1
|
Beaubois R, Cheslet J, Duenki T, De Venuto G, Carè M, Khoyratee F, Chiappalone M, Branchereau P, Ikeuchi Y, Levi T. BiœmuS: A new tool for neurological disorders studies through real-time emulation and hybridization using biomimetic Spiking Neural Network. Nat Commun 2024; 15:5142. [PMID: 38902236 PMCID: PMC11190274 DOI: 10.1038/s41467-024-48905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Characterization and modeling of biological neural networks has emerged as a field driving significant advancements in our understanding of brain function and related pathologies. As of today, pharmacological treatments for neurological disorders remain limited, pushing the exploration of promising alternative approaches such as electroceutics. Recent research in bioelectronics and neuromorphic engineering have fostered the development of the new generation of neuroprostheses for brain repair. However, achieving their full potential necessitates a deeper understanding of biohybrid interaction. In this study, we present a novel real-time, biomimetic, cost-effective and user-friendly neural network capable of real-time emulation for biohybrid experiments. Our system facilitates the investigation and replication of biophysically detailed neural network dynamics while prioritizing cost-efficiency, flexibility and ease of use. We showcase the feasibility of conducting biohybrid experiments using standard biophysical interfaces and a variety of biological cells as well as real-time emulation of diverse network configurations. We envision our system as a crucial step towards the development of neuromorphic-based neuroprostheses for bioelectrical therapeutics, enabling seamless communication with biological networks on a comparable timescale. Its embedded real-time functionality enhances practicality and accessibility, amplifying its potential for real-world applications in biohybrid experiments.
Collapse
Affiliation(s)
- Romain Beaubois
- IMS, CNRS UMR5218, Bordeaux INP, University of Bordeaux, Talence, France
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
| | - Jérémy Cheslet
- IMS, CNRS UMR5218, Bordeaux INP, University of Bordeaux, Talence, France
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
| | - Tomoya Duenki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | | | - Marta Carè
- DIBRIS, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Farad Khoyratee
- IMS, CNRS UMR5218, Bordeaux INP, University of Bordeaux, Talence, France
| | - Michela Chiappalone
- DIBRIS, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Timothée Levi
- IMS, CNRS UMR5218, Bordeaux INP, University of Bordeaux, Talence, France.
| |
Collapse
|
2
|
Toward neuroprosthetic real-time communication from in silico to biological neuronal network via patterned optogenetic stimulation. Sci Rep 2020; 10:7512. [PMID: 32371937 PMCID: PMC7200763 DOI: 10.1038/s41598-020-63934-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/30/2020] [Indexed: 02/04/2023] Open
Abstract
Restoration of the communication between brain circuitry is a crucial step in the recovery of brain damage induced by traumatic injuries or neurological insults. In this work we present a study of real-time unidirectional communication between a spiking neuronal network (SNN) implemented on digital platform and an in-vitro biological neuronal network (BNN), generating similar spontaneous patterns of activity both spatial and temporal. The communication between the networks was established using patterned optogenetic stimulation via a modified digital light projector (DLP) receiving real-time input dictated by the spiking neurons' state. Each stimulation consisted of a binary image composed of 8 × 8 squares, representing the state of 64 excitatory neurons. The spontaneous and evoked activity of the biological neuronal network was recorded using a multi-electrode array in conjunction with calcium imaging. The image was projected in a sub-portion of the cultured network covered by a subset of the all electrodes. The unidirectional information transmission (SNN to BNN) is estimated using the similarity matrix of the input stimuli and output firing. Information transmission was studied in relation to the distribution of stimulus frequency and stimulus intensity, both regulated by the spontaneous dynamics of the SNN, and to the entrainment of the biological networks. We demonstrate that high information transfer from SNN to BNN is possible and identify a set of conditions under which such transfer can occur, namely when the spiking network synchronizations drive the biological synchronizations (entrainment) and in a linear regime response to the stimuli. This research provides further evidence of possible application of miniaturized SNN in future neuro-prosthetic devices for local replacement of injured micro-circuitries capable to communicate within larger brain networks.
Collapse
|
3
|
Shama F, Haghiri S, Imani MA. FPGA Realization of Hodgkin-Huxley Neuronal Model. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1059-1068. [PMID: 32175866 DOI: 10.1109/tnsre.2020.2980475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the appealing cases of the neuromorphic research area is the implementation of biological neural networks. The current study offers Multiplierless Hodgkin-Huxley Model (MHHM). This modified model may reproduce various spiking behaviors, like the biological HH neurons, with high accuracy. The presented modified model, in comparison to the original HH model, due to its exact similarity to the original model, has more top performances in the case of FPGA saving and more achievable frequency (speed-up). In this approach, the proposed model has a 69 % saving in FPGA resources and also the maximum frequency of 85 MHz that is more than other similar works. In this modification, all spiking behaviors of the original model have been generated with low error calculations. To validate the MHHM neuron, this proposed model has been implemented on digital hardware FPGA. This approach demonstrates that the original HH model and the proposed model have high similarity in terms of higher performance and digital hardware cost reduction.
Collapse
|
4
|
Salimi-Nezhad N, Ilbeigi E, Amiri M, Falotico E, Laschi C. A Digital Hardware System for Spiking Network of Tactile Afferents. Front Neurosci 2020; 13:1330. [PMID: 32009869 PMCID: PMC6971225 DOI: 10.3389/fnins.2019.01330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/26/2019] [Indexed: 11/13/2022] Open
Abstract
In the present research, we explore the possibility of utilizing a hardware-based neuromorphic approach to develop a tactile sensory system at the level of first-order afferents, which are slowly adapting type 1 (SA-I) and fast adapting type 1 (FA-I) afferents. Four spiking models are used to mimic neural signals of both SA-I and FA-I primary afferents. Next, a digital circuit is designed for each spiking model for both afferents to be implemented on the field-programmable gate array (FPGA). The four different digital circuits are then compared from source utilization point of view to find the minimum cost circuit for creating a population of digital afferents. In this way, the firing responses of both SA-I and FA-I afferents are physically measured in hardware. Finally, a population of 243 afferents consisting of 90 SA-I and 153 FA-I digital neuromorphic circuits are implemented on the FPGA. The FPGA also receives nine inputs from the force sensors through an interfacing board. Therefore, the data of multiple inputs are processed by the spiking network of tactile afferents, simultaneously. Benefiting from parallel processing capabilities of FPGA, the proposed architecture offers a low-cost neuromorphic structure for tactile information processing. Applying machine learning algorithms on the artificial spiking patterns collected from FPGA, we successfully classified three different objects based on the firing rate paradigm. Consequently, the proposed neuromorphic system provides the opportunity for development of new tactile processing component for robotic and prosthetic applications.
Collapse
Affiliation(s)
- Nima Salimi-Nezhad
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Ilbeigi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Amiri
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Egidio Falotico
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
| | - Cecilia Laschi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
| |
Collapse
|
5
|
Buccelli S, Bornat Y, Colombi I, Ambroise M, Martines L, Pasquale V, Bisio M, Tessadori J, Nowak P, Grassia F, Averna A, Tedesco M, Bonifazi P, Difato F, Massobrio P, Levi T, Chiappalone M. A Neuromorphic Prosthesis to Restore Communication in Neuronal Networks. iScience 2019; 19:402-414. [PMID: 31421595 PMCID: PMC6706626 DOI: 10.1016/j.isci.2019.07.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Recent advances in bioelectronics and neural engineering allowed the development of brain machine interfaces and neuroprostheses, capable of facilitating or recovering functionality in people with neurological disability. To realize energy-efficient and real-time capable devices, neuromorphic computing systems are envisaged as the core of next-generation systems for brain repair. We demonstrate here a real-time hardware neuromorphic prosthesis to restore bidirectional interactions between two neuronal populations, even when one is damaged or missing. We used in vitro modular cell cultures to mimic the mutual interaction between neuronal assemblies and created a focal lesion to functionally disconnect the two populations. Then, we employed our neuromorphic prosthesis for bidirectional bridging to artificially reconnect two disconnected neuronal modules and for hybrid bidirectional bridging to replace the activity of one module with a real-time hardware neuromorphic Spiking Neural Network. Our neuroprosthetic system opens avenues for the exploitation of neuromorphic-based devices in bioelectrical therapeutics for health care.
Collapse
Affiliation(s)
- Stefano Buccelli
- Rehab Technologies IIT-INAIL Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child science (DINOGMI), University of Genova, L.go P. Daneo 3, 16132 Genova, Italy; Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Yannick Bornat
- Laboratoire de l'Intégration du Matériau au Système (IMS), University of Bordeaux, Bordeaux INP, CNRS UMR 5218, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Ilaria Colombi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child science (DINOGMI), University of Genova, L.go P. Daneo 3, 16132 Genova, Italy; Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Matthieu Ambroise
- Laboratoire de l'Intégration du Matériau au Système (IMS), University of Bordeaux, Bordeaux INP, CNRS UMR 5218, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Laura Martines
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Informatics, Bioengineering, Robotics, System Engineering (DIBRIS), University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy
| | - Valentina Pasquale
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marta Bisio
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Neurosciences, University of Padova, Via Nicolò Giustiniani 5, 35128 Padova, Italy
| | - Jacopo Tessadori
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Przemysław Nowak
- Department of Informatics, Bioengineering, Robotics, System Engineering (DIBRIS), University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy; Institute of Information Technology, Lodz University of Technology, ul. Wolczanska 215, 90-924 Lodz, Poland
| | - Filippo Grassia
- Laboratoire de l'Intégration du Matériau au Système (IMS), University of Bordeaux, Bordeaux INP, CNRS UMR 5218, 351 Cours de la Libération, 33405 Talence Cedex, France; University of Picardie Jules Verne, Laboratory of Innovative Technologies (LTI, EA 3899), Avenue des Facultés, Le Bailly, 80025 Amiens, France
| | - Alberto Averna
- Rehab Technologies IIT-INAIL Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child science (DINOGMI), University of Genova, L.go P. Daneo 3, 16132 Genova, Italy; Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mariateresa Tedesco
- Department of Informatics, Bioengineering, Robotics, System Engineering (DIBRIS), University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy
| | - Paolo Bonifazi
- School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel; Computational Neuroimaging Laboratory, Biocruces Health Research Institute, Hospital Universitario Cruces, Baracaldo, Vizcaya 48903, Spain; Ikerbasque: The Basque Foundation for Science, Bilbao, Bizkaia 48013, Spain
| | - Francesco Difato
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics, System Engineering (DIBRIS), University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy
| | - Timothée Levi
- Laboratoire de l'Intégration du Matériau au Système (IMS), University of Bordeaux, Bordeaux INP, CNRS UMR 5218, 351 Cours de la Libération, 33405 Talence Cedex, France; LIMMS CNRS-IIS, The University of Tokyo, 153-8505 Tokyo, Japan.
| | - Michela Chiappalone
- Rehab Technologies IIT-INAIL Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
6
|
Khoyratee F, Grassia F, Saïghi S, Levi T. Optimized Real-Time Biomimetic Neural Network on FPGA for Bio-hybridization. Front Neurosci 2019; 13:377. [PMID: 31068781 PMCID: PMC6491680 DOI: 10.3389/fnins.2019.00377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/02/2019] [Indexed: 01/04/2023] Open
Abstract
Neurological diseases can be studied by performing bio-hybrid experiments using a real-time biomimetic Spiking Neural Network (SNN) platform. The Hodgkin-Huxley model offers a set of equations including biophysical parameters which can serve as a base to represent different classes of neurons and affected cells. Also, connecting the artificial neurons to the biological cells would allow us to understand the effect of the SNN stimulation using different parameters on nerve cells. Thus, designing a real-time SNN could useful for the study of simulations of some part of the brain. Here, we present a different approach to optimize the Hodgkin-Huxley equations adapted for Field Programmable Gate Array (FPGA) implementation. The equations of the conductance have been unified to allow the use of same functions with different parameters for all ionic channels. The low resources and high-speed implementation also include features, such as synaptic noise using the Ornstein-Uhlenbeck process and different synapse receptors including AMPA, GABAa, GABAb, and NMDA receptors. The platform allows real-time modification of the neuron parameters and can output different cortical neuron families like Fast Spiking (FS), Regular Spiking (RS), Intrinsically Bursting (IB), and Low Threshold Spiking (LTS) neurons using a Digital to Analog Converter (DAC). Gaussian distribution of the synaptic noise highlights similarities with the biological noise. Also, cross-correlation between the implementation and the model shows strong correlations, and bifurcation analysis reproduces similar behavior compared to the original Hodgkin-Huxley model. The implementation of one core of calculation uses 3% of resources of the FPGA and computes in real-time 500 neurons with 25,000 synapses and synaptic noise which can be scaled up to 15,000 using all resources. This is the first step toward neuromorphic system which can be used for the simulation of bio-hybridization and for the study of neurological disorders or the advanced research on neuroprosthesis to regain lost function.
Collapse
Affiliation(s)
- Farad Khoyratee
- Laboratoire de l'Intégration du Matériau au Système, Bordeaux INP, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Filippo Grassia
- LTI Laboratory, EA 3899, University of Picardie Jules Verne, Amiens, France
| | - Sylvain Saïghi
- Laboratoire de l'Intégration du Matériau au Système, Bordeaux INP, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Timothée Levi
- Laboratoire de l'Intégration du Matériau au Système, Bordeaux INP, CNRS UMR 5218, University of Bordeaux, Talence, France.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Haghiri S, Zahedi A, Naderi A, Ahmadi A. Multiplierless Implementation of Noisy Izhikevich Neuron With Low-Cost Digital Design. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1422-1430. [PMID: 30188839 DOI: 10.1109/tbcas.2018.2868746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fast speed and a high accuracy implementation of biological plausible neural networks are vital key objectives to achieve new solutions to model, simulate and cure the brain diseases. Efficient hardware implementation of spiking neural networks is a significant approach in biological neural networks. This paper presents a multiplierless noisy Izhikevich neuron (MNIN) model, which is used for the digital implementation of biological neural networks in large scale. Simulation results show that the MNIN model reproduces the same operations of the original noisy Izhikevich neuron. The proposed model has a low-cost hardware implementation property compared with the original neuron model. The field-programmable gate array realization results demonstrated that the MNIN model follows the different spiking patterns appropriately.
Collapse
|
8
|
Biomimetic microfluidic neurons for bio-hybrid experiments. ARTIFICIAL LIFE AND ROBOTICS 2018. [DOI: 10.1007/s10015-018-0452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Salimi-Nezhad N, Amiri M, Falotico E, Laschi C. A Digital Hardware Realization for Spiking Model of Cutaneous Mechanoreceptor. Front Neurosci 2018; 12:322. [PMID: 29937707 PMCID: PMC6003138 DOI: 10.3389/fnins.2018.00322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 04/25/2018] [Indexed: 11/17/2022] Open
Abstract
Inspired by the biology of human tactile perception, a hardware neuromorphic approach is proposed for spiking model of mechanoreceptors to encode the input force. In this way, a digital circuit is designed for a slowly adapting type I (SA-I) and fast adapting type I (FA-I) mechanoreceptors to be implemented on a low-cost digital hardware, such as field-programmable gate array (FPGA). This system computationally replicates the neural firing responses of both afferents. Then, comparative simulations are shown. The spiking models of mechanoreceptors are first simulated in MATLAB and next the digital neuromorphic circuits simulated in VIVADO are also compared to show that obtained results are in good agreement both quantitatively and qualitatively. Finally, we test the performance of the proposed digital mechanoreceptors in hardware using a prepared experimental set up. Hardware synthesis and physical realization on FPGA indicate that the digital mechanoreceptors are able to replicate essential characteristics of different firing patterns including bursting and spiking responses of the SA-I and FA-I mechanoreceptors. In addition to parallel computation, a main advantage of this method is that the mechanoreceptor digital circuits can be implemented in real-time through low-power neuromorphic hardware. This novel engineering framework is generally suitable for use in robotic and hand-prosthetic applications, so progressing the state of the art for tactile sensing.
Collapse
Affiliation(s)
- Nima Salimi-Nezhad
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Amiri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Egidio Falotico
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Cecilia Laschi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| |
Collapse
|
10
|
Spike pattern recognition using artificial neuron and spike-timing-dependent plasticity implemented on a multi-core embedded platform. ARTIFICIAL LIFE AND ROBOTICS 2017. [DOI: 10.1007/s10015-017-0421-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|