1
|
Nascimento Pires G, Pereira Laurindo R, Dos Santos Heringer L, Calixto da Silva S, Magalhães Portela D, Cardoso R, de Pádua AC, Miranda De Sá AB, Alves Da Cruz SA, Espírito Santo Araújo S, Blanco Martinez AM, Batista Carneiro M, Rocha Mendonça H. Therapeutic potential of pranlukast against cuprizone-induced inflammatory demyelination and sensory impairment in mice: Comparison with fingolimod. Neurotoxicology 2025; 107:37-52. [PMID: 39894255 DOI: 10.1016/j.neuro.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/07/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Inflammatory demyelination is present in debilitating diseases such as Multiple Sclerosis (MS). Several drugs are available for MS treatment, with fingolimod as a first-line oral option in the United States. However, a cure has yet to be established, and therapeutic failures are common, highlighting the need for continued research into new pharmacological targets. Pranlukast has shown positive effects on myelination in cell cultures and after LPC-induced demyelination in mice, but it is not yet part of the therapeutic arsenal for this disease. This study investigates pranlukast's effect on demyelination protection in an MS animal model, compared to fingolimod. For this purpose, young adult Swiss mice were treated for five weeks with a 0.2 % cuprizone diet and received daily intraperitoneal injections of pranlukast (0.1 mg/kg), fingolimod (1 mg/kg), or vehicle. Pranlukast treatment, like fingolimod, partially preserved sensory function in the tactile sensitivity test. Both treatments partially preserved myelin basic protein (MBP) levels, but only fingolimod preserved lipids and myelinated fibers in the corpus callosum (CC) at all g-ratio ranges. Cuprizone and Pranlukast groups presented more microglia/macrophages in the CC, but fewer presenting reactive microglia/macrophages and less NOS2 staining in pranlukast-treated when compared to the cuprizone group, while fingolimod treatment prevented the increase in Iba1 in the CC. In summary, this study demonstrated that pranlukast is a good candidate as a novel drug for use in conditions of inflammatory demyelination, such as MS, by restoring function through modulation of the inflammatory environment.
Collapse
Affiliation(s)
- Greice Nascimento Pires
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil; Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Avenue Amaro Reinaldo dos Santos Silva, 764 - São José do Barreto, Macaé, RJ 27965-045, Brazil
| | - Renata Pereira Laurindo
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Luiza Dos Santos Heringer
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Stefanny Calixto da Silva
- Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Avenue Amaro Reinaldo dos Santos Silva, 764 - São José do Barreto, Macaé, RJ 27965-045, Brazil
| | - Débora Magalhães Portela
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil; Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Avenue Amaro Reinaldo dos Santos Silva, 764 - São José do Barreto, Macaé, RJ 27965-045, Brazil
| | - Ricardo Cardoso
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil; Souza Marques School of Medicine, Avenue Ernani Cardoso, 335 - Campinho, Rio de Janeiro, RJ 21310-310, Brazil
| | - Ana Carolina de Pádua
- Tissue Biology Lab, Biosciences and Biotechnology Center, Postgraduate Program in Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Avenue Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Ana Beatriz Miranda De Sá
- Tissue Biology Lab, Biosciences and Biotechnology Center, Postgraduate Program in Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Avenue Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Saulo Augusto Alves Da Cruz
- Tissue Biology Lab, Biosciences and Biotechnology Center, Postgraduate Program in Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Avenue Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Sheila Espírito Santo Araújo
- Tissue Biology Lab, Biosciences and Biotechnology Center, Postgraduate Program in Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Avenue Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Ana Maria Blanco Martinez
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Milena Batista Carneiro
- Physiopathology Lab LAFISP - IMCT. Federal University of Rio de Janeiro, Street Alcides da Conceição, 159 - Granja dos Cavaleiros, Macaé, RJ 27930-480, Brazil
| | - Henrique Rocha Mendonça
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil; Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Avenue Amaro Reinaldo dos Santos Silva, 764 - São José do Barreto, Macaé, RJ 27965-045, Brazil.
| |
Collapse
|
2
|
Yanagida K, Shimizu T. Lysophosphatidic acid, a simple phospholipid with myriad functions. Pharmacol Ther 2023; 246:108421. [PMID: 37080433 DOI: 10.1016/j.pharmthera.2023.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid consisting of a phosphate group, glycerol moiety, and only one hydrocarbon chain. Despite its simple chemical structure, LPA plays an important role as an essential bioactive signaling molecule via its specific six G protein-coupled receptors, LPA1-6. Recent studies, especially those using genetic tools, have revealed diverse physiological and pathological roles of LPA and LPA receptors in almost every organ system. Furthermore, many studies are illuminating detailed mechanisms to orchestrate multiple LPA receptor signaling pathways and to facilitate their coordinated function. Importantly, these extensive "bench" works are now translated into the "bedside" as exemplified by approaches targeting LPA1 signaling to combat fibrotic diseases. In this review, we discuss the physiological and pathological roles of LPA signaling and their implications for clinical application by focusing on findings revealed by in vivo studies utilizing genetic tools targeting LPA receptors.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Takao Shimizu
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan; Institute of Microbial Chemistry, Tokyo, Japan
| |
Collapse
|
3
|
Dacheux MA, Norman DD, Tigyi GJ, Lee SC. Emerging roles of lysophosphatidic acid receptor subtype 5 (LPAR5) in inflammatory diseases and cancer. Pharmacol Ther 2023; 245:108414. [PMID: 37061203 DOI: 10.1016/j.pharmthera.2023.108414] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator that regulates a variety of cellular functions such as cell proliferation, migration, survival, calcium mobilization, cytoskeletal rearrangements, and neurite retraction. The biological actions of LPA are mediated by at least six G protein-coupled receptors known as LPAR1-6. Given that LPAR1-3 were among the first LPARs identified, the majority of research efforts have focused on understanding their biology. This review provides an in-depth discussion of LPAR5, which has recently emerged as a key player in regulating normal intestinal homeostasis and modulating pathological conditions such as pain, itch, inflammatory diseases, and cancer. We also present a chronological overview of the efforts made to develop compounds that target LPAR5 for use as tool compounds to probe or validate LPAR5 biology and therapeutic agents for the treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Mélanie A Dacheux
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America
| | - Derek D Norman
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America
| | - Gábor J Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America
| | - Sue Chin Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America.
| |
Collapse
|
4
|
Sex Differences in the Behavioural Aspects of the Cuprizone-Induced Demyelination Model in Mice. Brain Sci 2022; 12:brainsci12121687. [PMID: 36552147 PMCID: PMC9775311 DOI: 10.3390/brainsci12121687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is an autoimmune disease characterised by demyelination in the central nervous system. The cuprizone-induced demyelination model is often used in mice to test novel treatments for multiple sclerosis. However, despite significant demyelination, behavioural deficits may be subtle or have mixed results depending on the paradigm used. Furthermore, the sex differences within the model are not well understood. In the current study, we have sought to understand the behavioural deficits associated with the cuprizone-induced demyelination model in both male and female C57BL/6J mice. Using Black gold II stain, we found that cuprizone administration over 6 weeks caused significant demyelination in the corpus callosum that was consistent across both sexes. Cuprizone administration caused increased mechanical sensitivity when measured using an electronic von Frey aesthesiometer, with no sex differences observed. However, cuprizone administration decreased motor coordination, with more severe deficits seen in males in the horizontal bar and passive wire hang tests. In contrast, female mice showed more severe deficits in the motor skill sequence test. Cuprizone administration caused more anxiety-like behaviours in males compared to females in the elevated zero maze. Therefore, this study provides a better understanding of the sex differences involved in the behavioural aspects of cuprizone-induced demyelination, which could allow for a better translation of results from the laboratory to the clinic.
Collapse
|
5
|
ELBini-Dhouib I, Manai M, Neili NE, Marzouki S, Sahraoui G, Ben Achour W, Zouaghi S, BenAhmed M, Doghri R, Srairi-Abid N. Dual Mechanism of Action of Curcumin in Experimental Models of Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23158658. [PMID: 35955792 PMCID: PMC9369178 DOI: 10.3390/ijms23158658] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022] Open
Abstract
Background: Multiple sclerosis (MS) is characterized by a combination of inflammatory and demyelination processes in the spinal cord and brain. Conventional drugs generally target the autoimmune response, without any curative effect. For that reason, there is a great interest in identifying novel agents with anti-inflammatory and myelinating effects, to counter the inflammation and cell death distinctive of the disease. Methods and results: An in vitro assay showed that curcumin (Cur) at 10 µM enhanced the proliferation of C8-D1A cells and modulated the production of Th1/Th2/Th17 cytokines in the cells stimulated by LPS. Furthermore, two in vivo pathophysiological experimental models were used to assess the effect of curcumin (100 mg/kg). The cuprizone model mimics the de/re-myelination aspect in MS, and the experimental autoimmune encephalomyelitis model (EAE) reflects immune-mediated events. We found that Cur alleviated the neurological symptomatology in EAE and modulated the expression of lymphocytes CD3 and CD4 in the spinal cord. Interestingly, Cur restored motor and behavioral deficiencies, as well as myelination, in demyelinated mice, as indicated by the higher index of luxol fast blue (LFB) and the myelin basic protein (MBP) intensity in the corpus callosum. Conclusions: Curcumin is a potential therapeutic agent that can diminish the MS neuroimmune imbalance and demyelination through its anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Ines ELBini-Dhouib
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
- Correspondence: or
| | - Maroua Manai
- Laboratoire de Génétique Humaine (LR99ES10), Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia or
| | - Nour-elhouda Neili
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| | - Soumaya Marzouki
- Laboratoire de Transmission, Contrôle et Immunobiologie des Infections (LR11IPT02), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| | - Ghada Sahraoui
- Laboratoire de Médecine de Précision, Médecine Personnalisée et Investigation en Oncologie (LR21SP01), Service d’Anatomie Pathologique, Institut Salah Azaiez, Bab Saadoun, Tunis 1006, Tunisia
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
| | - Warda Ben Achour
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| | - Sondes Zouaghi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| | - Melika BenAhmed
- Laboratoire de Transmission, Contrôle et Immunobiologie des Infections (LR11IPT02), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
| | - Raoudha Doghri
- Laboratoire de Médecine de Précision, Médecine Personnalisée et Investigation en Oncologie (LR21SP01), Service d’Anatomie Pathologique, Institut Salah Azaiez, Bab Saadoun, Tunis 1006, Tunisia
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
| | - Najet Srairi-Abid
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia
| |
Collapse
|
6
|
Langedijk J, Araya EI, Barroso AR, Tolenaars D, Nazaré M, Belabed H, Schoene J, Chichorro JG, Oude Elferink R. An LPAR5-antagonist that reduces nociception and increases pruriception. FRONTIERS IN PAIN RESEARCH 2022; 3:963174. [PMID: 35959236 PMCID: PMC9360597 DOI: 10.3389/fpain.2022.963174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The G-protein coupled receptor LPAR5 plays a prominent role in LPA-mediated pain and itch signaling. In this study we focus on the LPAR5-antagonist compound 3 (cpd3) and its ability to affect pain and itch signaling, both in vitro and in vivo. Methods Nociceptive behavior in wild type mice was induced by formalin, carrageenan or prostaglandin E2 (PGE2) injection in the hind paw, and the effect of oral cpd3 administration was measured. Scratch activity was measured after oral administration of cpd3, in mice overexpressing phospholipase A2 (sPLA2tg), in wild type mice (WT) and in TRPA1-deficient mice (Trpa1 KO). In vitro effects of cpd3 were assessed by measuring intracellular calcium release in HMC-1 and HEK-TRPA1 cells. Results As expected, nociceptive behavior (induced by formalin, carrageenan or PGE2) was reduced after treatment with cpd3. Unexpectedly, cpd3 induced scratch activity in mice. In vitro addition of cpd3 to HEK-TRPA1 cells induced an intracellular calcium wave that could be inhibited by the TRPA1-antagonist A-967079. In Trpa1 KO mice, however, the increase in scratch activity after cpd3 administration was not reduced. Conclusions Cpd3 has in vivo antinociceptive effects but induces scratch activity in mice, probably by activation of multiple pruriceptors, including TRPA1. These results urge screening of antinociceptive candidate drugs for activity with pruriceptors.
Collapse
Affiliation(s)
- Jacqueline Langedijk
- Amsterdam University Medical Centers (UMC), Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Research Institute Amsterdam Gastroenterology, Endocrinology and Metabolism (AG&M), Amsterdam, Netherlands
| | - Erika Ivanna Araya
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Brazil
| | - Amanda Ribeiro Barroso
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Brazil
| | - Dagmar Tolenaars
- Amsterdam University Medical Centers (UMC), Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Research Institute Amsterdam Gastroenterology, Endocrinology and Metabolism (AG&M), Amsterdam, Netherlands
| | - Marc Nazaré
- Departments of Chemical Biology and Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Hassane Belabed
- Departments of Chemical Biology and Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Jens Schoene
- Departments of Chemical Biology and Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Ronald Oude Elferink
- Amsterdam University Medical Centers (UMC), Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Research Institute Amsterdam Gastroenterology, Endocrinology and Metabolism (AG&M), Amsterdam, Netherlands
- *Correspondence: Ronald Oude Elferink
| |
Collapse
|
7
|
Maguire AD, Bethea JR, Kerr BJ. TNFα in MS and Its Animal Models: Implications for Chronic Pain in the Disease. Front Neurol 2021; 12:780876. [PMID: 34938263 PMCID: PMC8686517 DOI: 10.3389/fneur.2021.780876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a debilitating autoimmune disease often accompanied by severe chronic pain. The most common type of pain in MS, called neuropathic pain, arises from disease processes affecting the peripheral and central nervous systems. It is incredibly difficult to study these processes in patients, so animal models such as experimental autoimmune encephalomyelitis (EAE) mice are used to dissect the complex mechanisms of neuropathic pain in MS. The pleiotropic cytokine tumor necrosis factor α (TNFα) is a critical factor mediating neuropathic pain identified by these animal studies. The TNF signaling pathway is complex, and can lead to cell death, inflammation, or survival. In complex diseases such as MS, signaling through the TNFR1 receptor tends to be pro-inflammation and death, whereas signaling through the TNFR2 receptor is pro-homeostatic. However, most TNFα-targeted therapies indiscriminately block both arms of the pathway, and thus are not therapeutic in MS. This review explores pain in MS, inflammatory TNF signaling, the link between the two, and how it could be exploited to develop more effective TNFα-targeting pain therapies.
Collapse
Affiliation(s)
- Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Cao J, Gan H, Xiao H, Chen H, Jian D, Jian D, Zhai X. Key protein-coding genes related to microglia in immune regulation and inflammatory response induced by epilepsy. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9563-9578. [PMID: 34814358 DOI: 10.3934/mbe.2021469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Several studies have shown a link between immunity, inflammatory processes, and epilepsy. Active neuroinflammation and marked immune cell infiltration occur in epilepsy of diverse etiologies. Microglia, as the first line of defense in the central nervous system, are the main effectors of neuroinflammatory processes. Discovery of new biomarkers associated with microglia activation after epileptogenesis indicates that targeting specific molecules may help control seizures. In this research, we used a combination of several bioinformatics approaches, including RNA sequencing, to explore differentially expressed genes (DEGs) in epileptic lesions and control samples, and to construct a protein-protein interaction (PPI) network for DEGs, which was examined utilizing plug-ins in Cytoscape software. Finally, we aimed to identify 10 hub genes in immune and inflammation-related sub-networks, which were subsequently validated in real-time quantitative polymerase chain reaction analysis in a mouse model of kainic acid-induced epilepsy. The expression patterns of nine genes were consistent with sequencing outcomes. Meanwhile, several genes, including CX3CR1, CX3CL1, GPR183, FPR1, P2RY13, P2RY12 and LPAR5, were associated with microglial activation and migration, providing novel candidate targets for immunotherapy in epilepsy and laying the foundation for further research.
Collapse
Affiliation(s)
- Jing Cao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
| | - Hui Gan
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
| | - Han Xiao
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Hui Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Dan Jian
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Dan Jian
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
- Department of Pathology, Chongqing Medical University, Chongqing 400010, China
| | - Xuan Zhai
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| |
Collapse
|
9
|
Meduri B, Pujar GV, Durai Ananda Kumar T, Akshatha HS, Sethu AK, Singh M, Kanagarla A, Mathew B. Lysophosphatidic acid (LPA) receptor modulators: Structural features and recent development. Eur J Med Chem 2021; 222:113574. [PMID: 34126459 DOI: 10.1016/j.ejmech.2021.113574] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Lysophosphatidic acid (LPA) activates six LPA receptors (LPAR1-6) and regulates various cellular activities such as cell proliferation, cytoprotection, and wound healing. Many studies elucidated the pathological outcomes of LPA are due to the alteration in signaling pathways, which include migration and invasion of cancer cells, fibrosis, atherosclerosis, and inflammation. Current pathophysiological research on LPA and its receptors provides a means that LPA receptors are new therapeutic targets for disorders associated with LPA. Various chemical modulators are developed and are under investigation to treat a wide range of pathological complications. This review summarizes the physiological and pathological roles of LPA signaling, development of various LPA modulators, their structural features, patents, and their clinical outcomes.
Collapse
Affiliation(s)
- Bhagyalalitha Meduri
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Gurubasavaraj Veeranna Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India.
| | - T Durai Ananda Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - H S Akshatha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Arun Kumar Sethu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Abhinav Kanagarla
- Department of Pharmaceutical Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
10
|
Sapkota A, Park SJ, Choi JW. Receptor for Advanced Glycation End Products Is Involved in LPA 5-Mediated Brain Damage after a Transient Ischemic Stroke. Life (Basel) 2021; 11:life11020080. [PMID: 33499230 PMCID: PMC7910825 DOI: 10.3390/life11020080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Lysophosphatidic acid receptor 5 (LPA5) has been recently identified as a novel pathogenic factor for brain ischemic stroke. However, its underlying mechanisms remain unclear. Here, we determined whether the receptor for advanced glycation end products (RAGE) could be involved in LPA5-mediated brain injuries after ischemic challenge using a mouse model of transient middle cerebral artery occlusion (tMCAO). RAGE was upregulated in the penumbra and ischemic core regions after tMCAO challenge. RAGE upregulation was greater at 3 days than that at 1 day after tMCAO challenge. It was mostly observed in Iba1-immunopositive cells of a post-ischemic brain. Suppressing LPA5 activity with its antagonist, TCLPA5, attenuated RAGE upregulation in the penumbra and ischemic core regions, particularly on Iba1-immunopositive cells, of injured brains after tMCAO challenge. It also attenuated blood–brain barrier disruption, one of the core pathogenesis upon RAGE activation, after tMCAO challenge. As an underlying signaling pathways, LPA5 could contribute to the activation of ERK1/2 and NF-κB in injured brains after tMCAO challenge. Collectively, the current study suggests that RAGE is a possible mediator for LPA5-dependent ischemic brain injury.
Collapse
|
11
|
Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog Lipid Res 2020; 81:101079. [PMID: 33259854 DOI: 10.1016/j.plipres.2020.101079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.
Collapse
|
12
|
Yamamoto S, Sakemoto C, Iwasa K, Maruyama K, Shimizu K, Yoshikawa K. Ursolic acid treatment suppresses cuprizone-induced demyelination and motor dysfunction via upregulation of IGF-1. J Pharmacol Sci 2020; 144:119-122. [PMID: 32921392 DOI: 10.1016/j.jphs.2020.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system, characterized by apoptotic death of mature oligodendrocytes, neuroinflammation, and motor dysfunction. A pentacyclic triterpenoid compound, ursolic acid (UA), has various pharmacological activities, such as anti-inflammatory, anti-oxidative, and anti-apoptotic effects. In the present study, we investigated the effects of UA on cuprizone-induced demyelination, which is a model of MS. Oral administration of UA effectively suppressed cuprizone-induced demyelination and motor dysfunction via the enhancement of IGF-1 levels in the demyelinating lesions. Our results suggest that UA might be therapeutically useful for demyelination in MS.
Collapse
Affiliation(s)
- Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; School of Medical Technology, Faculty of Health and Medical Care, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Chiaki Sakemoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; School of Medical Technology, Faculty of Health and Medical Care, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Kuniyoshi Shimizu
- Laboratory of Systematic Forest and Forest Products Sciences, Division of Sustainable Bioresources Science, Department of Agro-Environmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University, West Zone, Building 5, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.
| |
Collapse
|
13
|
Sen MK, Almuslehi MSM, Coorssen JR, Mahns DA, Shortland PJ. Behavioural and histological changes in cuprizone-fed mice. Brain Behav Immun 2020; 87:508-523. [PMID: 32014578 DOI: 10.1016/j.bbi.2020.01.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Feeding cuprizone (CPZ) to mice causes demyelination and reactive gliosis in the central nervous system (CNS), hallmarks of some neurodegenerative diseases like multiple sclerosis. However, relatively little is known regarding the behavioural deficits associated with CPZ-feeding and much of what is known is contradictory. This study investigated whether 37 days oral feeding of 0.2% CPZ to young adult mice evoked sensorimotor behavioural changes. Behavioural tests included measurements of nociceptive withdrawal reflex responses and locomotor tests. Additionally, these were compared to histological analysis of the relevant CNS regions by analysis of neuronal and glial cell components. CPZ-fed mice exhibited more foot slips in walking ladder and beam tests compared to controls. In contrast, no changes in nociceptive thresholds to thermal or mechanical stimuli occurred between groups. Histological analysis showed demyelination throughout the CNS, which was most prominent in white matter tracts in the cerebrum but was also elevated in areas such as the hippocampus, basal ganglia and diencephalon. Profound demyelination and gliosis was seen in the deep cerebellar nuclei and brain stem regions associated with the vestibular system. However, in the spinal cord changes were minimal. No loss of oligodendrocytes, neurons or motoneurons occurred but a significant increase in astrocyte staining ensued throughout the white matter of the spinal cord. The results suggest that CPZ differentially affects oligodendrocytes throughout the CNS and induces subtle motor changes such as ataxia. This is associated with deficits in CNS regions associated with motor and balance functions such as the cerebellum and brain stem.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia; Department of Physiology, College of Veterinary Medicine, Diyala University, Diyala, Iraq
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, New South Wales, Australia.
| |
Collapse
|
14
|
Lysophosphatidic Acid Receptor 5 Plays a Pathogenic Role in Brain Damage after Focal Cerebral Ischemia by Modulating Neuroinflammatory Responses. Cells 2020; 9:cells9061446. [PMID: 32532027 PMCID: PMC7348986 DOI: 10.3390/cells9061446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Receptor-mediated lysophosphatidic acid (LPA) signaling has come to be considered an important event for various diseases. In cerebral ischemia, LPA1 has recently been identified as a receptor subtype that mediates brain injury, but the roles of other LPA receptor subtypes remain unknown. Here, we investigated the potential role of LPA5 as a novel pathogenic factor for cerebral ischemia using a mouse model of transient middle cerebral artery occlusion (tMCAO). LPA5 was upregulated in the ischemic core region after tMCAO challenge, particularly in activated microglia. When TCLPA5, a selective LPA5 antagonist, was given to tMCAO-challenged mice immediately after reperfusion, brain damage, including brain infarction, functional neurological deficit, and neuronal and non-neuronal apoptosis, was reduced in mice. Similarly, delayed TCLPA5 administration (at three hours after reperfusion) reduced brain infarction and neurological deficit. The histological results demonstrated that TCLPA5 administration attenuated microglial activation, as evidenced by the decreased Iba1 immunoreactivities, the number of amoeboid cells, and proliferation in an injured brain. TCLPA5 administration also attenuated the upregulation of the expression of pro-inflammatory cytokines at mRNA levels in post-ischemic brain, which was also observed in lipopolysaccharide-stimulated BV2 microglia upon LPA5 knockdown. Overall, this study identifies LPA5 as a novel pathogenic factor for cerebral ischemia, further implicating it as a promising target for drug development to treat this disease.
Collapse
|
15
|
Xiang H, Lu Y, Shao M, Wu T. Lysophosphatidic Acid Receptors: Biochemical and Clinical Implications in Different Diseases. J Cancer 2020; 11:3519-3535. [PMID: 32284748 PMCID: PMC7150451 DOI: 10.7150/jca.41841] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophosphatidic acid (LPA, 1-acyl-2-hemolytic-sn-glycerol-3-phosphate) extracted from membrane phospholipid is a kind of simple bioactive glycophospholipid, which has many biological functions such as stimulating cell multiplication, cytoskeleton recombination, cell survival, drug-fast, synthesis of DNA and ion transport. Current studies have shown that six G-coupled protein receptors (LPAR1-6) can be activated by LPA. They stimulate a variety of signal transduction pathways through heterotrimeric G-proteins (such as Gα12/13, Gαq/11, Gαi/o and GαS). LPA and its receptors play vital roles in cancers, nervous system diseases, cardiovascular diseases, liver diseases, metabolic diseases, etc. In this article, we discussed the structure of LPA receptors and elucidated their functions in various diseases, in order to better understand them and point out new therapeutic schemes for them.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Shao
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
16
|
Yanagida K, Valentine WJ. Druggable Lysophospholipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:137-176. [DOI: 10.1007/978-3-030-50621-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Plastira I, Joshi L, Bernhart E, Schoene J, Specker E, Nazare M, Sattler W. Small-Molecule Lysophosphatidic Acid Receptor 5 (LPAR5) Antagonists: Versatile Pharmacological Tools to Regulate Inflammatory Signaling in BV-2 Microglia Cells. Front Cell Neurosci 2019; 13:531. [PMID: 31849616 PMCID: PMC6897279 DOI: 10.3389/fncel.2019.00531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022] Open
Abstract
Lysophosphatidic acid (LPA) species in the extracellular environment induce downstream signaling via six different G protein-coupled receptors (LPAR1–6). These signaling cascades are essential for normal brain development and function of the nervous system. However, in response to acute or chronic central nervous system (CNS) damage, LPA levels increase and aberrant signaling events can counteract brain function. Under neuro-inflammatory conditions signaling along the LPA/LPAR5 axis induces a potentially neurotoxic microglia phenotype indicating the need for new pharmacological intervention strategies. Therefore, we compared the effects of two novel small-molecule LPAR5 antagonists on LPA-induced polarization parameters of the BV-2 microglia cell line. AS2717638 is a selective piperidine-based LPAR5 antagonist (IC50 0.038 μM) while compound 3 is a diphenylpyrazole derivative with an IC50 concentration of 0.7 μM in BV-2 cells. Both antagonists compromised cell viability, however, at concentrations above their IC50 concentrations. Both inhibitors blunted LPA-induced phosphorylation of STAT1 and STAT3, p65, and c-Jun and consequently reduced the secretion of pro-inflammatory cyto-/chemokines (IL-6, TNFα, IL-1β, CXCL10, CXCL2, and CCL5) at non-toxic concentrations. Both compounds modulated the expression of intracellular (COX-2 and Arg1) and plasma membrane-located (CD40, CD86, and CD206) polarization markers yet only AS2717638 attenuated the neurotoxic potential of LPA-activated BV-2 cell-conditioned medium towards CATH.a neurons. Our findings from the present in vitro study suggest that the two LPAR5 antagonists represent valuable pharmacological tools to interfere with LPA-induced pro-inflammatory signaling cascades in microglia.
Collapse
Affiliation(s)
- Ioanna Plastira
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Lisha Joshi
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Jens Schoene
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Edgar Specker
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Marc Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Berlin Institute of Health (BIH), Charite & MDC, Berlin, Germany
| | - Wolfgang Sattler
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.,Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| |
Collapse
|
18
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci Biobehav Rev 2019; 107:23-46. [PMID: 31442519 DOI: 10.1016/j.neubiorev.2019.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
The feeding of cuprizone (CPZ) to animals has been extensively used to model the processes of demyelination and remyelination, with many papers adopting a narrative linked to demyelinating conditions like multiple sclerosis (MS), the aetiology of which is unknown. However, no current animal model faithfully replicates the myriad of symptoms seen in the clinical condition of MS. CPZ ingestion causes mitochondrial and endoplasmic reticulum stress and subsequent apoptosis of oligodendrocytes leads to central nervous system demyelination and glial cell activation. Although there are a wide variety of behavioural tests available for characterizing the functional deficits in animal models of disease, including that of CPZ-induced deficits, they have focused on a narrow subset of outcomes such as motor performance, cognition, and anxiety. The literature has not been systematically reviewed in relation to these or other symptoms associated with clinical MS. This paper reviews these tests and makes recommendations as to which are the most important in order to better understand the role of this model in examining aspects of demyelinating diseases like MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada.
| | - Peter J Shortland
- Science and Health, Western Sydney University, New South Wales, Australia.
| |
Collapse
|
19
|
Yasuda D, Kobayashi D, Akahoshi N, Ohto-Nakanishi T, Yoshioka K, Takuwa Y, Mizuno S, Takahashi S, Ishii S. Lysophosphatidic acid-induced YAP/TAZ activation promotes developmental angiogenesis by repressing Notch ligand Dll4. J Clin Invest 2019; 129:4332-4349. [PMID: 31335323 DOI: 10.1172/jci121955] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a potent lipid mediator with various biological functions mediated through six G protein-coupled receptors (GPCRs), LPA1-6. Previous studies have demonstrated that LPA-Gα12/Gα13 signaling plays an important role in embryonic vascular development. However, the responsible LPA receptors and underlying mechanisms are poorly understood. Here, we show a critical role of LPA4 and LPA6 in developmental angiogenesis. In mice, Lpa4;Lpa6 double knockout (DKO) embryos were lethal due to global vascular deficiencies, and endothelial cell (EC)-specific Lpa4;Lpa6 DKO retinas had impaired sprouting angiogenesis. Mechanistically, LPA activated the transcriptional regulators YAP and TAZ through LPA4/LPA6-mediated Gα12/Gα13-Rho-ROCK signaling in ECs. YAP/TAZ knockdown increased β-catenin- and Notch intracellular domain (NICD)-mediated endothelial expression of the Notch ligand delta-like 4 (DLL4). Fibrin gel sprouting assay revealed that LPA4/LPA6, Gα12/Gα13, or YAP/TAZ knockdown consistently blocked EC sprouting, which was rescued by a Notch inhibitor. Of note, the inhibition of Notch signaling also ameliorated impaired retinal angiogenesis in EC-specific Lpa4;Lpa6 DKO mice. Overall, these results suggest that the Gα12/Gα13-coupled receptors LPA4 and LPA6 synergistically regulate endothelial Dll4 expression through YAP/TAZ activation. This could in part account for the mechanism of YAP/TAZ-mediated developmental angiogenesis. Our findings provide a novel insight into the biology of GPCR-activated YAP/TAZ.
Collapse
Affiliation(s)
- Daisuke Yasuda
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Daiki Kobayashi
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Noriyuki Akahoshi
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takayo Ohto-Nakanishi
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazuaki Yoshioka
- Department of Vascular Molecular Physiology, Kanazawa University Graduate School of Medicine, Ishikawa, Japan
| | - Yoh Takuwa
- Department of Vascular Molecular Physiology, Kanazawa University Graduate School of Medicine, Ishikawa, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Ishii
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
20
|
Tabbai S, Moreno-Fernández RD, Zambrana-Infantes E, Nieto-Quero A, Chun J, García-Fernández M, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Oliveira TG, Pérez-Martín M, Pedraza C. Effects of the LPA 1 Receptor Deficiency and Stress on the Hippocampal LPA Species in Mice. Front Mol Neurosci 2019; 12:146. [PMID: 31244601 PMCID: PMC6580287 DOI: 10.3389/fnmol.2019.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an important bioactive lipid species that functions in intracellular signaling through six characterized G protein-coupled receptors (LPA1-6). Among these receptors, LPA1 is a strong candidate to mediate the central effects of LPA on emotion and may be involved in promoting normal emotional behaviors. Alterations in this receptor may induce vulnerability to stress and predispose an individual to a psychopathological disease. In fact, mice lacking the LPA1 receptor exhibit emotional dysregulation and cognitive alterations in hippocampus-dependent tasks. Moreover, the loss of this receptor results in a phenotype of low resilience with dysfunctional coping in response to stress and induces anxiety and several behavioral and neurobiological changes that are strongly correlated with mood disorders. In fact, our group proposes that maLPA1-null mice represent an animal model of anxious depression. However, despite the key role of the LPA-LPA1-pathway in emotion and stress coping behaviors, the available information describing the mechanisms by which the LPA-LPA1-pathway regulates emotion is currently insufficient. Because activation of LPA1 requires LPA, here, we used a Matrix-Assisted Laser Desorption/ Ionization mass spectrometry-based approach to evaluate the effects of an LPA1 receptor deficiency on the hippocampal levels of LPA species. Additionally, the impact of stress on the LPA profile was also examined in both wild-type (WT) and the Malaga variant of LPA1-null mice (maLPA1-null mice). Mice lacking LPA1 did not exhibit gross perturbations in the hippocampal LPA species, but the LPA profile was modified, showing an altered relative abundance of 18:0 LPA. Regardless of the genotype, restraint stress produced profound changes in all LPA species examined, revealing that hippocampal LPA species are a key target of stress. Finally, the relationship between the hippocampal levels of LPA species and performance in the elevated plus maze was established. To our knowledge, this study is the first to detect, identify and profile LPA species in the hippocampus of both LPA1-receptor null mice and WT mice at baseline and after acute stress, as well as to link these LPA species with anxiety-like behaviors. In conclusion, the hippocampal LPA species are a key target of stress and may be involved in psychopathological conditions.
Collapse
Affiliation(s)
- Sara Tabbai
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Román Dario Moreno-Fernández
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Emma Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Andrea Nieto-Quero
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Maria García-Fernández
- Departamento de Fisiología y Medicina Deportiva, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Luis Javier Santín
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|