1
|
Al Ali HS, Rodrigo GC, Lambert DG. Signalling pathways involved in urotensin II induced ventricular myocyte hypertrophy. PLoS One 2025; 20:e0313119. [PMID: 39820183 PMCID: PMC11737703 DOI: 10.1371/journal.pone.0313119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/20/2024] [Indexed: 01/19/2025] Open
Abstract
Sustained pathologic myocardial hypertrophy can result in heart failure(HF); a significant health issue affecting a large section of the population worldwide. In HF there is a marked elevation in circulating levels of the peptide urotensin II(UII) but it is unclear whether this is a result of hypertrophy or whether the high levels contribute to the development of hypertrophy. The aim of this study is to investigate a role of UII and its receptor UT in the development of cardiac hypertrophy and the signalling molecules involved. Ventricular myocytes isolated from adult rat hearts were treated with 200nM UII for 48hours and hypertrophy was quantified from measurements of length/width (L/W) ratio. UII resulted in a change in L/W ratio from 4.53±0.10 to 3.99±0.06; (p<0.0001) after 48hours. The response is reversed by the UT-antagonist SB657510 (1μM). UT receptor activation by UII resulted in the activation of ERK1/2, p38 and CaMKII signalling pathways measured by Western blotting; these are involved in the induction of hypertrophy. JNK was not involved. Moreover, ERK1/2, P38 and CaMKII inhibitors completely blocked UII-induced hypertrophy. Sarcoplasmic reticulum (SR) Ca2+-leak was investigated in isolated myocytes. There was no significant increase in SR Ca2+-leak. Our results suggest that activation of MAPK and CaMKII signalling pathways are involved in the hypertrophic response to UII. Collectively our data suggest that increased circulating UII may contribute to the development of left ventricular hypertrophy and pharmacological inhibition of the UII/UT receptor system may prove beneficial in reducing adverse remodeling and alleviating contractile dysfunction in heart disease.
Collapse
Affiliation(s)
- Hadeel S. Al Ali
- Department of Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
- Department of Physiology, Al-Zahraa College of Medicine, University of Basrah, Basrah, Iraq
| | - Glenn C. Rodrigo
- Department of Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - David G. Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
2
|
Loh YH, Lv J, Goh Y, Sun X, Zhu X, Muheyati M, Luan Y. Remodelling of T-Tubules and Associated Calcium Handling Dysfunction in Heart Failure: Mechanisms and Therapeutic Insights. Can J Cardiol 2024; 40:2569-2588. [PMID: 39455023 DOI: 10.1016/j.cjca.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
In cardiomyocytes, transverse tubules (T-tubules) are sarcolemmal invaginations that facilitate excitation-contraction coupling and diastolic function. The clinical significance of T-tubules has become evident in that their remodelling is recognised as a hallmark feature of heart failure (HF) and a key contributor to disrupted Ca2+ homeostasis, compromised cardiac function, and arrhythmogenesis. Further investigations have revealed that T-tubule remodelling is particularly pronounced in HF with reduced ejection fraction (HFrEF), but not in HF with preserved ejection fraction, implying that T-tubule remodelling may play a crucial pathophysiologic role in HFrEF. While research on the functional importance of T-tubules is ongoing, T-tubule remodelling has been found to be reversible. That finding has triggered a surge in studies aimed at identifying specific therapeutic approaches for HFrEF. This review discusses the functional importance of T-tubules and their microdomains, the pathophysiology of T-tubule remodelling, and the potential mechanisms of current HFrEF therapeutic approaches in reversing T-tubule alterations. We also highlight discrepancies regarding the roles of T-tubule proteins in the recovery process across studies to offer valuable insights for future research.
Collapse
Affiliation(s)
- Yi Hao Loh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Jingyi Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yenfang Goh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xiangjie Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xianfeng Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; Department of Critical Care Medicine, Hangzhou Ninth People's Hospital, China
| | - Muergen Muheyati
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; School of Medicine, Shaoxing University, China.
| |
Collapse
|
3
|
Bordett R, Danazumi KB, Wijekoon S, Garcia CJ, Abdulmalik S, Kumbar SG. Advancements in stimulation therapies for peripheral nerve regeneration. Biomed Mater 2024; 19:052008. [PMID: 39025114 PMCID: PMC11425301 DOI: 10.1088/1748-605x/ad651d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Soft-tissue injuries affecting muscles, nerves, vasculature, tendons, and ligaments often diminish the quality of life due to pain, loss of function, and financial burdens. Both natural healing and surgical interventions can result in scarring, which potentially may impede functional recovery and lead to persistent pain. Scar tissue, characterized by a highly disorganized fibrotic extracellular matrix, may serve as a physical barrier to regeneration and drug delivery. While approaches such as drugs, biomaterials, cells, external stimulation, and other physical forces show promise in mitigating scarring and promoting regenerative healing, their implementation remains limited and challenging. Ultrasound, laser, electrical, and magnetic forms of external stimulation have been utilized to promote soft tissue as well as neural tissue regeneration. After stimulation, neural tissues experience increased proliferation of Schwann cells, secretion of neurotropic factors, production of myelin, and growth of vasculature, all aimed at supporting axon regeneration and innervation. Yet, the outcomes of healing vary depending on the pathophysiology of the damaged nerve, the timing of stimulation following injury, and the specific parameters of stimulation employed. Increased treatment intensity and duration have been noted to hinder the healing process by inducing tissue damage. These stimulation modalities, either alone or in combination with nerve guidance conduits and scaffolds, have been demonstrated to promote healing. However, the literature currently lacks a detailed understanding of the stimulation parameters used for nerve healing applications. In this article, we aim to address this gap by summarizing existing reports and providing an overview of stimulation parameters alongside their associated healing outcomes.
Collapse
Affiliation(s)
- Rosalie Bordett
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Khadija B Danazumi
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Suranji Wijekoon
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Christopher J Garcia
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sangamesh G Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
4
|
Tan YQ, Zhang W, Xie ZC, Li J, Chen HW. CaMK II in Cardiovascular Diseases, Especially CaMK II-δ: Friends or Enemies. Drug Des Devel Ther 2024; 18:3461-3476. [PMID: 39132626 PMCID: PMC11314529 DOI: 10.2147/dddt.s473251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) tend to affect the young population and are associated with a significant economic burden and psychological distress to the society and families. The physiological and pathological processes underlying CVDs are complex. Ca2+/calmodulin-dependent kinase II (CaMK II), a protein kinase, has multiple biological functions. It participates in multiple pathological processes and plays a central role in the development of CVDs. Based on this, this paper analyzes the structural characteristics and distribution of CaMK II, the mechanism of action of CaMK II, and the relationship between CaMK II and CVDs, including ion channels, ischemia-reperfusion injury, arrhythmias, myocardial hypertrophy, cardiotoxicity, hypertension, and dilated cardiomyopathy. Given the different regulatory mechanisms of different isoforms of CaMK II, the clinical use of specific targeted inhibitors or novel compounds should be evaluated in future research to provide new directions.
Collapse
Affiliation(s)
- Yu-Qing Tan
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Wang Zhang
- Department of Pharmacy, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Zi-Cong Xie
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Jun Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Heng-Wen Chen
- New Drug Research and Development Office, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| |
Collapse
|
5
|
Elsayed SH, Fares NH, Elsharkawy SH, Mahmoud YI. Flaxseed lignans alleviates isoproterenol-induced cardiac hypertrophy by regulating myocardial remodeling and oxidative stress. Ultrastruct Pathol 2023; 47:1-8. [PMID: 36789548 DOI: 10.1080/01913123.2023.2175944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Cardiovascular diseases, the leading global cause of death, are usually associated with cardiac hypertrophy (CH). CH is an adaptive response of the heart against cardiac overloading, but continuous CH accelerates cardiac remodeling and results in heart failure. Available CH therapies delay the progress of heart failure, but they often fail to control symptoms or restore quality of life. Although flaxseed lignans have been shown to have significant anti-oxidant, anti-hypertensive, anti-inflammatory, and anti-fibrotic effects in various cardiovascular diseases, little is known about their effect on CH. Thus, this study evaluated the therapeutic effect of flaxseed lignans on CH, which was induced by subcutaneous injections with isoproterenol (5 mg/kg b.w) for 14 consecutive days. Flaxseed lignans (200 mg/kg) was given orally for 4 weeks. Cardiac pathological remodeling was evaluated by echocardiography, after which morphometric, biochemical, histological, and ultrastructural analyses were performed. Flaxseed lignans significantly ameliorated CH structural and functional alterations as shown by echocardiography. Lignans also reduced the relative heart weight, significantly decreased the elevated CK-MB and the lipid peroxidation marker malondialdehyde, augmented the myocardial total antioxidant capacity, and ameliorated the histopathological and ultrastructural changes in cardiac tissues and prevented interstitial collagen deposition. The results demonstrate promising anti-hypertrophic effect of flaxseed lignans against isoproterenol-induced cardiac hypertrophy, via regulating myocardial remodeling and oxidative stress. Therefore, lignans could be used as potential pharmacological intervention in the management of CH.
Collapse
Affiliation(s)
- Sanaa H Elsayed
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nagui H Fares
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Samar H Elsharkawy
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yomna I Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Qian D, Tian J, Wang S, Shan X, Zhao P, Chen H, Xu M, Guo W, Zhang C, Lu R. Trans-cinnamaldehyde protects against phenylephrine-induced cardiomyocyte hypertrophy through the CaMKII/ERK pathway. BMC Complement Med Ther 2022; 22:115. [PMID: 35468773 PMCID: PMC9040265 DOI: 10.1186/s12906-022-03594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/14/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Trans-cinnamaldehyde (TCA) is one of the main pharmaceutical ingredients of Cinnamomum cassia Presl, which has been shown to have therapeutic effects on a variety of cardiovascular diseases. This study was carried out to characterize and reveal the underlying mechanisms of the protective effects of TCA against cardiac hypertrophy. METHODS We used phenylephrine (PE) to induce cardiac hypertrophy and treated with TCA in vivo and in vitro. In neonatal rat cardiomyocytes (NRCMs), RNA sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out to identify potential pathways of TCA. Then, the phosphorylation and nuclear localization of calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-related kinase (ERK) were detected. In adult mouse cardiomyocytes (AMCMs), calcium transients, calcium sparks, sarcomere shortening and the phosphorylation of several key proteins for calcium handling were evaluated. For mouse in vivo experiments, cardiac hypertrophy was evaluated by assessing morphological changes, echocardiographic parameters, and the expression of hypertrophic genes and proteins. RESULTS TCA suppressed PE-induced cardiac hypertrophy and the phosphorylation and nuclear localization of CaMKII and ERK in NRCMs. Our data also demonstrate that TCA blocked the hyperphosphorylation of ryanodine receptor type 2 (RyR2) and phospholamban (PLN) and restored Ca2+ handling and sarcomere shortening in AMCMs. Moreover, our data revealed that TCA alleviated PE-induced cardiac hypertrophy in adult mice and downregulated the phosphorylation of CaMKII and ERK. CONCLUSION TCA has a protective effect against PE-induced cardiac hypertrophy that may be associated with the inhibition of the CaMKII/ERK pathway.
Collapse
Affiliation(s)
- Dongdong Qian
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Tian
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Sining Wang
- Department of Comprehensive Internal Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Xiaoli Shan
- Public Experiment Platform, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Pei Zhao
- Public Experiment Platform, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huihua Chen
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ming Xu
- Department of Physiology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Guo
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Zhang
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Rong Lu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
Hajihosseinloo A, Banitalebi Dehkordi A, Vojoudi H, Ghasemi JB, Rofouei MK, Badiei A. N-doped carbon hollow spheres for the simultaneous determination of atorvastatin and amlodipine by synchronous fluorescence spectroscopy. Microchem J 2022; 172:106983. [DOI: 10.1016/j.microc.2021.106983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Ni Y, Deng J, Bai H, Liu C, Liu X, Wang X. CaMKII inhibitor KN-93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p-VEGFR2 and STAT3 pathways. J Cell Mol Med 2021; 26:312-325. [PMID: 34845819 PMCID: PMC8743652 DOI: 10.1111/jcmm.17081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022] Open
Abstract
Persistent cardiac Ca2+/calmodulin‐dependent Kinase II (CaMKII) activation was considered to promote heart failure (HF) development, some studies believed that CaMKII was a target for therapy of HF. However, CaMKII was an important mediator for the ischaemia‐induced coronary angiogenesis, and new evidence confirmed that angiogenesis inhibited cardiac remodelling and improved heart function, and some conditions which impaired angiogenesis aggravated ventricular remodelling. This study aimed to investigate the roles and the underlying mechanisms of CaMKII inhibitor in cardiac remodelling. First, we induced cardiac remodelling rat model by ISO, pre‐treated by CaMKII inhibitor KN‐93, evaluated heart function by echocardiography measurements, and performed HE staining, Masson staining, Tunel staining, Western blot and RT‐PCR to test cardiac remodelling and myocardial microvessel density; we also observed ultrastructure of cardiac tissue with transmission electron microscope. Second, we cultured HUVECs, pre‐treated by ISO and KN‐93, detected cell proliferation, migration, tubule formation and apoptosis, and carried out Western blot to determine the expression of NOX2, NOX4, VEGF, VEGFR2, p‐VEGFR2 and STAT3; mtROS level was also measured. In vivo, we found KN‐93 severely reduced myocardial microvessel density, caused apoptosis of vascular endothelial cells, enhanced cardiac hypertrophy, myocardial apoptosis, collagen deposition, aggravated the deterioration of myocardial ultrastructure and heart function. In vitro, KN‐93 inhibited HUVECs proliferation, migration and tubule formation, and promoted apoptosis of HUVECs. The expression of NOX2, NOX4, p‐VEGFR2 and STAT3 were down‐regulated by KN‐93; mtROS level was severely reduced by KN‐93. We concluded that KN‐93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p‐VEGFR2 and STAT3 pathways.
Collapse
Affiliation(s)
- Yajuan Ni
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Deng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongyuan Bai
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chang Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaofang Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Park JS, Lee GH, Jin SW, Pham TH, Thai TN, Kim JY, Kim CY, Han EH, Hwang YP, Choi CY, Jeong HG. G protein-coupled estrogen receptor regulates the KLF2-dependent eNOS expression by activating of Ca 2+ and EGFR signaling pathway in human endothelial cells. Biochem Pharmacol 2021; 192:114721. [PMID: 34363795 DOI: 10.1016/j.bcp.2021.114721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022]
Abstract
G protein-coupled estrogen receptor (GPER) is important for maintaining normal blood vessel function by preventing endothelial cell dysfunction. It has been reported that G-1, an agonist of GPER, increases nitric oxide (NO) production through the phosphorylation of endothelial nitric oxide synthase (eNOS). However, the effect of GPER activation on eNOS expression has not been studied. Our results show that G-1 significantly increased the expression of eNOS and Kruppel-like factor 2 (KLF2) in human endothelial EA.hy926 cells. The individual silences of KLF2 and GPER attenuated G-1-induced eNOS expression. In addition, inhibition of the Gαq and Gβγ suppressed G-1-induced the expression of eNOS and KLF2 in EA.hy926 cells. Interestingly, these effects were similar in HUVECs. Furthermore, we found that GPER-mediated Ca2+ signaling increased the phosphorylation of CaMKKβ, AMPK, and CaMKIIα in the cells. The phosphorylation of histone deacetylase 5 (HDAC5) by activation of AMPK and CaMKIIα increased the expression of eNOS via transcriptional activity of KLF2. We further demonstrate that GPER activation increased the phosphorylation of Src, EGFR, ERK5, and MEF2C and consequently induced the expression of eNOS and KLF2. Meanwhile, inhibition of ERK5 and HDAC5 suppressed the expression of eNOS and KLF2 induced by G-1 in the cells. These findings suggest that GPER provides a novel mechanism for understanding the regulation of eNOS expression and is an essential therapeutic target in preventing cardiovascular-related endothelial dysfunction.
Collapse
Affiliation(s)
- Jin Song Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Thi Hoa Pham
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tuyet Ngan Thai
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chae Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Yong Pil Hwang
- Fisheries Promotion Division, Mokpo City, Mokpo 58613, Republic of Korea
| | - Chul Yung Choi
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
10
|
Wang Y, Zhang Y, Li X, Zhang Q. The progress of biomaterials in peripheral nerve repair and regeneration. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Repair and regeneration of the injured peripheral nerve (PN) is a challenging issue in clinics. Although the regeneration outcome of large PN defects is currently unsatisfactory, recently, the study of PN repair has considerably progressed. In particular, biomaterials for repairing PNs, such as nerve guidance conduits and nerve repair membranes, have been well developed. Herein, we summarize the anatomy of the PN, the pathophysiological features of the nerve injury, and the repair process post injury. Then, we highlight the progress in the development of natural and synthetic biomaterials and summarize the applications, advantages, and disadvantages of these materials. These materials can be used as nerve repair membranes and nerve conduits in the field of PN repair. Finally, we discuss the challenges encountered and development strategies for PN repair in the future.
Collapse
|