designed and developed. The probe exhibits excellent sequential sensing characteristics towards Al3+ and PPi ions. The emission studies, various spectroscopic techniques and lifetime results have been utilized to understand the binding mechanism of HD with Al3+ ions and, to discover the specificity as well as the efficacy of the probe in sensing Al3+ ions. The good association constant in addition to the lower detection limit values makes the probe effective for the detection of Al3+. The in-situ produced HD-Al3+ ensemble could consecutively detect PPi via a turn-off fluorescence response and the selectivity and sensitivity characteristics of the generated ensemble towards PPi were described based on the demetallation approach. The overall sensing property of HD was perfectly employed for constructing logic gates, real water, and tablet applications. Paper strips, as well as cotton-swab experiments, were also conducted inorder to check the practical utility of the synthesized probe.
Collapse
Affiliation(s)
- Ottoor Anitha
- Department of Chemistry, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | | | | |
Collapse
|
5
|
Al-Saeedi A, Aydin D, Alici O. "Lighting up" fluorescence precise recognition of Al 3+ with an effective fluorescence detection using a Bisphenol A-based sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122532. [PMID: 36842209 DOI: 10.1016/j.saa.2023.122532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Although aluminum is a ubiquitous metal in the ecosystem and has numerous critical roles in both the medicinal and biological fields, human daily life is seriously threatened by its assorted harmful influences. By this virtue, tracking the amount of aluminum byrapid sensitive and selective recognition methodologies is of great importance. Based on this, a novel fluorescent chemosensor 4,4'-(propane-2,2-diyl)bis(2-(((-2-hydroxybenzylidene) hydrazineylidene)-methyl)phenol) (BFASA) capable of recognizing Al3+ in a medium was constructed via an easy Schiff-base reaction between bisphenol A-containing molecule and the salicylaldehyde. The metal-binding studies of BFASA indicated a drastically enhanced emission with color alteration from colorless to green establishing the utility of BFASA against monitoring of Al3+ and only Cu2+/Al3+ significantly enhanced the absorbance intensity of the probe solution at 433 and 406, respectively. Its ability to selectively sense Al3+ demonstrated "switch-on" fluorescence responses for Al3+ with a low detection limit (LOD) of 0.56 μM and good selectivity, and pH adaptation range (5-8). The stoichiometric ratio of BFASA against the Al3+ was verified by the Job's plot and TOF-MS analysis and determined as 1:2. To make the recognition process inexpensively, viable and straightforward, Smartphone application of BFASA was effectively applied to Al3+ sensing, which could benefit the on-site Al3+ recognition. In the fluorescence bio-imaging aspect, the BFASA could effectively monitor Al3+ in living cells.
Collapse
Affiliation(s)
- Aws Al-Saeedi
- Department of Chemistry, Science Faculty, Selcuk University, 42250 Konya, Turkey
| | - Duygu Aydin
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey
| | - Onder Alici
- Department of Chemistry, Science Faculty, Selcuk University, 42250 Konya, Turkey.
| |
Collapse
|
6
|
A novel multi-purpose convenient Al3+ ion fluorescent probe based on phenolphthalein. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Karuk Elmas SN. A coumarin-based fluorescence chemosensor for the determination of Al3+ and ClO− with different fluorescence emission channels. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Two Schiff-base fluorescent-colorimetric probes based on naphthaldehyde and aminobenzoic acid for selective detection of Al3+, Fe3+ and Cu2+ ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|