1
|
Wang Z, Rehman A, Jia Y, Dai P, He S, Wang X, Li H, Wang L, Qayyum A, Peng Z, Du X. Transcriptome and proteome profiling revealed the key genes and pathways involved in the fiber quality formation in brown cotton. Gene 2023; 868:147374. [PMID: 36934785 DOI: 10.1016/j.gene.2023.147374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Colored cotton is also called eco-cotton because of its natural color fiber. It is inferior in yield and quality than white cotton. The underlying regulatory genes involved in fiber quality and pigment synthesis are not well understood. This study aimed to investigate the transcriptomic and proteomic changes during fiber development in a brown cotton cultivar (Z161) and a white cotton cultivar. The differential proteins with the same expression trend as genes were significantly and positively correlated with corresponding fold changes in expression. Enrichment analysis revealed that Z161, enriched in fiber elongation genes related to flavonoid biosynthesis, phenylalanine metabolism, glutathione metabolism, and many more genes (proteins) are up-regulated. Moreover, 164 glycosyltransferases genes, 15 MYB-bHLH-WD40 genes, and other transcription factors such as C2H2 (12), ERF (11), and NAC (7) were preferentially expressed in Z161. Weighted correlation network analysis identified fatty acid synthesis and energy metabolism as the principal metabolic pathways in both cotton genotypes during fiber development. Identified 15 hub genes will provide important insights for genetic manipulation of fiber quality and pigment deposition balance in brown cotton fibers.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinhua Jia
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China
| | - Panhong Dai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China
| | - Xiaoyang Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China
| | - Liru Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China.
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| |
Collapse
|
2
|
Ratnayake S, Beahan CT, Callahan DL, Bacic A. The reducing end sequence of wheat endosperm cell wall arabinoxylans. Carbohydr Res 2013; 386:23-32. [PMID: 24462668 DOI: 10.1016/j.carres.2013.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/11/2013] [Accepted: 12/15/2013] [Indexed: 12/31/2022]
Abstract
Walls from wheat (Triticum aestivum L.) endosperm are composed primarily of hetero-(arabino)xylans (AXs) (70%) and (1→3)(1→4)-β-D-glucans (20%) with minor amounts of cellulose and heteromannans (2% each). To understand the differential solubility properties of the AXs, as well as aspects of their biosynthesis, we are sequencing the xylan backbone and examining the reducing end (RE) sequence(s) of wheat (monocot) AXs. A previous study of grass AXs (switchgrass, rice, Brachypodium, Miscanthus and foxtail millet) concluded that grasses lacked the comparable RE glycosyl sequence (4-β-D-Xylp-(1→4)-β-D-Xylp-(1→3)-α-L-Rhap-(1→2)-α-D-GalpA-(1→4)-D-Xylp) found in dicots and gymnosperms but the actual RE sequence was not determined. Here we report the isolation and structural characterisation of the RE oligosaccharide sequence(s) of wheat endosperm cell wall AXs. Walls were isolated as an alcohol-insoluble residue (AIR) and sequentially extracted with hot water (W-sol Fr) and 1M KOH containing 1% NaBH4 (KOH-sol Fr). Detailed structural analysis of the RE oligosaccharides was performed using a combination of methylation analysis, MALDI-TOF-MS, ESI-QTOF-MS, ESI-MS(n) and enzymic analysis. Analysis of RE oligosaccharides, both 2AB labelled (from W-sol Fr) and glycosyl-alditol (from KOH-sol Fr), revealed that the RE glycosyl sequence of wheat endosperm AX comprises a linear (1→4)-β-D-Xylp backbone which may be mono-substituted with either an α-L-Araf residue at the reducing end β-D-Xylp residue and/or penultimate RE β-D-Xyl residue; β-D-Xylp-(1→4)-[α-L-Araf-(1→3)](+/-)-β-D-Xylp-(1→4)-[α-L-Araf-(1→3)](+/-)-β-D-Xylp and/or an α-D-GlcpA residue at the reducing end β-D-Xylp residue; β-D-Xylp-(1→4)-[α-L-Araf-(1→3)](+/-)-β-D-Xylp-(1→4)-[α-D-GlcAp-(1→2)]-β-D-Xylp. Thus, wheat endosperm AX backbones lacks the RE sequence found in dicot and gymnosperm xylans; a finding consistent with previous reports from other grass species.
Collapse
Affiliation(s)
- Sunil Ratnayake
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cherie T Beahan
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| | - Damien L Callahan
- Metabolomics Australia, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia; Metabolomics Australia, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
3
|
Yang YW, Bian SM, Yao Y, Liu JY. Comparative Proteomic Analysis Provides New Insights into the Fiber Elongating Process in Cotton. J Proteome Res 2008; 7:4623-37. [DOI: 10.1021/pr800550q] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yi-Wei Yang
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, P. R. China
| | - Shao-Min Bian
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, P. R. China
| | - Yuan Yao
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, P. R. China
| | - Jin-Yuan Liu
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Peña MJ, Zhong R, Zhou GK, Richardson EA, O'Neill MA, Darvill AG, York WS, Ye ZH. Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. THE PLANT CELL 2007; 19:549-63. [PMID: 17322407 PMCID: PMC1867335 DOI: 10.1105/tpc.106.049320] [Citation(s) in RCA: 325] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Mutations of Arabidopsis thaliana IRREGULAR XYLEM8 (IRX8) and IRX9 were previously shown to cause a collapsed xylem phenotype and decreases in xylose and cellulose in cell walls. In this study, we characterized IRX8 and IRX9 and performed chemical and structural analyses of glucuronoxylan (GX) from irx8 and irx9 plants. IRX8 and IRX9 are expressed specifically in cells undergoing secondary wall thickening, and their encoded proteins are targeted to the Golgi, where GX is synthesized. 1H-NMR spectroscopy showed that the reducing end of Arabidopsis GX contains the glycosyl sequence 4-beta-D-Xylp-(1-->4)-beta-D-Xylp-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-D-GalpA-(1-->4)-D-Xylp, which was previously identified in birch (Betula verrucosa) and spruce (Picea abies) GX. This indicates that the reducing end structure of GXs is evolutionarily conserved in woody and herbaceous plants. This sequence is more abundant in irx9 GX than in the wild type, whereas irx8 and fragile fiber8 (fra8) plants are nearly devoid of it. The number of GX chains increased and the GX chain length decreased in irx9 plants. Conversely, the number of GX chains decreased and the chain length heterodispersity increased in irx8 and fra8 plants. Our results suggest that IRX9 is required for normal GX elongation and indicate roles for IRX8 and FRA8 in the synthesis of the glycosyl sequence at the GX reducing end.
Collapse
Affiliation(s)
- Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wu AM, Lv SY, Liu JY. Functional analysis of a cotton glucuronosyltransferase promoter in transgenic tobaccos. Cell Res 2007; 17:174-83. [PMID: 17179980 DOI: 10.1038/sj.cr.7310119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The 5' fragment (1 647 bp) of the cotton glucuronosyltransferase gene (GhGlcAT1) was transcriptionally fused to the beta-glucuronidase (GUS) gene, and functionally analyzed for important regulatory regions controlling gene expression in transgenic tobacco plants. GUS activity analysis revealed that the full-length promoter drives efficient expression of the GUS gene in the root cap, seed coat, pollen grains and trichomes. Exposure of the transgenic tobacco to various abiotic stresses showed that the promoter was mainly responsive to the sugars (glucose and sucrose) as well as gibberellic acid. Progressive upstream deletion analyses of the promoter showed that the region from -281 to +30 bp is sufficient to drive strong GUS expression in the trichomes of shoot, suggesting that the 311 bp region contains all cis-elements needed for trichome-specific expression. Furthermore, deletion analysis also revealed that the essential cis-element(s) for sucrose induction might be located between -635 and -281 bp. In addition, sequence analysis of the regulatory region indicated several conserved motifs among which some were shared with previously reported seed-specific elements and sugar-responsive elements, while others were related with trichome expression. These findings indicate that a 1 647-bp fragment of the cotton GhGlcAT1 promoter contains specific transcription regulatory elements, and provide clues about the roles of GhGlcAT1 in cotton fiber development. Further analyses of these elements will help to elucidate the molecular mechanisms regulating the expression of the GhGlcAT1 gene during fiber elongation.
Collapse
Affiliation(s)
- Ai-Min Wu
- Laboratory of Molecular Biology and Protein Science Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|