1
|
Joshi PR, Pandey S, Maharjan L, Pant B. Micropropagation and assessment of genetic stability of Dendrobium transparens Wall. Ex Lindl. using RAPD and ISSR markers. FRONTIERS IN CONSERVATION SCIENCE 2023. [DOI: 10.3389/fcosc.2022.1083933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
IntroductionDendrobium species have been widely used for many health disorders since ancient times. However, due to unrelenting collection to meet the increasing demand for their use in medication and other health products, the natural habitats of medicinal Dendrobium transparens have been devastated and are on the verge of extinction.MethodsAn efficient in-vitro propagation protocol for Dendrobium transparens using seed derived protocorms was established and genetic homogeneity of the in-vitro regenerants and the wild plant was studied. ResultsThe maximum seed germination was observed in Full strength Murashige and Skoog medium (FMS). Induction of protocorms were achieved on basal as well as half-strength MS medium. The highest number of shoot (11.9 shoots/explant) was achieved in half MS medium fortified with 100 mL/L coconut water in addition with Benzyl amino purine (BAP) 1 mg/L and Kinetin 2 mg/L. Further, elongated shoots were transferred to full and half strength MS root initiating medium supplemented with different concentration of auxins. However, a maximum of (8.3 ± 0.6, 4.9 ± 0.1 cm) roots were achieved in full MS medium fortified with 100 mL/L coconut water and Napthalene acetic acid (NAA) 1.5 mg/L. Ten rapid Random Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeats (ISSR) primers were used to analyze genetic stability among in-vitro and mother plant. RAPD primers produced a total of 23 fragments while ISSR primers produced a total of 16 fragments. ConclusionThe amplified bands of all the samples of in-vitro plants were similar to bands of mother plant. The present research reported here is indicating the applicability of tissue culture for true-to-type plant production and conservation of D. transperens.
Collapse
|
2
|
Mehbub H, Akter A, Akter MA, Mandal MSH, Hoque MA, Tuleja M, Mehraj H. Tissue Culture in Ornamentals: Cultivation Factors, Propagation Techniques, and Its Application. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233208. [PMID: 36501247 PMCID: PMC9736077 DOI: 10.3390/plants11233208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
Ornamentals come in a variety of shapes, sizes, and colors to suit a wide range of climates, landscapes, and gardening needs. Compared to demand, a shortage of plant materials and diversity force the search for solutions for their constant acquisition and improvement to increase their commercial value, respectively. In vitro cultures are a suitable solution to meet expectations using callus culture, somatic embryogenesis, protoplast culture, and the organogenesis of protocorm-like bodies; many of these techniques are commercially practiced. Factors such as culture media, explants, carbohydrates, plant growth regulators, and light are associated with the success of in vitro propagation. Techniques, especially embryo rescue and somatic hybridization, are widely used to improve ornamentals. The development of synthetic seed allows season-independent seed production and preservation in the long term. Despite the advantages of propagation and the improvement of ornamentals, many barriers still need to be resolved. In contrast to propagation and crop developmental studies, there is also a high scope for molecular studies, especially epigenetic changes caused by plant tissue culture of ornamentals. In this review, we have accumulated and discussed an overall update on cultivation factors, propagation techniques in ornamental plant tissue culture, in vitro plant improvement techniques, and future perspectives.
Collapse
Affiliation(s)
- Hasan Mehbub
- The United Graduate School of Agricultural Science, Ehime University, Matsuyama 790-8556, Japan
| | - Ayasha Akter
- Department of Horticulture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst. Arjina Akter
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | | | - Md. Ashraful Hoque
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Monika Tuleja
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Hasan Mehraj
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Correspondence: or
| |
Collapse
|
3
|
Zhang B, Niu Z, Li C, Hou Z, Xue Q, Liu W, Ding X. Improving large-scale biomass and total alkaloid production of Dendrobium nobile Lindl. using a temporary immersion bioreactor system and MeJA elicitation. PLANT METHODS 2022; 18:10. [PMID: 35065671 PMCID: PMC8783522 DOI: 10.1186/s13007-022-00843-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Dendrobium nobile Lindl. is an important pharmacopeial plant with medicinal and ornamental value. This study sought to provide a technical means for the large-scale production of total alkaloid in D. nobile. Seedlings were cultured in vitro using a temporary immersion bioreactor system (TIBS). The four tested immersion frequencies (min/h; 5/2, 5/4, 5/6, and 5/8) influenced the production of biomass and total alkaloid content. In addition, to compare the effects of different concentrations of the phytohormone methyl jasmonate (MeJA) and treatment time on biomass and total alkaloid accumulation, MeJA was added to the TIBS medium after 50 days. Finally, total alkaloid production in semi-solid system (SSS), TIBS, and TIBS combined with the MeJA system (TIBS-MeJA) were compared. RESULTS The best immersion frequency was found to be 5/6 (5 min every 6 h), which ensured appropriate levels of biomass and total alkaloid content in plantlets. The alkaloid content and production level of seedlings were the highest after treatment with 10 μM MeJA separately for 20 and 30 days using TIBS. The maximum content (7.41 mg/g DW) and production level (361.24 mg/L) of total alkaloid on use of TIBS-MeJA were 2.32- and 4.69-fold, respectively, higher in terms of content, and 2.07- and 10.49-fold, respectively, higher in terms of production level than those on using of TIBS (3.20 mg/g DW, 174.34 mg/L) and SSS (1.58 mg/g DW, 34.44 mg/L). CONCLUSIONS Our results show TIBS-MeJA is suitable for large-scale production of total alkaloid in in vitro seedlings. Therefore, this study provides a technical means for the large-scale production of total alkaloid in D. nobile.
Collapse
Affiliation(s)
- Benhou Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Chao Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhenyu Hou
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Recent Development in Micropropagation Techniques for Rare Plant Species. PLANTS 2020; 9:plants9121733. [PMID: 33302534 PMCID: PMC7764825 DOI: 10.3390/plants9121733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
The current investigation aimed to present an overview of the conservation of biological diversity of rare and endangered plant species. Methods of biodiversity conservation as well as several overview recommendations for the preservation of various rare species have been considered. An overview of the taxa included in the red book has been presented on the example of the Russian Federation. Global and local codes and classifiers of plant rarity were also presented. Future prospects for the conservation of biological diversity and the creation and development of bioresource collections have been considered.
Collapse
|
5
|
An Overview of Orchid Protocorm-Like Bodies: Mass Propagation, Biotechnology, Molecular Aspects, and Breeding. Int J Mol Sci 2020; 21:ijms21030985. [PMID: 32024235 PMCID: PMC7037051 DOI: 10.3390/ijms21030985] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
The process through induction, proliferation and regeneration of protocorm-like bodies (PLBs) is one of the most advantageous methods for mass propagation of orchids which applied to the world floricultural market. In addition, this method has been used as a tool to identify genes of interest associated with the production of PLBs, and also in breeding techniques that use biotechnology to produce new cultivars, such as to obtain transgenic plants. Most of the molecular studies developed have used model plants as species of Phalaenopsis, and interestingly, despite similarities to somatic embryogenesis, some molecular differences do not yet allow to characterize that PLB induction is in fact a type of somatic embryogenesis. Despite the importance of species for conservation and collection purposes, the flower market is supported by hybrid cultivars, usually polyploid, which makes more detailed molecular evaluations difficult. Studies on the effect of plant growth regulators on induction, proliferation, and regeneration of PLBs are the most numerous. However, studies of other factors and new technologies affecting PLB production such as the use of temporary immersion bioreactors and the use of lighting-emitting diodes have emerged as new tools for advancing the technique with increasing PLB production efficiency. In addition, recent studies on Phalaenopsis equestris genome sequencing have enabled more detailed molecular studies and the molecular characterization of plantlets obtained from this technique currently allow the technique to be evaluated in a more comprehensive way regarding its real applications and main limitations aiming at mass propagation, such as somaclonal variation.
Collapse
|
6
|
Restanto DP, Santoso B, Kriswanto B, Supardjono S. The Application of Chitosan for Protocorm Like Bodies (PLB) Induction of Orchid (Dendrobium sp) In Vitro. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aaspro.2016.02.164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Parthibhan S, Rao MV, Senthil Kumar T. In vitro regeneration from protocorms in Dendrobium aqueum Lindley - An imperiled orchid. J Genet Eng Biotechnol 2015; 13:227-233. [PMID: 30647588 PMCID: PMC6299805 DOI: 10.1016/j.jgeb.2015.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 06/03/2015] [Accepted: 07/04/2015] [Indexed: 11/19/2022]
Abstract
An efficient in vitro plant regeneration protocol from protocorms of Dendrobium aqueum was developed. The uniformly developed protocorms (in vitro origin) having shoot initials were cultured on half macro strength MS medium (1/2 MS) supplemented with cytokinins (BA, 2iP, KIN and TDZ) at 1, 3, 5, 7, 10 mg l-1, natural additives (BP and CW) at 1%, 3%, 5%, 7%, 10% and auxins (IBA, NAA, 2,4-D) at 1, 3, 5, 7, 10 mg l-1 to study their efficacy on complete plant development. A maximum of 9.4 shoots per explant were generated on 3 mg l-1 of NAA followed by 3% of BP (7.0 shoots). Shoot elongation (1.52 cm) was achieved on 1/2 MS medium fortified with NAA 7 mg l-1 followed by TDZ 7 mg l-1 (1.37 cm). Shoots cultured on 1/2 MS medium supplemented with IBA 5 mg l-1 produced an average of 8.75 roots per shoot, however the lengthiest roots (1.48 cm) were noted in NAA 7 mg l-1. Healthy rooted plantlets successfully acclimatized in ex vitro condition. The role of complete plantlet production by natural additives could be useful for conservation and cost effective commercial production of orchids.
Collapse
Affiliation(s)
- Selvaraju Parthibhan
- Department of Plant Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Mandali Venkateswara Rao
- Department of Plant Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Thiruppathi Senthil Kumar
- Department of Industry University Collaboration, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
8
|
da Silva JAT, Cardoso JC, Dobránszki J, Zeng S. Dendrobium micropropagation: a review. PLANT CELL REPORTS 2015; 34:671-704. [PMID: 26046143 DOI: 10.1007/s00299-015-1754-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dendrobium is one of the largest and most important (ornamentally and medicinally) orchid genera. Tissue culture is now an established method for the effective propagation of members of this genus. This review provides a detailed overview of the Dendrobium micropropagation literature. Through a chronological analysis, aspects such as explant, basal medium, plant growth regulators, culture conditions and final organogenic outcome are chronicled in detail. This review will allow Dendrobium specialists to use the information that has been documented to establish, more efficiently, protocols for their own germplasm and to improve in vitro culture conditions based on the optimized parameters detailed in this review. Not only will this expand the use for mass propagation, but will also allow for the conservation of important germplasm. Information on the in vitro responses of Dendrobium for developing efficient protocols for breeding techniques based on tissue culture, such as polyploidization, somatic hybridization, isolation of mutants and somaclonal variants and for synthetic seed and bioreactor technology, or for genetic transformation, is discussed in this review. This is the first such review on this genus and represents half a decade of literature dedicated to Dendrobium micropropagation.
Collapse
|
9
|
Bhattacharyya P, Kumaria S, Diengdoh R, Tandon P. Genetic stability and phytochemical analysis of the in vitro regenerated plants of Dendrobium nobile Lindl., an endangered medicinal orchid. Meta Gene 2014; 2:489-504. [PMID: 25606433 PMCID: PMC4287867 DOI: 10.1016/j.mgene.2014.06.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 01/05/2023] Open
Abstract
An efficient genetically stable regeneration protocol with increased phytochemical production has been established for Dendrobium nobile, a highly prized orchid for its economic and medicinal importance. Protocorm like bodies (PLBs) were induced from the pseudostem segments using thidiazuron (TDZ; 1.5 mg/l), by-passing the conventional auxin-cytokinin complement approach for plant regeneration. Although, PLB induction was observed at higher concentrations of TDZ, plantlet regeneration from those PLBs was affected adversely. The best rooting (5.41 roots/shoot) was achieved in MS medium with 1.5 mg/l TDZ and 0.25% activated charcoal. Plantlets were successfully transferred to a greenhouse with a survival rate of 84.3%, exhibiting normal development. Genetic stability of the regenerated plants was investigated using randomly amplified polymorphic DNA (RAPD) and start codon targeted (SCoT) polymorphism markers which detected 97% of genetic fidelity among the regenerants. The PIC values of RAPD and SCoT primers were recorded to be 0.92 and 0.76 and their Rp values ranged between 3.66 and 10, and 4 and 12 respectively. The amplification products of the regenerated plants showed similar banding patterns to that of the mother plant thus demonstrating the homogeneity of the micropropagated plants. A comparative phytochemical analysis among the mother and the micropropagated plants showed a higher yield of secondary metabolites. The regeneration protocol developed in this study provides a basis for ex-situ germplasm conservation and also harnesses the various secondary metabolite compounds of medicinal importance present in D. nobile.
Collapse
Affiliation(s)
| | - Suman Kumaria
- Plant Biotechnology Laboratory, Department of Botany, Centre for Advanced Studies, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | | | | |
Collapse
|
10
|
Wei M, Yang CY, Wei SH. Enhancement of the differentiation of protocorm-like bodies of Dendrobium officinale to shoots by ultrasound treatment. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:770-774. [PMID: 22437146 DOI: 10.1016/j.jplph.2012.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 05/31/2023]
Abstract
An efficient micropropagation protocol has been developed for Dendrobium officinale, through protocorm-like bodies (PLBs). A correlation between enhanced differentiation of PLBs of D. officinale by ultrasound and changes in the levels of endogenous hormones and the antioxidant enzyme activities was described. Ultrasound treatments improved the conversion of PLBs of D. officinale to shoots. The highest conversion frequency of PLBs to shoots was obtained following the ultrasound treatment at 300 W for 5 min. Compared to the control, the enhanced conversion of PLBs to shoots following the ultrasound treatment was accompanied by an increase in the ratio of total cytokinins (CTKs) to indole-3-acetic acid (IAA), which was due to a decrease in the endogenous level of IAA and an increase in the endogenous level of total CTKs. Analysis of enzyme activities indicated that the increased endogenous level of total CTKs driven by ultrasound was associated with the inhibition of CTK decomposition by CTK oxidase (EC 1.4.3.6), while the decreased endogenous level of IAA was associated with the promotion of IAA decomposition by IAA oxidase (EC 1.10.3.3). In addition, ultrasound treatment increased the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and peroxidase (EC 1.11.1.7) in the conversion process of PLBs to shoots.
Collapse
Affiliation(s)
- Ming Wei
- College of Biology and Chemistry, Anhui Polytechnic University, Wuhu 241000, People's Republic of China
| | | | | |
Collapse
|
11
|
Malabadi RB, Nataraja K. Genetic Transformation of Vanilla planifolia by Agrobacterium-tumefaciens Using Shoot Tip Sections. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/rjb.2007.86.94] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|