1
|
Diamond ME, Toso A. Tactile cognition in rodents. Neurosci Biobehav Rev 2023; 149:105161. [PMID: 37028580 DOI: 10.1016/j.neubiorev.2023.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Since the discovery 50 years ago of the precisely ordered representation of the whiskers in somatosensory cortex, the rodent tactile sensory system has been a fertile ground for the study of sensory processing. With the growing sophistication of touch-based behavioral paradigms, together with advances in neurophysiological methodology, a new approach is emerging. By posing increasingly complex perceptual and memory problems, in many cases analogous to human psychophysical tasks, investigators now explore the operations underlying rodent problem solving. We define the neural basis of tactile cognition as the transformation from a stage in which neuronal activity encodes elemental features, local in space and in time, to a stage in which neuronal activity is an explicit representation of the behavioral operations underlying the current task. Selecting a set of whisker-based behavioral tasks, we show that rodents achieve high level performance through the workings of neuronal circuits that are accessible, decodable, and manipulatable. As a means towards exploring tactile cognition, this review presents leading psychophysical paradigms and, where known, their neural correlates.
Collapse
Affiliation(s)
- Mathew E Diamond
- Cognitive Neuroscience, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy.
| | - Alessandro Toso
- Cognitive Neuroscience, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
2
|
Berry MJ, Tkačik G. Clustering of Neural Activity: A Design Principle for Population Codes. Front Comput Neurosci 2020; 14:20. [PMID: 32231528 PMCID: PMC7082423 DOI: 10.3389/fncom.2020.00020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/18/2020] [Indexed: 11/24/2022] Open
Abstract
We propose that correlations among neurons are generically strong enough to organize neural activity patterns into a discrete set of clusters, which can each be viewed as a population codeword. Our reasoning starts with the analysis of retinal ganglion cell data using maximum entropy models, showing that the population is robustly in a frustrated, marginally sub-critical, or glassy, state. This leads to an argument that neural populations in many other brain areas might share this structure. Next, we use latent variable models to show that this glassy state possesses well-defined clusters of neural activity. Clusters have three appealing properties: (i) clusters exhibit error correction, i.e., they are reproducibly elicited by the same stimulus despite variability at the level of constituent neurons; (ii) clusters encode qualitatively different visual features than their constituent neurons; and (iii) clusters can be learned by downstream neural circuits in an unsupervised fashion. We hypothesize that these properties give rise to a "learnable" neural code which the cortical hierarchy uses to extract increasingly complex features without supervision or reinforcement.
Collapse
Affiliation(s)
- Michael J. Berry
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
3
|
Ikeda T, Oka S, Shibuya T, Matsuda K, Suzuki A. Effects of short-term immobilization of the upper limb on the somatosensory pathway: a study of short-latency somatosensory evoked potentials. J Phys Ther Sci 2019; 31:603-607. [PMID: 31527993 PMCID: PMC6698469 DOI: 10.1589/jpts.31.603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/05/2019] [Indexed: 11/24/2022] Open
Abstract
[Purpose] Previous studies have reported that the nervous system is influenced during
short-term cast immobilization. However, the effects of short-term inactivity on
somatosensory information processing systems are not well understood. This study
investigated the effect of 10 h of upper limb immobilization on the somatosensory pathway
using short-latency somatosensory evoked potentials. [Participants and Methods] Twenty
right-handed healthy participants (mean age 21.7 years) were enrolled in this study. The
participants’ left hands and forearms were wrapped in a soft bandage at a 90° elbow flexed
position. The participants were instructed not to move their left hand for 10 h. To obtain
short-latency somatosensory evoked potentials, we used a multimodal evoked potential
system. The left median nerve was electrically stimulated at a rate of 5 Hz for a duration
of 0.2 ms. The intensity of the stimulus was adjusted to induce mild twitches of the
thumb. The amplitudes and latencies of the short-latency somatosensory evoked potential
components (N9, N13, and N20) were measured before and after immobilization. [Results] The
amplitude of the N9 component significantly increased after immobilization. [Conclusion]
Our results indicated that the changes in the excitability of the peripheral somatosensory
nerve were due to 10 h of inactivity.
Collapse
Affiliation(s)
- Takuro Ikeda
- Department of Physical Therapy, Faculty of Health Sciences at Fukuoka, International University of Health and Welfare: 137-1 Enokizu, Okawa city, Fukuoka 831-8501, Japan
| | - Shinichiro Oka
- Department of Physical Therapy, Faculty of Health Sciences at Fukuoka, International University of Health and Welfare: 137-1 Enokizu, Okawa city, Fukuoka 831-8501, Japan
| | - Toru Shibuya
- Department of Rehabilitation, Tsuruta Orthopedic Clinic, Japan
| | - Kensuke Matsuda
- Department of Physical Therapy, Faculty of Health Sciences at Fukuoka, International University of Health and Welfare: 137-1 Enokizu, Okawa city, Fukuoka 831-8501, Japan
| | - Akari Suzuki
- Department of Physical Therapy, Faculty of Health Sciences at Fukuoka, International University of Health and Welfare: 137-1 Enokizu, Okawa city, Fukuoka 831-8501, Japan
| |
Collapse
|
4
|
da Silva Lantyer A, Calcini N, Bijlsma A, Kole K, Emmelkamp M, Peeters M, Scheenen WJJ, Zeldenrust F, Celikel T. A databank for intracellular electrophysiological mapping of the adult somatosensory cortex. Gigascience 2018; 7:5232232. [PMID: 30521020 PMCID: PMC6302958 DOI: 10.1093/gigascience/giy147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/18/2018] [Indexed: 02/04/2023] Open
Abstract
Background Neurons in the supragranular layers of the somatosensory cortex integrate sensory (bottom-up) and cognitive/perceptual (top-down) information as they orchestrate communication across cortical columns. It has been inferred, based on intracellular recordings from juvenile animals, that supragranular neurons are electrically mature by the fourth postnatal week. However, the dynamics of the neuronal integration in adulthood is largely unknown. Electrophysiological characterization of the active properties of these neurons throughout adulthood will help to address the biophysical and computational principles of the neuronal integration. Findings Here, we provide a database of whole-cell intracellular recordings from 315 neurons located in the supragranular layers (L2/3) of the primary somatosensory cortex in adult mice (9–45 weeks old) from both sexes (females, N = 195; males, N = 120). Data include 361 somatic current-clamp (CC) and 476 voltage-clamp (VC) experiments, recorded using a step-and-hold protocol (CC, N = 257; VC, N = 46), frozen noise injections (CC, N = 104) and triangular voltage sweeps (VC, 10 (N = 132), 50 (N = 146) and 100 ms (N = 152)), from regular spiking (N = 169) and fast-spiking neurons (N = 66). Conclusions The data can be used to systematically study the properties of somatic integration and the principles of action potential generation across sexes and across electrically characterized neuronal classes in adulthood. Understanding the principles of the somatic transformation of postsynaptic potentials into action potentials will shed light onto the computational principles of intracellular information transfer in single neurons and information processing in neuronal networks, helping to recreate neuronal functions in artificial systems.
Collapse
Affiliation(s)
- Angelica da Silva Lantyer
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Niccolò Calcini
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Ate Bijlsma
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Melanie Emmelkamp
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Manon Peeters
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Wim J J Scheenen
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Fleur Zeldenrust
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, 6525 HJ, Nijmegen - the Netherlands
| |
Collapse
|
5
|
Gao Z, Chen L, Fan R, Lu W, Wang D, Cui S, Huang L, Zhao S, Guan S, Zhu Y, Wang JH. Associations of Unilateral Whisker and Olfactory Signals Induce Synapse Formation and Memory Cell Recruitment in Bilateral Barrel Cortices: Cellular Mechanism for Unilateral Training Toward Bilateral Memory. Front Cell Neurosci 2016; 10:285. [PMID: 28018178 PMCID: PMC5160353 DOI: 10.3389/fncel.2016.00285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Somatosensory signals and operative skills learned by unilateral limbs can be retrieved bilaterally. In terms of cellular mechanism underlying this unilateral learning toward bilateral memory, we hypothesized that associative memory cells in bilateral cortices and synapse innervations between them were produced. In the examination of this hypothesis, we have observed that paired unilateral whisker and odor stimulations led to odorant-induced whisker motions in bilateral sides, which were attenuated by inhibiting the activity of barrel cortices. In the mice that showed bilateral cross-modal responses, the neurons in both sides of barrel cortices became to encode this new odor signal alongside the innate whisker signal. Axon projections and synapse formations from the barrel cortex, which was co-activated with the piriform cortex, toward its contralateral barrel cortex (CBC) were upregulated. Glutamatergic synaptic transmission in bilateral barrel cortices was upregulated and GABAergic synaptic transmission was downregulated. The associative activations of the sensory cortices facilitate new axon projection, glutamatergic synapse formation and GABAergic synapse downregulation, which drive the neurons to be recruited as associative memory cells in the bilateral cortices. Our data reveal the productions of associative memory cells and synapse innervations in bilateral sensory cortices for unilateral training toward bilateral memory.
Collapse
Affiliation(s)
- Zilong Gao
- State Key Lab of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Lei Chen
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
| | - Ruicheng Fan
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
| | - Wei Lu
- School of Pharmacy, Qingdao UniversityShandong, China
| | - Dangui Wang
- State Key Lab of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Shan Cui
- State Key Lab of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
| | - Sudong Guan
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
| | - Yan Zhu
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
| | - Jin-Hui Wang
- State Key Lab of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
- School of Pharmacy, Qingdao UniversityShandong, China
| |
Collapse
|
6
|
Omrani M, Lak A, Diamond ME. Learning not to feel: reshaping the resolution of tactile perception. Front Syst Neurosci 2013; 7:29. [PMID: 23847478 PMCID: PMC3701118 DOI: 10.3389/fnsys.2013.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/14/2013] [Indexed: 11/13/2022] Open
Abstract
We asked whether biased feedback during training could cause human subjects to lose perceptual acuity in a vibrotactile frequency discrimination task. Prior to training, we determined each subject's vibration frequency discrimination capacity on one fingertip, the Just Noticeable Difference (JND). Subjects then received 850 trials in which they performed a same/different judgment on two vibrations presented to that fingertip. They gained points whenever their judgment matched the computer-generated feedback on that trial. Feedback, however, was biased: the probability per trial of “same” feedback was drawn from a normal distribution with standard deviation twice as wide as the subject's JND. After training, the JND was significantly widened: stimulus pairs previously perceived as different were now perceived as the same. The widening of the JND extended to the untrained hand, indicating that the decrease in resolution originated in non-topographic brain regions. In sum, the acuity of subjects' sensory-perceptual systems shifted in order to match the feedback received during training.
Collapse
Affiliation(s)
- Mohsen Omrani
- Tactile Perception and Learning Lab, International School for Advanced Studies-SISSA Trieste, Italy ; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM) Tehran, Iran ; Centre for Neuroscience Studies, Queen's University Kingston, ON, Canada
| | | | | |
Collapse
|
7
|
Levy O, Ziv NE, Marom S. Enhancement of neural representation capacity by modular architecture in networks of cortical neurons. Eur J Neurosci 2012; 35:1753-60. [PMID: 22507055 DOI: 10.1111/j.1460-9568.2012.08094.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological networks are ubiquitously modular, a feature that is believed to be essential for the enhancement of their functional capacities. Here, we have used a simple modular in vitro design to examine the possibility that modularity enhances network functionality in the context of input representation. We cultured networks of cortical neurons obtained from newborn rats in vitro on substrate-integrated multi-electrode arrays, forcing the network to develop two well-defined modules of neural populations that are coupled by a narrow canal. We measured the neural activity, and examined the capacity of each module to individually classify (i.e. represent) spatially distinct electrical stimuli and propagate input-specific activity features to their downstream coupled counterpart. We show that, although each of the coupled modules maintains its autonomous functionality, a significant enhancement of representational capacity is achieved when the system is observed as a whole. We interpret our results in terms of a relative decorrelation effect imposed by weak coupling between modules.
Collapse
Affiliation(s)
- Ofri Levy
- Faculty of Medicine and Network Biology Laboratories, Technion, Haifa, Israel.
| | | | | |
Collapse
|
8
|
Kaskan PM, Dillenburger BC, Lu HD, Roe AW, Kaas JH. Orientation and Direction-of-Motion Response in the Middle Temporal Visual Area (MT) of New World Owl Monkeys as Revealed by Intrinsic-Signal Optical Imaging. Front Neuroanat 2010; 4:23. [PMID: 20661299 PMCID: PMC2906256 DOI: 10.3389/fnana.2010.00023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/12/2010] [Indexed: 11/30/2022] Open
Abstract
Intrinsic-signal optical imaging was used to evaluate relationships of domains of neurons in middle temporal visual area (MT) selective for stimulus orientation and direction-of-motion. Maps of activation were elicited in MT of owl monkeys by gratings drifting back-and-forth, flashed stationary gratings and unidirectionally drifting fields of random dots. Drifting gratings, typically used to reveal orientation preference domains, contain a motion component that may be represented in MT. Consequently, this stimulus could activate groups of cells responsive to the motion of the grating, its orientation or a combination of both. Domains elicited from either moving or static gratings were remarkably similar, indicating that these groups of cells are responding to orientation, although they may also encode information about motion. To assess the relationship between domains defined by drifting oriented gratings and those responsive to direction-of-motion, the response to drifting fields of random dots was measured within domains defined from thresholded maps of activation elicited by the drifting gratings. The optical response elicited by drifting fields of random dots was maximal in a direction orthogonal to the map of orientation preference. Thus, neurons in domains selective for stimulus orientation are also selective for motion orthogonal to the preferred stimulus orientation.
Collapse
Affiliation(s)
- Peter M Kaskan
- Department of Psychology, Vanderbilt University Nashville, TN, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
The mammalian neocortex mediates complex cognitive behaviors, such as sensory perception, decision making, and language. The evolutionary history of the cortex, and the cells and circuitry underlying similar capabilities in nonmammals, are poorly understood, however. Two distinct features of the mammalian neocortex are lamination and radially arrayed columns that form functional modules, characterized by defined neuronal types and unique intrinsic connections. The seeming inability to identify these characteristic features in nonmammalian forebrains with earlier methods has often led to the assumption of uniqueness of neocortical cells and circuits in mammals. Using contemporary methods, we demonstrate the existence of comparable columnar functional modules in laminated auditory telencephalon of an avian species (Gallus gallus). A highly sensitive tracer was placed into individual layers of the telencephalon within the cortical region that is similar to mammalian auditory cortex. Distribution of anterograde and retrograde transportable markers revealed extensive interconnections across layers and between neurons within narrow radial columns perpendicular to the laminae. This columnar organization was further confirmed by visualization of radially oriented axonal collaterals of individual intracellularly filled neurons. Common cell types in birds and mammals that provide the cellular substrate of columnar functional modules were identified. These findings indicate that laminar and columnar properties of the neocortex are not unique to mammals and may have evolved from cells and circuits found in more ancient vertebrates. Specific functional pathways in the brain can be analyzed in regard to their common phylogenetic origins, which introduces a previously underutilized level of analysis to components involved in higher cognitive functions.
Collapse
|
10
|
Guthrie M, Myers CE, Gluck MA. A neurocomputational model of tonic and phasic dopamine in action selection: a comparison with cognitive deficits in Parkinson's disease. Behav Brain Res 2009; 200:48-59. [PMID: 19162084 PMCID: PMC4334387 DOI: 10.1016/j.bbr.2008.12.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 12/22/2008] [Accepted: 12/23/2008] [Indexed: 11/25/2022]
Abstract
The striatal dopamine signal has multiple facets; tonic level, phasic rise and fall, and variation of the phasic rise/fall depending on the expectation of reward/punishment. We have developed a network model of the striatal direct pathway using an ionic current level model of the medium spiny neuron that incorporates currents sensitive to changes in the tonic level of dopamine. The model neurons in the network learn action selection based on a novel set of mathematical rules that incorporate the phasic change in the dopamine signal. This network model is capable of learning to perform a sequence learning task that in humans is thought to be dependent on the basal ganglia. When both tonic and phasic levels of dopamine are decreased, as would be expected in unmedicated Parkinson's disease (PD), the model reproduces the deficits seen in a human PD group off medication. When the tonic level is increased to normal, but with reduced phasic increases and decreases in response to reward and punishment, respectively, as would be expected in PD medicated with L-Dopa, the model again reproduces the human data. These findings support the view that the cognitive dysfunctions seen in Parkinson's disease are not solely either due to the decreased tonic level of dopamine or to the decreased responsiveness of the phasic dopamine signal to reward and punishment, but to a combination of the two factors that varies dependent on disease stage and medication status.
Collapse
Affiliation(s)
- M Guthrie
- Center for Neuroscience, Rutgers University, 197 University Avenue, Suite 209, Newark, NJ 07102, USA.
| | | | | |
Collapse
|
11
|
Silva Tenório A, Oliveira IDVA, Guedes RCA. Early vibrissae removal facilitates cortical spreading depression propagation in the brain of well‐nourished and malnourished developing rats. Int J Dev Neurosci 2009; 27:431-7. [DOI: 10.1016/j.ijdevneu.2009.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/24/2009] [Accepted: 05/12/2009] [Indexed: 11/26/2022] Open
Affiliation(s)
- Angélica Silva Tenório
- Department of NutritionLaboratory of PhysiologyUniversidade Federal de Pernambuco50670901RecifePEBrazil
| | | | | |
Collapse
|
12
|
Zilberter M, Holmgren C, Shemer I, Silberberg G, Grillner S, Harkany T, Zilberter Y. Input specificity and dependence of spike timing-dependent plasticity on preceding postsynaptic activity at unitary connections between neocortical layer 2/3 pyramidal cells. ACTA ACUST UNITED AC 2009; 19:2308-20. [PMID: 19193711 DOI: 10.1093/cercor/bhn247] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Layer 2/3 (L2/3) pyramidal cells receive excitatory afferent input both from neighbouring pyramidal cells and from cortical and subcortical regions. The efficacy of these excitatory synaptic inputs is modulated by spike timing-dependent plasticity (STDP). Here we report that synaptic connections between L2/3 pyramidal cell pairs are located proximal to the soma, at sites overlapping those of excitatory inputs from other cortical layers. Nevertheless, STDP at L2/3 pyramidal to pyramidal cell connections showed fundamental differences from known STDP rules at these neighbouring contacts. Coincident low-frequency pre- and postsynaptic activation evoked only LTD, independent of the order of the pre- and postsynaptic cell firing. This symmetric anti-Hebbian STDP switched to a typical Hebbian learning rule if a postsynaptic action potential train occurred prior to the presynaptic stimulation. Receptor dependence of LTD and LTP induction and their pre- or postsynaptic loci also differed from those at other L2/3 pyramidal cell excitatory inputs. Overall, we demonstrate a novel means to switch between STDP rules dependent on the history of postsynaptic activity. We also highlight differences in STDP at excitatory synapses onto L2/3 pyramidal cells which allow for input specific modulation of synaptic gain.
Collapse
Affiliation(s)
- Misha Zilberter
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
Benuskova L, Kasabov N. Modeling brain dynamics using computational neurogenetic approach. Cogn Neurodyn 2008; 2:319-34. [PMID: 19003458 PMCID: PMC2585617 DOI: 10.1007/s11571-008-9061-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 01/10/2023] Open
Abstract
The paper introduces a novel computational approach to brain dynamics modeling that integrates dynamic gene-protein regulatory networks with a neural network model. Interaction of genes and proteins in neurons affects the dynamics of the whole neural network. Through tuning the gene-protein interaction network and the initial gene/protein expression values, different states of the neural network dynamics can be achieved. A generic computational neurogenetic model is introduced that implements this approach. It is illustrated by means of a simple neurogenetic model of a spiking neural network of the generation of local field potential. Our approach allows for investigation of how deleted or mutated genes can alter the dynamics of a model neural network. We conclude with the proposal how to extend this approach to model cognitive neurodynamics.
Collapse
Affiliation(s)
- Lubica Benuskova
- Department of Computer Science, University of Otago, 90 Union Place East, Dunedin, 9016 New Zealand
| | - Nikola Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, AUT Technology Park, 583-585 Great South Road, Penrose, Auckland, 1135 New Zealand
| |
Collapse
|
14
|
Blanc JL, Coq JO. Coding processes involved in the cortical representation of complex tactile stimuli. ACTA ACUST UNITED AC 2007; 101:22-31. [PMID: 18042355 DOI: 10.1016/j.jphysparis.2007.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To understand how information is coded in the primary somatosensory cortex (S1) we need to decipher the relationship between neural activity and tactile stimuli. Such a relationship can be formally measured by mutual information. The present study was designed to determine how S1 neuronal populations code for the multidimensional kinetic features (i.e. random, time-varying patterns of force) of complex tactile stimuli, applied at different locations of the rat forepaw. More precisely, the stimulus localization and feature extraction were analyzed as two independent processes, using both rate coding and temporal coding strategies. To model the process of stimulus kinetic feature extraction, multidimensional stimuli were projected onto lower dimensional subspace and then clustered according to their similarity. Different combinations of stimuli clustering were applied to differentiate each stimulus identification process. Information analyses show that both processes are synergistic, this synergy is enhanced within the temporal coding framework. The stimulus localization process is faster than the stimulus feature extraction process. The latter provides more information quantity with rate coding strategy, whereas the localization process maximizes the mutual information within the temporal coding framework. Therefore, combining mutual information analysis with robust clustering of complex stimuli provides a framework to study neural coding mechanisms related to complex stimuli discrimination.
Collapse
Affiliation(s)
- Jean-Luc Blanc
- UMR 6149, CNRS - Aix-Marseille Université, Centre St Charles, Pôle 3C, Case B, 13331, Marseille Cedex 03, France.
| | | |
Collapse
|
15
|
Di Russo F, Committeri G, Pitzalis S, Spitoni G, Piccardi L, Galati G, Catagni M, Nico D, Guariglia C, Pizzamiglio L. Cortical plasticity following surgical extension of lower limbs. Neuroimage 2005; 30:172-83. [PMID: 16288893 DOI: 10.1016/j.neuroimage.2005.09.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 09/06/2005] [Accepted: 09/07/2005] [Indexed: 11/28/2022] Open
Abstract
Human cortical plasticity has been studied after peripheral sensory alterations due to amputations or grafts, while sudden 'quasi-physiological' changes in the dimension of body parts have not been investigated yet. We examined the cortical reorganization in achondroplastic dwarfs submitted to progressive elongation (PE) of lower limbs through the Ilizarov technique. This paradigm is ideal for studying cortical plasticity because it avoids the perturbation connected with deafferentation and re-afferentation. Somatosensory evoked-potentials (SEP) and fMRI studies were performed before and after PE during foot and knee stimulation, above and below the surgical fracture. A body schema test was also performed. Following PE, cortical modifications were observed in the primary somatosensory cortex for foot stimulation and in higher order somatosensory cortices for foot and knee. The former modifications tended to decrease 6 months after the elongation ending, whereas the latter tended to persist. Results are interpreted in terms of cortical adaptation mediated by temporary disorganization.
Collapse
Affiliation(s)
- F Di Russo
- Santa Lucia Foundation IRCCS, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|