1
|
Lee Y, Kim K, Kim D, Lee JS. Organelle-Specific Quantum Thermometry Using Fluorescent Nanodiamonds: Insights into Cellular Metabolic Thermodynamics. J Am Chem Soc 2025; 147:13180-13189. [PMID: 40113448 DOI: 10.1021/jacs.4c16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Intracellular thermometry is a powerful method for studying biological thermodynamics across various physiological contexts. In this study, we present an organelle-specific quantum thermometry utilizing nitrogen-vacancy (NV) centers in fluorescent nanodiamonds (FNDs) to obtain precise temperature measurements at the subcellular level. By conjugating antibodies, FNDs were selectively targeted to mitochondria, nuclei, and cell membranes in living fibroblasts, enabling real-time monitoring of temperature changes during adenosine triphosphate (ATP) synthesis and inhibition. The system integrates advanced bioconjugation and quantum sensing methodologies, thereby overcoming challenges, such as photobleaching and limited spatial resolution. Notably, mitochondria-targeted FNDs revealed significant temperature increases, revealing mitochondria as the primary site of thermogenesis during ATP inhibition. These findings establish a robust framework for investigating metabolic thermodynamics and offer a powerful tool for exploring the thermal regulation of cellular processes.
Collapse
Affiliation(s)
- Yoobeen Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Kiho Kim
- Department of Physics & Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dohun Kim
- Department of Physics & Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Seok Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Kato S, Shindo A. Direct quantitative perturbations of physical parameters in vivo to elucidate vertebrate embryo morphogenesis. Curr Opin Cell Biol 2024; 90:102420. [PMID: 39182374 DOI: 10.1016/j.ceb.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Abstract
Physical parameters such as tissue interplay forces, luminal pressure, fluid flow, temperature, and electric fields are crucial regulators of embryonic morphogenesis. While significant attention has been given to cellular and molecular responses to these physical parameters, their roles in morphogenesis are not yet fully elucidated. This is largely due to a shortage of methods for spatiotemporal modulation and direct quantitative perturbation of physical parameters in embryos. Recent advancements addressing these challenges include microscopes equipped with devices to apply and adjust forces, direct perturbation of luminal pressure, and the application of micro-forces to targeted cells and cilia in vivo. These methods are critical for unveiling morphogenesis mechanisms, highlighting the importance of integrating molecular and physical approaches for a comprehensive understanding of morphogenesis.
Collapse
Affiliation(s)
- Soichiro Kato
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Asako Shindo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
3
|
Lang F, Rönicke F, Wagenknecht HA. Cell-resistant wavelength-shifting molecular beacons made of L-DNA and a clickable L-configured uridine. Org Biomol Chem 2024; 22:4568-4573. [PMID: 38771639 DOI: 10.1039/d4ob00692e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Wavelength-shifting molecular beacons were prepared from L-DNA. The clickable anchor for the two dyes, Cy3 and Cy5, was 2'-O-propargyl-L-uridine and was synthesized from L-ribose. Four clickable molecular beacons were prepared and double-modified with the azide dyes by a combination of click chemistry on a solid support for Cy3 during DNA synthesis and postsynthetic click chemistry for Cy5 in solution. Cy3 and Cy5 successfully formed a FRET pair in the beacons, and the closed form (red fluorescence) and the open form (green fluorescence) can be distinguished by the two-color fluorescence readout. Two molecular beacons were identified to show the greatest fluorescence contrast in temperature-dependent fluorescence measurements. The stability of the L-configured molecular beacons was demonstrated after several heating and cooling cycles as well as in the cell lysate. In comparison, D-configured molecular beacons showed a rapid decrease of fluorescence contrast in the cell lysate, which is caused by the opening of the beacons, probably due to degradation. This was confirmed in cell experiments using confocal microscopy. The L-configured molecular beacons are potential intracellular thermometers for future applications.
Collapse
Affiliation(s)
- Fabian Lang
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Franziska Rönicke
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
4
|
Inomata N, Miyamoto T, Okabe K, Ono T. Measurement of cellular thermal properties and their temperature dependence based on frequency spectra via an on-chip-integrated microthermistor. LAB ON A CHIP 2023; 23:2411-2420. [PMID: 36880592 DOI: 10.1039/d2lc01185a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
To understand the mechanism of intracellular thermal transport, thermal properties must be elucidated, particularly thermal conductivity and specific heat capacity. However, these properties have not been extensively studied. In this study, we developed a cellular temperature measurement device with a high temperature resolution of 1.17 m °C under wet conditions and with the ability to introduce intracellular local heating using a focused infrared laser to cultured cells on the device surface. Using this device, we evaluated the thermal properties of single cells based on their temperature signals and responses. Measurements were taken using on-chip-integrated microthermistors with high temperature resolution at varying surrounding temperatures and frequencies of local infrared irradiation on cells prepared on the sensors. Frequency spectra were used to determine the intensities of the temperature signals with respect to heating times. Signal intensities at 37 °C and a frequency lower than 2 Hz were larger than those at 25 °C, which were similar to those of water. The apparent thermal conductivity and specific heat capacity, which were determined at different surrounding temperatures and local heating frequencies, were lower than and similar to those of water at 37 °C and 25 °C, respectively. Our results indicate that the thermal properties of cells depend on both temperatures and physiological activities in addition to local heating frequencies.
Collapse
Affiliation(s)
- Naoki Inomata
- Graduate School of Engineering, Tohoku University, 6-6-01 aza-Aoba Aoba, Sendai 980-8579, Japan.
| | - Takumi Miyamoto
- Graduate School of Engineering, Tohoku University, 6-6-01 aza-Aoba Aoba, Sendai 980-8579, Japan.
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113-0033, Japan
| | - Takahito Ono
- Graduate School of Engineering, Tohoku University, 6-6-01 aza-Aoba Aoba, Sendai 980-8579, Japan.
| |
Collapse
|
5
|
Zhou H, Yao W, Zhou X, Dong S, Wang R, Guo Z, Li W, Qin C, Xiao L, Jia S, Wu Z, Li S. Accurate Visualization of Metabolic Aberrations in Cancer Cells by Temperature Mapping with Quantum Coherence Modulation Microscopy. ACS NANO 2023; 17:8433-8441. [PMID: 37102436 DOI: 10.1021/acsnano.3c00392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Specific metabolic aberrations of cancer cells rapidly generate energy with a minuscule but detectable temperature variation, which is a typical characteristic providing insight into cancer pathogenesis. However, to date, intracellular temperature mapping of cancer cell metabolism with high temporal and spatial resolution has not been realized. In this study, we mapped and monitored in real-time the intracellular temperature variations of mitochondria and cytoplasm at a subcellular scale via a single-molecule coherent modulation microscopy coupling targeted molecule labeling technique. According to the variation of the decoherence processes of targeted molecules as a function of intracellular temperature, we achieved a high temperature resolution (<0.1 K) and proved that this technique could eliminate interference from fluorescence intensity disturbance and external pH change. Furthermore, we showed a positive correlation between the determined temperature and the adenosine triphosphate production rate of mitochondrial metabolism in combination with a cell energy metabolic analyzer. This technology enables accurate real-time temporal and spatial visualization of cancer metabolism and establishes diagnoses and therapies for cancer.
Collapse
Affiliation(s)
- Haitao Zhou
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Collaborative Innovation Center of Molecular Imaging Precision Medical, Taiyuan, Shanxi 030001, China
| | - Wei Yao
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Collaborative Innovation Center of Molecular Imaging Precision Medical, Taiyuan, Shanxi 030001, China
| | - Xiaotong Zhou
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Collaborative Innovation Center of Molecular Imaging Precision Medical, Taiyuan, Shanxi 030001, China
| | - Shuai Dong
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ruonan Wang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Collaborative Innovation Center of Molecular Imaging Precision Medical, Taiyuan, Shanxi 030001, China
| | - Zhongyuan Guo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030619, China
| | - Weihua Li
- Medical Imaging Department, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Collaborative Innovation Center of Molecular Imaging Precision Medical, Taiyuan, Shanxi 030001, China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Collaborative Innovation Center of Molecular Imaging Precision Medical, Taiyuan, Shanxi 030001, China
| |
Collapse
|
6
|
Feng W, Huang Y, Zhao Y, Tian W, Yan H. Water-Soluble Cationic Eu 3+-Metallopolymer with High Quantum Yield and Sensitivity for Intracellular Temperature Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17211-17221. [PMID: 36859768 DOI: 10.1021/acsami.3c00478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lanthanide-based (Ln3+) luminescent materials are ideal candidates for use in fluorescence intracellular temperature sensing. However, it remains a great challenge to obtain a Ln3+-ratiometric fluorescence thermometer with high sensitivity and quantum yield in an aqueous environment. Herein, a cationic Eu3+-metallopolymer was synthesized via the coordination of Eu(TTA)3·2H2O with an AIE active amphipathic polymer backbone that contains APTMA ((3-acrylamidopropyl) trimethylammonium) and NIPAM (N-isopropylacrylamide) units, which can self-assemble into nanoparticles in water solution with APTMA and NIPAM as the hydrophilic shell. This polymer exhibited highly efficient dual-emissive white-light emission (Φ = 34.3%). Particularly, when the temperature rises, the NIPAM units will transform from hydrophilic to hydrophobic in the spherical core of the nanoparticle, while the VTPE units are moved from inside the nanoparticle to the shell, activating its nonradiative transition channel and thereby decreasing its energy transfer to Eu3+ centers, endowing the Eu3+-metallopolymer with an extremely high temperature sensing sensitivity within the physiological temperature range. Finally, the real-time monitoring of the intracellular temperature variation is further conducted.
Collapse
Affiliation(s)
- Weixu Feng
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yujuan Huang
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| | - Yan Zhao
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| | - Wei Tian
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| | - Hongxia Yan
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| |
Collapse
|
7
|
Inada N. A Guide to Plant Intracellular Temperature Imaging using Fluorescent Thermometers. PLANT & CELL PHYSIOLOGY 2023; 64:7-18. [PMID: 36039974 DOI: 10.1093/pcp/pcac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
All aspects of plant physiology are influenced by temperature. Changes in environmental temperature alter the temperatures of plant tissues and cells, which then affect various cellular activities, such as gene expression, protein stability and enzyme activities. In turn, changes in cellular activities, which are associated with either exothermic or endothermic reactions, can change the local temperature in cells and tissues. In the past 10 years, a number of fluorescent probes that detect temperature and enable intracellular temperature imaging have been reported. Intracellular temperature imaging has revealed that there is a temperature difference >1°C inside cells and that the treatment of cells with mitochondrial uncoupler or ionomycin can cause more than a 1°C intracellular temperature increase in mammalian cultured cells. Thermogenesis mechanisms in brown adipocytes have been revealed with the aid of intracellular temperature imaging. While there have been no reports on plant intracellular temperature imaging thus far, intracellular temperature imaging is expected to provide a new way to analyze the mechanisms underlying the various activities of plant cells. In this review, I will first summarize the recent progress in the development of fluorescent thermometers and their biological applications. I will then discuss the selection of fluorescent thermometers and experimental setup for the adaptation of intracellular temperature imaging to plant cells. Finally, possible applications of intracellular temperature imaging to investigate plant cell functions will be discussed.
Collapse
Affiliation(s)
- Noriko Inada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, 599-8531 Japan
- School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, 599-8531 Japan
| |
Collapse
|
8
|
Kuznetsov KM, Baigildin VA, Solomatina AI, Galenko EE, Khlebnikov AF, Sokolov VV, Tunik SP, Shakirova JR. Polymeric Nanoparticles with Embedded Eu(III) Complexes as Molecular Probes for Temperature Sensing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248813. [PMID: 36557943 PMCID: PMC9785794 DOI: 10.3390/molecules27248813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Three novel luminescent Eu(III) complexes, Eu1-Eu3, have been synthesized and characterized with CHN analysis, mass-spectrometry and 1H NMR spectroscopy. The complexes display strong emission in dichloromethane solution upon excitation at 405 and 800 nm with a quantum yield from 18.3 to 31.6%, excited-state lifetimes in the range of 243-1016 ms at 20 °C, and lifetime temperature sensitivity of 0.9%/K (Eu1), 1.9%/K (Eu2), and 1.7%/K (Eu3). The chromophores were embedded into biocompatible latex nanoparticles (NPs_Eu1-NPs_Eu3) that prevented emission quenching and kept the photophysical characteristics of emitters unchanged with the highest temperature sensitivity of 1.3%/K (NPs_Eu2). For this probe cytotoxicity, internalization dynamics and localization in CHO-K1 cells were studied together with lifetime vs. temperature calibration in aqueous solution, phosphate buffer, and in a mixture of growth media and fetal bovine serum. The obtained data were then averaged to give the calibration curve, which was further used for temperature estimation in biological samples. The probe was stable in physiological media and displayed good reproducibility in cycling experiments between 20 and 40 °C. PLIM experiments with thermostated CHO-K1 cells incubated with NPs_Eu2 indicated that the probe could be used for temperature estimation in cells including the assessment of temperature variations upon chemical shock (sample treatment with mitochondrial uncoupling reagent).
Collapse
Affiliation(s)
- Kirill M. Kuznetsov
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Vadim A. Baigildin
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Anastasia I. Solomatina
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Ekaterina E. Galenko
- Department of Organic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Alexander F. Khlebnikov
- Department of Organic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Victor V. Sokolov
- Department of Organic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Sergey P. Tunik
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
- Correspondence: (S.P.T.); (J.R.S.)
| | - Julia R. Shakirova
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
- Correspondence: (S.P.T.); (J.R.S.)
| |
Collapse
|
9
|
Dutta T, Pal K, Koner AL. Intracellular Physical Properties with Small Organic Fluorescent Probes: Recent Advances and Future Perspectives. CHEM REC 2022; 22:e202200035. [PMID: 35801859 DOI: 10.1002/tcr.202200035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Indexed: 11/09/2022]
Abstract
The intracellular physical parameters i. e., polarity, viscosity, fluidity, tension, potential, and temperature of a live cell are the hallmark of cellular health and have garnered immense interest over the past decade. In this context, small molecule organic fluorophores exhibit prominent useful properties including easy functionalizability, environmental sensitivity, biocompatibility, and fast yet efficient cellular uptakability which has made them a popular tool to understand intra-cellular micro-environmental properties. Throughout this discussion, we have outlined the basic design strategies of small molecules for specific organelle targeting and quantification of physical properties. The values of these parameters are indicative of cellular homeostasis and subtle alteration may be considered as the onset of disease. We believe this comprehensive review will facilitate the development of potential future probes for superior insight into the physical parameters that are yet to be quantified.
Collapse
Affiliation(s)
- Tanoy Dutta
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA (TD) (ALK
| | - Kaushik Pal
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA (TD) (ALK.,Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011, USA
| | - Apurba Lal Koner
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA (TD) (ALK
| |
Collapse
|
10
|
Zheng Y, Meana Y, Mazza MMA, Baker JD, Minnett PJ, Raymo FM. Fluorescence Switching for Temperature Sensing in Water. J Am Chem Soc 2022; 144:4759-4763. [PMID: 35262338 DOI: 10.1021/jacs.2c00820] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A water-soluble thermochromic molecular switch with spectrally resolved fluorescence in its two interconvertible states can be assembled in three synthetic steps by integrating a fluorescent coumarin chromophore, a hydrophilic oligo(ethylene glycol) chain, and a switchable oxazole heterocycle in the same covalent skeleton. Measurements of its two emissions in separate detection channels of a fluorescence microscope permit the noninvasive and ratiometric sensing of temperature at the micrometer level with millisecond response in aqueous solutions and within hydrogel matrices. The ratiometric optical output of this fluorescent molecular switch overcomes the limitations of single-wavelength fluorescent probes and enables noninvasive temperature mapping at length scales that are not accessible to conventional thermometers based on physical contact.
Collapse
Affiliation(s)
- Yeting Zheng
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Yasniel Meana
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Mercedes M A Mazza
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - James D Baker
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Peter J Minnett
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149-1031, United States
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| |
Collapse
|
11
|
Sotoma S, Okita H, Chuma S, Harada Y. Quantum nanodiamonds for sensing of biological quantities: Angle, temperature, and thermal conductivity. Biophys Physicobiol 2022; 19:e190034. [PMID: 36349322 PMCID: PMC9592573 DOI: 10.2142/biophysico.bppb-v19.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022] Open
Abstract
Measuring physical quantities in the nanometric region inside single cells is of great importance for understanding cellular activity. Thus, the development of biocompatible, sensitive, and reliable nanobiosensors is essential for progress in biological research. Diamond nanoparticles containing nitrogen-vacancy centers (NVCs), referred to as fluorescent nanodiamonds (FNDs), have recently emerged as the sensors that show great promise for ultrasensitive nanosensing of physical quantities. FNDs emit stable fluorescence without photobleaching. Additionally, their distinctive magneto-optical properties enable an optical readout of the quantum states of the electron spin in NVC under ambient conditions. These properties enable the quantitative sensing of physical parameters (temperature, magnetic field, electric field, pH, etc.) in the vicinity of an FND; hence, FNDs are often described as “quantum sensors”. In this review, recent advancements in biosensing applications of FNDs are summarized. First, the principles of orientation and temperature sensing using FND quantum sensors are explained. Next, we introduce surface coating techniques indispensable for controlling the physicochemical properties of FNDs. The achievements of practical biological sensing using surface-coated FNDs, including orientation, temperature, and thermal conductivity, are then highlighted. Finally, the advantages, challenges, and perspectives of the quantum sensing of FND are discussed. This review article is an extended version of the Japanese article, In Situ Measurement of Intracellular Thermal Conductivity Using Diamond Nanoparticle, published in SEIBUTSU BUTSURI Vol. 62, p. 122–124 (2022).
Collapse
Affiliation(s)
| | | | - Shunsuke Chuma
- Department of Biological Sciences, Graduate School of Science, Osaka University
| | - Yoshie Harada
- Center for Quantum Information and Quantum Biology, Osaka University
| |
Collapse
|
12
|
Feng G, Zhang H, Zhu X, Zhang J, Fang J. Fluorescence Thermometer: Intermediation of the Fontal Temperature and Light. Biomater Sci 2022; 10:1855-1882. [DOI: 10.1039/d1bm01912k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid advance of thermal materials and fluorescence spectroscopy has extensively promoted micro-scale fluorescence thermometry development in recent years. Based on the advantages of fast response, high sensitivity, simple operation,...
Collapse
|
13
|
|
14
|
Ariga K. Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. Molecules 2021; 26:1621. [PMID: 33804013 PMCID: PMC7998694 DOI: 10.3390/molecules26061621] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022] Open
Abstract
Although various synthetic methodologies including organic synthesis, polymer chemistry, and materials science are the main contributors to the production of functional materials, the importance of regulation of nanoscale structures for better performance has become clear with recent science and technology developments. Therefore, a new research paradigm to produce functional material systems from nanoscale units has to be created as an advancement of nanoscale science. This task is assigned to an emerging concept, nanoarchitectonics, which aims to produce functional materials and functional structures from nanoscale unit components. This can be done through combining nanotechnology with the other research fields such as organic chemistry, supramolecular chemistry, materials science, and bio-related science. In this review article, the basic-level of nanoarchitectonics is first presented with atom/molecular-level structure formations and conversions from molecular units to functional materials. Then, two typical application-oriented nanoarchitectonics efforts in energy-oriented applications and bio-related applications are discussed. Finally, future directions of the molecular and materials nanoarchitectonics concepts for advancement of functional nanomaterials are briefly discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
15
|
Chung CW, Kaminski Schierle GS. Intracellular Thermometry at the Micro-/Nanoscale and its Potential Application to Study Protein Aggregation Related to Neurodegenerative Diseases. Chembiochem 2021; 22:1546-1558. [PMID: 33326160 DOI: 10.1002/cbic.202000765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Indexed: 11/11/2022]
Abstract
Temperature is a fundamental physical parameter that influences biological processes in living cells. Hence, intracellular temperature mapping can be used to derive useful information reflective of thermodynamic properties and cellular behaviour. Herein, existing publications on different thermometry systems, focusing on those that employ fluorescence-based techniques, are reviewed. From developments based on fluorescent proteins and inorganic molecules to metal nanoclusters and fluorescent polymers, the general findings of intracellular measurements from different research groups are discussed. Furthermore, the contradiction of mitochondrial thermogenesis and nuclear-cytoplasmic temperature differences to current thermodynamic understanding are highlighted. Lastly, intracellular thermometry is proposed as a tool to quantify the energy flow and cost associated with amyloid-β42 (Aβ42) aggregation, a hallmark of Alzheimer's disease.
Collapse
Affiliation(s)
- Chyi Wei Chung
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
16
|
Silva PL, Savchuk OA, Gallo J, García-Hevia L, Bañobre-López M, Nieder JB. Mapping intracellular thermal response of cancer cells to magnetic hyperthermia treatment. NANOSCALE 2020; 12:21647-21656. [PMID: 32766635 DOI: 10.1039/c9nr10370h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Temperature is a key parameter for optimal cellular function and growth. Temperature perturbation may directly lead to cell death. This can be used in cancer therapies to kill cells in tumors, a therapeutic approach called hyperthermia. To avoid overheating of tumors that may damage healthy tissues, a knowledge of the intracellular temperature reached during the hyperthermia treatment of cancer cells is relevant. Recently, several luminescent intracellular nanothermometers have been proposed; however an application to sense temperature during a hyperthermia treatment is lacking. Here we present a technique to measure intracellular temperature changes in in vitro cancer cell models. For this purpose, we study for the first time the temperature dependence of the green fluorescent protein (GFP)'s fluorescence lifetime parameter. We find the fluorescence lifetime of GFP can be used for nanothermosensing. We use GFP in a bound form to actin filaments as an intracellular thermal reporter. Furthermore, we assess intracellular temperature during in vitro magnetothermal therapy on live HeLa cells incubated with polyacrylic acid-coated iron oxide nanoparticles. Compared to other thermosensitive materials and formulations reported so far, the GFP nanothermosensor is easily expressed via transfection and various GFP variants are commercially available. We foresee that the nanothermometer developed might find widespread applications in cancer therapy research and development.
Collapse
Affiliation(s)
- Pedro L Silva
- Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
17
|
Piñol R, Zeler J, Brites CDS, Gu Y, Téllez P, Carneiro Neto AN, da Silva TE, Moreno-Loshuertos R, Fernandez-Silva P, Gallego AI, Martinez-Lostao L, Martínez A, Carlos LD, Millán A. Real-Time Intracellular Temperature Imaging Using Lanthanide-Bearing Polymeric Micelles. NANO LETTERS 2020; 20:6466-6472. [PMID: 32787172 DOI: 10.1021/acs.nanolett.0c02163] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Measurement of thermogenesis in individual cells is a remarkable challenge due to the complexity of the biochemical environment (such as pH and ionic strength) and to the rapid and yet not well-understood heat transfer mechanisms throughout the cell. Here, we present a unique system for intracellular temperature mapping in a fluorescence microscope (uncertainty of 0.2 K) using rationally designed luminescent Ln3+-bearing polymeric micellar probes (Ln = Sm, Eu) incubated in breast cancer MDA-MB468 cells. Two-dimensional (2D) thermal images recorded increasing the temperature of the cells culture medium between 296 and 304 K shows inhomogeneous intracellular temperature progressions up to ∼20 degrees and subcellular gradients of ∼5 degrees between the nucleolus and the rest of the cell, illustrating the thermogenic activity of the different organelles and highlighting the potential of this tool to study intracellular processes.
Collapse
Affiliation(s)
- Rafael Piñol
- ICMA, Institute of Materials Science of Aragon, CSIC, University of Zaragoza, 50008 Zaragoza, Spain
| | - Justyna Zeler
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- Faculty of Chemistry, University of Wroclaw, Wroclaw 50-302, Poland
| | - Carlos D S Brites
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Yuanyu Gu
- ICMA, Institute of Materials Science of Aragon, CSIC, University of Zaragoza, 50008 Zaragoza, Spain
- School of Materials Science and Engineering, Nanjing Tech University, 210009 Nanjing, People's Republic of China
| | - Pedro Téllez
- Servicio de Apoyo a la Investigación, University of Zaragoza, C/Pedro Cerbuna 10, 50006 Zaragoza, Spain
| | - Albano N Carneiro Neto
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Thiago E da Silva
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- Department of Fundamental Chemistry, Federal University of Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Raquel Moreno-Loshuertos
- Departamento de Bioquímica, Biología Molecular y Celular, University of Zaragoza, 50018 Zaragoza, Spain
| | - Patrício Fernandez-Silva
- Departamento de Bioquímica, Biología Molecular y Celular, University of Zaragoza, 50018 Zaragoza, Spain
| | - Ana Isabel Gallego
- Departamento de Bioquímica, Biología Molecular y Celular, University of Zaragoza, 50018 Zaragoza, Spain
| | - Luis Martinez-Lostao
- Departamento de Bioquímica, Biología Molecular y Celular, University of Zaragoza, 50018 Zaragoza, Spain
| | - Abelardo Martínez
- Departamento de Electrónica de Potencia, I3A, University of Zaragoza, 50018 Zaragoza, Spain
| | - Luís D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Angel Millán
- ICMA, Institute of Materials Science of Aragon, CSIC, University of Zaragoza, 50008 Zaragoza, Spain
| |
Collapse
|
18
|
Sugimura T, Kajimoto S, Nakabayashi T. Label‐Free Imaging of Intracellular Temperature by Using the O−H Stretching Raman Band of Water. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Toshiki Sugimura
- Graduate School of Pharmaceutical Sciences Tohoku University, Aoba-ku Sendai 980–8578 Japan
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences Tohoku University, Aoba-ku Sendai 980–8578 Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences Tohoku University, Aoba-ku Sendai 980–8578 Japan
| |
Collapse
|
19
|
Orlova AV, Kozhevnikova VY, Lepnev LS, Goloveshkin AS, Le-Deigen IM, Utochnikova VV. NIR emitting terephthalates (Sm Dy Gd1--)2(tph)3(H2O)4 for luminescence thermometry in the physiological range. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Sugimura T, Kajimoto S, Nakabayashi T. Label‐Free Imaging of Intracellular Temperature by Using the O−H Stretching Raman Band of Water. Angew Chem Int Ed Engl 2020; 59:7755-7760. [DOI: 10.1002/anie.201915846] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/19/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Toshiki Sugimura
- Graduate School of Pharmaceutical Sciences Tohoku University, Aoba-ku Sendai 980–8578 Japan
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences Tohoku University, Aoba-ku Sendai 980–8578 Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences Tohoku University, Aoba-ku Sendai 980–8578 Japan
| |
Collapse
|
21
|
Ogle MM, Smith McWilliams AD, Jiang B, Martí AA. Latest Trends in Temperature Sensing by Molecular Probes. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meredith M. Ogle
- Department of ChemistryRice University 6100 Main St MS60 Houston TX 77005 USA
| | | | - Bo Jiang
- Department of ChemistryRice University 6100 Main St MS60 Houston TX 77005 USA
| | - Angel A. Martí
- Department of ChemistryRice University 6100 Main St MS60 Houston TX 77005 USA
- Department of Bioengineering, and Department of Materials Science & NanoengineeringRice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
22
|
Li R, Xu FF, Gong ZL, Zhong YW. Thermo-responsive light-emitting metal complexes and related materials. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00779j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the fundamentals and design strategies for the development of thermo-responsive metal–ligand coordination materials and the applications of these materials in temperature sensing, bioimaging, information security, etc.
Collapse
Affiliation(s)
- Rui Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Fa-Feng Xu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
23
|
Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat Protoc 2019; 14:1293-1321. [DOI: 10.1038/s41596-019-0145-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022]
|
24
|
Sekiguchi T, Sotoma S, Harada Y. Fluorescent nanodiamonds as a robust temperature sensor inside a single cell. Biophys Physicobiol 2018; 15:229-234. [PMID: 30450272 PMCID: PMC6234897 DOI: 10.2142/biophysico.15.0_229] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Thermometers play an important role to study the biological significance of temperature. Fluorescent nanodiamonds (FNDs) with negatively-charged nitrogen-vacancy centers, a novel type of fluorescence-based temperature sensor, have physicochemical inertness, low cytotoxicity, extremely stable fluorescence, and unique magneto-optical properties that allow us to measure the temperature at the nanoscale level inside single cells. Here, we demonstrate that the thermosensing ability of FNDs is hardly influenced by environmental factors, such as pH, ion concentration, viscosity, molecular interaction, and organic solvent. This robustness renders FNDs reliable thermometers even under complex biological cellular environment. Moreover, the simple protocol developed here for measuring the absolute temperature inside a single cell using a single FND enables successful temperature measurement in a cell with an accuracy better than ±1°C.
Collapse
Affiliation(s)
- Takeharu Sekiguchi
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shingo Sotoma
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Japan Society for the Promotion of Science (JSPS), Chiyoda, Tokyo 102-0083, Japan
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
|
26
|
Mercadé-Prieto R, Rodriguez-Rivera L, Chen XD. Fluorescence lifetime of Rhodamine B in aqueous solutions of polysaccharides and proteins as a function of viscosity and temperature. Photochem Photobiol Sci 2018; 16:1727-1734. [PMID: 29083002 DOI: 10.1039/c7pp00330g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodamine B (RhB) is a well known dye extensively used in thermometric studies, either considering the decrease in the fluorescence intensity or the lifetime (τ) with temperature. Lifetime measurements are preferred over intensity ones as they are more robust. In order to expand microscopy thermometry to complex food fluids, the effect of solutes on the τ of RhB was studied using fluorescence lifetime imaging microscopy (FLIM) in a two-photon microscope. Polysaccharides of different molecular weights (glucose, lactose, dextran, maltodextrin, and sodium alginate), as well as whey proteins, were considered as typical model food ingredients. A linear increase in τ with the concentration is observed in most polysaccharides, highlighting that it is not due to an increase in the macroscopic viscosity, but in maltodextrins a Langmuir-like concentration dependence is observed. There are extensive interactions between RhB and whey proteins at small concentrations that quickly increase τ up to saturation at >10 wt% proteins, with τ modelled well using an adsorption Langmuir model. Therefore, the effect of solutes on RhB τ is not related to changes in the macroscopic viscosity. The temperature sensitivity of τ, quantified using apparent activation energies, decreases at high solute contents.
Collapse
Affiliation(s)
- Ruben Mercadé-Prieto
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu 215123, PR China.
| | | | | |
Collapse
|
27
|
Nurmamat E, Xiao H, Zhang Y, Jiao Z. Effects of Different Temperatures on the Chemical Structure and Antitumor Activities of Polysaccharides from Cordyceps militaris. Polymers (Basel) 2018; 10:polym10040430. [PMID: 30966465 PMCID: PMC6415254 DOI: 10.3390/polym10040430] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/25/2018] [Accepted: 04/09/2018] [Indexed: 11/17/2022] Open
Abstract
The effects of different extraction temperatures (4 and 80 °C) on the physicochemical properties and antitumor activity of water soluble polysaccharides (CMPs-4 and CMPs-80) from Cordyceps militaris (C. militaris) were evaluated in this study. The results of gas chromatography (GC) and high-performance gel permeation chromatography (HPGPC) showed that a higher extraction temperature could degrade the polysaccharides with 188 kDa, mainly composed of glucose, and increase the dissolution rate of polysaccharides about 308 kDa, mainly consisting of rhamnose and galactose. In addition, the CMPs displayed the same sugar ring and category of glycosidic linkage based on Fourier-transform infrared spectroscopy (FTIR) analysis, however, their invisible structural difference occurred in the specific rotation and conformational characteristics according to the results of specific optical rotation measurement and Congo red test. In vitro antitumor experiments indicated that CMPs-4 possessed stronger inhibitory effects on human esophagus cancer Eca-109 cells by inducing cell apoptosis more than CMPs-80 did. These findings demonstrated that the polysaccharides extracted with cold water (4 °C) could be applied as a novel alternative chemotherapeutic agent or dietary supplement with its underlying antitumor property.
Collapse
Affiliation(s)
- Eliyas Nurmamat
- College of Life Sciences, Northeast Normal University, Changchun 130024, China.
- College of Biological and Geographic Sciences, Yili Normal University, Yining 835000, China.
| | - Hongxing Xiao
- College of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ziwei Jiao
- College of Biological and Geographic Sciences, Yili Normal University, Yining 835000, China.
| |
Collapse
|
28
|
Uchiyama S, Tsuji T, Kawamoto K, Okano K, Fukatsu E, Noro T, Ikado K, Yamada S, Shibata Y, Hayashi T, Inada N, Kato M, Koizumi H, Tokuyama H. A Cell‐Targeted Non‐Cytotoxic Fluorescent Nanogel Thermometer Created with an Imidazolium‐Containing Cationic Radical Initiator. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Toshikazu Tsuji
- Central Laboratories for Key Technologies KIRIN Company Limited 1-13-5 Fukuura Kanazawa-ku Yokohama Kanagawa 236-0004 Japan
| | - Kyoko Kawamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Kentaro Okano
- Graduate School of Pharmaceutical Sciences Tohoku University Sendai Miyagi 980-8578 Japan
- Department of Chemical Science and Engineering Kobe University Kobe Hyogo 657-8501 Japan
| | - Eiko Fukatsu
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Noro
- Graduate School of Pharmaceutical Sciences Tohoku University Sendai Miyagi 980-8578 Japan
| | - Kumiko Ikado
- Central Laboratories for Key Technologies KIRIN Company Limited 1-13-5 Fukuura Kanazawa-ku Yokohama Kanagawa 236-0004 Japan
| | - Sayuri Yamada
- Central Laboratories for Key Technologies KIRIN Company Limited 1-13-5 Fukuura Kanazawa-ku Yokohama Kanagawa 236-0004 Japan
| | - Yuka Shibata
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Teruyuki Hayashi
- The Graduate School of Biological Sciences Nara Institute of Science and Technology Ikoma Nara 630-0192 Japan
- Department of Nutrition Koshien University 10-1 Momijigaoka Takarazuka Hyogo 665-0006 Japan
| | - Noriko Inada
- The Graduate School of Biological Sciences Nara Institute of Science and Technology Ikoma Nara 630-0192 Japan
| | - Masaru Kato
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hideki Koizumi
- Central Laboratories for Key Technologies KIRIN Company Limited 1-13-5 Fukuura Kanazawa-ku Yokohama Kanagawa 236-0004 Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences Tohoku University Sendai Miyagi 980-8578 Japan
| |
Collapse
|
29
|
Uchiyama S, Tsuji T, Kawamoto K, Okano K, Fukatsu E, Noro T, Ikado K, Yamada S, Shibata Y, Hayashi T, Inada N, Kato M, Koizumi H, Tokuyama H. A Cell‐Targeted Non‐Cytotoxic Fluorescent Nanogel Thermometer Created with an Imidazolium‐Containing Cationic Radical Initiator. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201801495] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Toshikazu Tsuji
- Central Laboratories for Key Technologies KIRIN Company Limited 1-13-5 Fukuura Kanazawa-ku Yokohama Kanagawa 236-0004 Japan
| | - Kyoko Kawamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Kentaro Okano
- Graduate School of Pharmaceutical Sciences Tohoku University Sendai Miyagi 980-8578 Japan
- Department of Chemical Science and Engineering Kobe University Kobe Hyogo 657-8501 Japan
| | - Eiko Fukatsu
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Noro
- Graduate School of Pharmaceutical Sciences Tohoku University Sendai Miyagi 980-8578 Japan
| | - Kumiko Ikado
- Central Laboratories for Key Technologies KIRIN Company Limited 1-13-5 Fukuura Kanazawa-ku Yokohama Kanagawa 236-0004 Japan
| | - Sayuri Yamada
- Central Laboratories for Key Technologies KIRIN Company Limited 1-13-5 Fukuura Kanazawa-ku Yokohama Kanagawa 236-0004 Japan
| | - Yuka Shibata
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Teruyuki Hayashi
- The Graduate School of Biological Sciences Nara Institute of Science and Technology Ikoma Nara 630-0192 Japan
- Department of Nutrition Koshien University 10-1 Momijigaoka Takarazuka Hyogo 665-0006 Japan
| | - Noriko Inada
- The Graduate School of Biological Sciences Nara Institute of Science and Technology Ikoma Nara 630-0192 Japan
| | - Masaru Kato
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hideki Koizumi
- Central Laboratories for Key Technologies KIRIN Company Limited 1-13-5 Fukuura Kanazawa-ku Yokohama Kanagawa 236-0004 Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences Tohoku University Sendai Miyagi 980-8578 Japan
| |
Collapse
|
30
|
Martín-Barreiro A, de Marcos S, Galbán J. Gold nanoclusters as a quenchable fluorescent probe for sensing oxygen at high temperatures. Mikrochim Acta 2018; 185:171. [PMID: 29594649 DOI: 10.1007/s00604-018-2676-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/11/2018] [Indexed: 11/29/2022]
Abstract
Gold nanoclusters (AuNCs) capped with lipoic acid (LA) or templated with bovine serum albumin (BSA) are shown to be viable fluorescent probes for oxygen (O2) which acts as a collisional quencher. Quenching of fluorescence, with its lifetimes in the order of 123 ± 9 ns (LA) and 153 ± 15 ns (BSA) (in aqueous solution), is best measured at excitation/emission wavelengths of 400/680 nm and 375/650 nm respectively. It follows the Stern-Volmer model, whose quenching constants (Ksv) and quenching efficiencies (γ) are 1400 M-1 and 0.52 for AuNC@LA and 4479 M-1 and 0.90 for AuNC@BSA. The probes were immobilized on a silica support and tested for response to O2 in gas phase using a commercial instrument. The effect of temperature on the fluorescence of AuNC@LA was studied in the range from 30 to 210 °C. Fluorescence intensity slightly decreases with temperature in the first heating cycle but remains constant in further cycles. The AuNC@LA were studied for their response to O2 in the temperature range from 30 to 100 °C, and even at 100 °C they respond to O2, with a Ksv that slightly drops with increasing temperature. Measuring in gas phase at 100 °C, the sensor has a detection limit of 3% (V/V) of O2 at a signal-to-noise ratio of 3. Graphical Abstract Gold-nanoclusters (AuNCs) fluorescence intensity (λexc = 400 nm, λem = 680 nm) remains constant from 30 to 210 °C and is quenched by O2 following a collisional mechanism. The Stern-Volmer constant (Ksv) slightly changes from 25 °C to 100 °C (at least).
Collapse
Affiliation(s)
- Alba Martín-Barreiro
- Analytical Biosensors Group, Analytical Chemistry Department, Faculty of Sciences, Instituto Universitario de Nanociencia de Aragon (INA), University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Susana de Marcos
- Analytical Biosensors Group, Analytical Chemistry Department, Faculty of Sciences, Instituto Universitario de Nanociencia de Aragon (INA), University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Javier Galbán
- Analytical Biosensors Group, Analytical Chemistry Department, Faculty of Sciences, Instituto Universitario de Nanociencia de Aragon (INA), University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| |
Collapse
|
31
|
Uchiyama S, Gota C, Tsuji T, Inada N. Intracellular temperature measurements with fluorescent polymeric thermometers. Chem Commun (Camb) 2017; 53:10976-10992. [DOI: 10.1039/c7cc06203f] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intracellular temperature can be measured using fluorescent polymeric thermometersviatheir temperature-dependent fluorescence signals.
Collapse
Affiliation(s)
- Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Chie Gota
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Toshikazu Tsuji
- Central Laboratories for Key Technologies
- KIRIN Company Limited
- 236-0004 Kanagawa
- Japan
| | - Noriko Inada
- The Graduate School of Biological Sciences
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| |
Collapse
|